Supporting information

New 1,2,3-triazole based bis- and tris-phosphine ligands: synthesis, transition

metal chemistry and catalytic studies

Latchupatula Radhakrishna,^a Harish S. Kunchur, ^{a§} Pavan K. Namdeo, ^{a§} Ray J. Butcher^b and

Maravanji S. Balakrishna*a

^aPhosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. ^bDepartment of Chemistry, Howard University, Washington, D. C. 20059, USA [§]Contributed equally to this work

	Page no.
NMR spectral data of compounds a-i	S1-S2
Table S1. Crystallographic Information for 5, 6, 8, 9, 12 and 13	S 3
Table S2 Crystallographic Information for 14-17 and 21	S 4
NMR and mass spectra of 5-21	S5-S42
NMR and mass spectra of a-i	S43-S49
Cartesian coordinates of optimized geometries of 8-11	S49-S61
References	S61

*Author to whom correspondence should be addressed. E-mail: krishna@chem.iitb.ac.in, msb_krishna@iitb.ac.in (M. S. Balakrishna); Fax: +91-22-5172-3480/2576-7152.

NMR spectral data of compounds a-i

(E)-1,2-diphenylethene $(\mathbf{a})^1$

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.50 (m, 4H), 7.46 – 7.34 (m, 4H), 7.28 (ddd, *J* = 7.6, 4.0, 1.3 Hz, 2H), 7.14 (d, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.52, 128.86, 127.79, 126.70.

(E)-1-methyl-4-styrylbenzene $(\mathbf{b})^1$

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.4 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.26 (dd, *J* = 8.1, 6.5 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 2.5 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.71, 134.74, 129.58, 128.83, 127.89, 127.59, 126.61, 126.58, 21.44.

(E)-1-methyl-3-styrylbenzene (\mathbf{c})^{1b, 2}

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.49 (m, 2H), 7.41 – 7.31 (m, 4H), 7.30 – 7.23 (m, 2H), 7.13 – 7.06 (m, 3H), 2.38 (d, *J* = 15.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.40, 137.61, 137.45, 128.99, 128.85, 128.76, 128.67, 128.64, 127.72, 127.39, 126.66, 123.89, 21.62.

(E)-1-chloro-4-styrylbenzene (\mathbf{d})^{1b}

¹H NMR (400 MHz, CDCl₃) δ 7.51 (dt, J = 2.7, 1.7 Hz, 2H), 7.48 – 7.42 (m, 2H), 7.35 (ddt, J = 13.4, 8.9, 2.0 Hz, 4H), 7.31 – 7.25 (m, 1H), 7.13 – 7.01 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 137.17, 136.03, 133.35, 129.50, 129.02, 128.91, 128.05, 127.84, 127.55, 126.73.

(E)-4-styrylbenzonitrile $(\mathbf{e})^3$

¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.21 (d, *J* = 16.3 Hz, 1H), 7.09 (d, J = 16.3 Hz, 1H), 7.09 (d, J

Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.97, 136.43, 132.62, 132.54, 129.00, 128.79, 127.07, 127.01, 126.86, 119.18, 110.71.

(E)-1-methoxy-3-styrylbenzene $(\mathbf{f})^4$

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.48 (m, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.31 – 7.26 (m, 2H),

7.16 – 7.03 (m, 4H), 6.83 (dd, *J* = 8.1, 1.8 Hz, 1H), 3.86 (s, 3H).

(E)-1-bromo-2-styrylbenzene $(\mathbf{g})^5$

¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.65 (m, 1H), 7.62 – 7.53 (m, 3H), 7.47 (d, *J* = 16.2 Hz, 1H), 7.39 (dd, *J* = 10.4, 4.8 Hz, 2H), 7.33 – 7.27 (m, 2H), 7.15 – 7.09 (m, 1H), 7.08 – 7.02 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 137.36, 137.22, 133.27, 131.65, 128.98, 128.94, 128.27, 127.74, 127.68, 127.04, 126.91, 124.34.

(E)-2-styrylthiophene $(\mathbf{h})^{1b}$

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 3.0 Hz, 1H), 7.21 (dd, *J* = 10.9, 5.3 Hz, 2H), 7.07 (d, *J* = 3.4 Hz, 1H), 7.01 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.93 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.07, 137.14, 128.88, 128.52, 127.78, 126.48, 126.28, 124.52, 121.96.

(E)-3-styrylthiophene $(i)^6$

¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 7.5 Hz, 2H), 7.38 – 7.31 (m, 4H), 7.26 (dd, *J* = 6.2, 4.3 Hz, 2H), 7.16 – 7.10 (m, 1H), 6.96 (d, *J* = 16.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 140.31, 137.56, 128.86, 127.64, 126.46, 126.37, 125.11, 123.08, 122.53.

	5	6	8	9	12	13
Formula	$C_{38}H_{29}N_3P_2$	$C_{38}H_{29}N_3P_2$	$C_{42}H_{29}MoN_3O_4P_2$	$C_{44}H_{33}Cl_4N_3O_4P_2W$	$C_{44}H_{32}MoN_4O_4P_2$	$C_{42}H_{29}N_3O_4P_2W$
Formula weight	589.58	589.58	797.56	1055.32	838.61	885.47
Temperature/K	150	150	150	150	150	150
Crystal system	triclinic	monoclinic	monoclinic	triclinic	triclinic	triclinic
Space group	P-1	$P2_1/c$	P21/c	P-1	P-1	P-1
a/Å	11.9846(4)	11.9547(5)	13.9968(8)	10.93180(10)	8.8012(3)	8.9297(3)
b/Å	17.0460(6)	10.9927(4)	19.0202(9)	12.0240(2)	16.0063(7)	13.0206(4)
c/Å	17.7261(5)	23.6721(10)	17.4142(8)	17.6156(3)	16.2933(7)	16.7334(5)
α/\circ	111.601(4)	90	90	94.8810(10)	110.228(4)	102.136(2)
β/°	93.453(3)	93.244(4)	110.220(6)	106.2740(10)	102.707(4)	99.903(2)
$\gamma/^{\circ}$	110.334(3)	90	90	101.0640(10)	105.324(4)	103.182(2)
Volume/Å ³	3082.69(19)	3105.9(2)	4350.3(4)	2157.55(6)	1950.37(15)	1801.89(10)
Z	4	4	4	2	2	2
$\rho_{calc}g/cm^3$	1.270	1.261	1.218	1.624	1.428	1.632
μ/mm^{-1}	0.173	0.172	0.415	3.045	0.467	3.342
F(000)	1232	1232	1624	1044	856	876
Crystal size/mm ³	$0.205 \times 0.184 \times 0.163$	$0.156 \times 0.124 \times 0.098$	0.186 × 0.125 × 0.086	$\begin{array}{c} 0.158 \times 0.124 \times \\ 0.086 \end{array}$	0.118 × 0.095 × 0.063	0.215 imes 0.178 imes 0.124
20 range	3.712 to 62.53	4.086 to 62.252	4.282 to 62.24	3.49 to 62.186	4.854 to 62.404	4.696 to 62.36
Reflections collected	32956	20849	35131	24915	22899	22495
Independent reflections	17742	9083	12655	12412	11269	10397
S	1.040	1.045	1.077	1.034	1.026	1.031
R1	0.0769	0.0652	0.0935	0.0294	0.0823	0.0234
wR ₂	0.2272	0.1615	0.1943	0.0657	0.1626	0.0537

Table S1. Crystallographic Information for 5, 6, 8, 9, 12 and 13

	14	15	16	17	21
Formula	C39H31Cl4N3P2Pd	C39H29Cl4N3P2Pt	C39H29Cl4N3P2Pd	C56H46ClN3NiP2	C39H28N3OP2Rh
Formula weight	851.81	938.48	849.79	917.06	719.49
Temperature/K	150	150	150	150	150
Crystal system	monoclinic	monoclinic	monoclinic	triclinic	triclinic
Space group	$P2_{1}/n$	$P2_{1}/c$	$P2_1/c$	P-1	P-1
a/Å	11.5130(10)	11.5113(3)	19.0043(6)	10.05434(14)	10.2700(4)
b/Å	13.1004(10)	13.1944(5)	10.0057(3)	11.14458(16)	12.3139(5)
c/Å	25.2960(4)	25.2877(8)	19.8886(6)	22.0783(3)	13.2062(5)
$\alpha/^{\circ}$	90	90	90	87.1739(12)	85.921(3)
β/°	103.1600(10)	103.149(3)	107.908(3)	81.6515(12)	80.350(3)
$\gamma/^{\circ}$	90	90	90	71.6855(13)	74.358(3)
Volume/Å ³	3715.07(11)	3740.1(2)	3598.6(2)	2323.69(6)	1584.91(11)
Ζ	4	4	4	2	2
$\rho_{calc}g/cm^3$	1.523	1.667	1.569	1.311	1.508
μ/mm^{-1}	0.906	4.156	0.936	0.585	0.677
F(000)	1720	1840	1712	956	732
Crystal size/mm ³	$\begin{array}{c} 0.215\times 0.178\times \\ 0.128\end{array}$	$0.143 \times 0.095 \times 0.035$	$\begin{array}{c} 0.204 \times 0.202 \times \\ 0.13 \end{array}$	0.3 imes 0.26 imes 0.23	$\begin{array}{c} 0.154 \times 0.1 \times \\ 0.05 \end{array}$
20 range	4.782 to 62.36	4.322 to 49.994	4.504 to 49.99	4.454 to 62.428	4.584 to 62.416
Reflections collected	98012	29109	6281	46256	41851
Independent reflections	11376	6575	6281	13613	9428
S	1.04	1.066	1.136	1.038	1.054
R ₁	0.0242	0.0566	0.0664	0.0347	0.0435
wR ₂	0.0615	0.1278	0.1607	0.0950	0.1048

Table S2 Crystallographic Information for 14-17 and 21

Fig. S1 Molecular structure of **5** showing inter- and intramolecular aromatic π - π interaction.

NMR and mass spectra of 2-21

Fig. S2 ³¹P{¹H} NMR spectrum of 2 in CDCl₃ (202 MHz)

Fig. S3 ¹H NMR spectrum of 5 in CDCl₃ (500 MHz)

Fig. S4 ¹³C NMR spectrum of 5 in CDCl₃ (101 MHz)

Fig. S5 EI mass spectrum of 5

Fig. S6 ³¹P{¹H} NMR spectrum of 5 in CDCl₃ (202 MHz)

Fig. S8 ¹³C NMR spectrum of 5 in CDCl₃ (101 MHz)

mSigma 19.9 m/z 590.1909 err [ppm] -0.7 rdb 26.5 # 590.1905 C38H30N3P2 1 100.00 even ok.

Fig. S9 EI mass spectrum of 5

Fig. S10 ${}^{31}P{}^{1}H$ NMR spectrum of 6 in CDCl₃ (162 MHz)

Fig. S11 ¹H NMR spectrum of 6 in CDCl₃ (400 MHz)

Fig. S12 ¹³C NMR spectrum of 6 in CDCl₃ (101 MHz)

Fig. S13 EI mass spectrum of 6

^{-7 -8 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41}

Fig. S15 ¹H NMR spectrum of 7 in CDCl₃ (400 MHz)

Fig. S16¹³C NMR spectrum of 7 in CDCl₃ (101 MHz)

Fig. S17 EI mass spectrum of 7

Fig. S18 ³¹P{¹H} NMR spectrum of 8 in CDCl₃ (202 MHz)

Fig. S19 ¹H NMR spectrum of 8 in CDCl₃ (500 MHz)

Fig. S20 $^{13}C{^{1}H}$ NMR spectrum of 8 in CDCl₃ (101 MHz)

Fig. S21 IR spectrum of 8

Fig. S22 EI mass spectrum of 8

Fig. S23 ³¹P{¹H}NMR spectrum of 9 in CDCl₃ (202 MHz)

Fig. S24 ¹H NMR spectrum of 9 in CDCl₃ (500 MHz)

Fig. S25 ${}^{13}C{}^{1}H$ NMR spectrum of 9 in CDCl₃ (126 MHz)

Fig. S26 IR spectrum of 9

Fig. S27 EI mass spectrum of 9

Fig. S28 ³¹P{¹H} NMR spectrum of 10 in CDCl₃ (162 MHz)

Fig. S29 EI mass spectrum of 10

Fig. S30 ³¹P{¹H} NMR spectrum of **11** in CDCl₃ (162 MHz)

Fig. S31 ¹H NMR spectrum of 11 in CDCl₃ (500 MHz)

Fig. S32 ¹³C{¹H} NMR spectrum of **11** in CDCl₃ (126 MHz)

Fig. S33 IR spectrum of 11

Fig. S34 EI mass spectrum of 11

Fig. S35 ${}^{31}P{}^{1}H$ NMR spectrum of 12 in CDCl₃ (162 MHz)

Fig. S36 ¹H NMR spectrum of 12 in CDCl₃ (400 MHz)

Fig. S37 $^{13}C{^{1}H}$ NMR spectrum of 12 in CDCl₃ (101 MHz)

Fig. S39 EI mass spectrum of 12

Fig. S41 ¹H NMR spectrum of 13 in CDCl₃ (400 MHz)

Fig. S42 ${}^{13}C{}^{1}H$ NMR spectrum of 13 in DMSO- d_6 (101 MHz)

Fig. S43 IR spectrum of 13

Fig. S44 EI mass spectrum of 13

Fig. S45 ³¹P{¹H} NMR spectrum of 14 in CDCl₃ (202 MHz)

Fig. S46 ¹H NMR spectrum of 14 in CDCl₃ (500 MHz)

Fig. S47 ${}^{13}C{}^{1}H$ NMR spectrum of 14 in CDCl₃ (101 MHz)

Fig. S48 EI mass spectrum of 14

Fig. S49 ${}^{31}P{}^{1}H$ NMR spectrum of 15 in CDCl₃ (162 MHz)

Fig. S50 ¹H NMR spectrum of 15 in CDCl₃ (400 MHz)

Fig. S51 ¹³C{¹H} NMR spectrum of **15** in CDCl₃ (101 MHz)

Fig. S52 EI mass spectrum of 15

Fig. S53 ${}^{31}P{}^{1}H$ NMR spectrum of 16 in CDCl₃ (202 MHz)

Fig. S54 ¹H NMR spectrum of 16 in CDCl₃ (500 MHz)

Fig. S55 ¹³C NMR spectrum of 16 in CDCl₃ (126 MHz)

Fig. S56 EI mass spectrum of 16

Fig. S57 ³¹P{¹H} NMR spectrum of **17** in CDCl₃ (202 MHz)

Fig. S58 ¹H NMR spectrum of 17 in CDCl₃ (500 MHz)

Fig. S59 ¹³C NMR spectrum of 17 in CDCl₃ (126 MHz)

Fig. S60 EI mass spectrum of 17

Fig. S61 ${}^{31}P{}^{1}H$ NMR spectrum of 18 in CDCl₃ (162 MHz)

Fig. S62 ¹H NMR spectrum of 18 in CDCl₃ (500 MHz)

Fig. S63 ¹³C NMR spectrum of 18 in CDCl₃ (126 MHz)

 Meas.m/z
 # Ion Formula
 m/z
 err [ppm]
 mSigma
 # Sigma
 Score
 rdb
 e⁻ Conf
 N-Rule

 755.1305
 1
 C38H28NP2Pt
 755.1343
 -5.1
 22.5
 2
 100.00
 26.5
 even

Fig. S64 EI mass spectrum of 18

Fig. S66 ¹H NMR spectrum of 19 in CDCl₃ (400 MHz)

Fig. S67 ${}^{13}C{}^{1}H$ NMR spectrum of 19 in CDCl₃ (101 MHz)

Fig. S68 EI mass spectrum of 19

Fig. S69 ³¹P{¹H} NMR spectrum of **20** in CDCl₃ (162 MHz)

Fig. S71 ${}^{13}C{}^{1}H$ NMR spectrum of 20 in CDCl₃ (101 MHz)

Fig. S72 EI mass spectrum of 20

Fig. S73 ³¹P{¹H} NMR spectrum of **21** in CDCl₃ (202 MHz)

Fig. S75 ¹³C NMR spectrum of 21 in CDCl₃ (101 MHz)

Fig. S76 IR spectrum of 21

Fig. S77 EI mass spectrum of 21

NMR spectra of a-i

Fig. S80 ¹H NMR spectrum of b in CDCl₃ (400 MHz)

Fig. S83 ¹³C NMR spectrum of c in CDCl₃ (101 MHz)

Fig. S86 ¹H NMR spectrum of e in CDCl₃ (500 MHz)

Fig. S89 ¹H NMR spectrum of g in CDCl₃ (500 MHz)

Fig. S91 ¹H NMR spectrum of h in CDCl₃ (500 MHz)

Fig. S93 ¹H NMR spectrum of i in CDCl₃ (500 MHz)

Fig. S94 ¹³C NMR spectrum of i in CDCl₃ (126 MHz)

Cartesian coordinates of optimized geometries of 8-11

Total electronic energies and Gibbs free energies (in a.u) and Cartesian coordinates of optimized

geometries of **8-11** at the M06/6-31G**, lanl2dz (Mo, W) level of theory.

8
Zero-point correction= 0.601658
Thermal correction to Energy= 0.647805
Thermal correction to Enthalpy= 0.648749
Thermal correction to Gibbs Free Energy= 0.519545
Sum of electronic and zero-point Energies= -2831.260530
Sum of electronic and thermal Energies= -2831.214383
Sum of electronic and thermal Enthalpies= -2831.213439
Sum of electronic and thermal Free Energies= -2831.342643
15 0.347379000 6.630002000 11.740414000
15 -0.075147000 1.726460000 13.796422000
8 1.991453000 -0.582073000 9.020753000
8 3.578975000 0.355550000 13.115539000
8 -2.146273000 0.445217000 10.207587000

8	0.149102000	-2.388390000	12.757275000
6	2.853999000	3.954564000	15.691380000
1	3.316847000	3.979448000	16.674996000
7	0.416206000	3.079375000	9.887016000
7	0.318497000	4.411952000	9.861780000
6	1.853462000	3.024075000	15.423361000
1	1.540941000	2.337421000	16.207482000
6	-1.135884000	1.212117000	16.386752000
1	-1.785758000	2.071806000	16.234627000
6	-2.739855000	2.314014000	13.204777000
1	-2.730748000	1.340294000	12.717609000
6	-1.132460000	0.489719000	10.764081000
6	-1.570988000	2.802429000	13.794064000
6	1.241482000	2.962890000	14.172004000
6	1.513631000	-0.183504000	9.998202000
6	3.254778000	4.845081000	14.705930000
1	4.036955000	5.573530000	14.903061000
6	2.553710000	0.447849000	12.586127000
6	-1.595918000	4.055145000	14.418772000
1	-0.692440000	4.448380000	14.883571000
6	-0.247649000	0.817733000	15.381718000
6	3.654222000	9.453180000	10.142305000
1	4.437705000	10.129906000	9.810275000
7	0.867876000	2.745041000	11.063460000
6	-1.212838000	7.009892000	10.836552000
6	2.806931000	7.211938000	10.421426000
1	2.942403000	6.136380000	10.301948000
6	-0.172949000	5.013999000	8.662178000
6	-2.771957000	4.797883000	14.459816000
1	-2.777884000	5.771600000	14.944703000
6	1.494326000	9.092510000	11.151831000

1	0.599871000	9.497864000	11.625438000	
6	-1.377441000	8.015512000	9.883466000	
1	-0.525127000	8.619048000	9.574594000	
6	1.660445000	3.857932000	13.163646000	
6	0.091533000	6.531217000	6.828121000	
1	0.673322000	7.287823000	6.307980000	
6	0.576742000	-0.291714000	15.596787000	
1	1.265406000	-0.613211000	14.816704000	
6	-3.934863000	4.297141000	13.879812000	
1	-4.854158000	4.877905000	13.915911000	
6	-1.195197000	0.508513000	17.585184000	
1	-1.893586000	0.820382000	18.358553000	
6	0.579349000	5.982465000	8.008366000	
1	1.536276000	6.298109000	8.415403000	
6	-1.127861000	6.105956000	6.311043000	
1	-1.504637000	6.535004000	5.385705000	
6	2.659730000	4.792150000	13.450958000	
1	2.999218000	5.466392000	12.666053000	
6	1.628050000	7.707484000	10.989250000	
6	2.491419000	9.957753000	10.717926000	
1	2.364669000	11.030941000	10.840380000	
6	-1.862699000	5.123573000	6.969426000	
1	-2.812060000	4.785211000	6.562567000	
6	0.704288000	4.967783000	11.055804000	
6	3.812316000	8.078530000	10.002545000	
1	4.721556000	7.674649000	9.563132000	
6	-2.316358000	6.229415000	11.201775000	
1	-2.201337000	5.440439000	11.947451000	
6	-3.916309000	3.056284000	13.249031000	
1	-4.820891000	2.660284000	12.793287000	
6	0.358946000	-1.318041000	12.349840000	

1 -1.938949000 3.797196000 8.682163000 6 -2.624372000 8.233758000 9.304776000	
6 -2.624372000 8.233758000 9.304776000	
1 -2.740720000 9.017468000 8.559243000	
6 -3.556235000 6.440130000 10.612592000	
1 -4.400269000 5.816416000 10.900704000	
6 -3.713980000 7.447517000 9.664415000	
1 -4.685355000 7.619391000 9.206368000	
6 1.083675000 3.866408000 11.813710000	
6 0.522218000 -0.986428000 16.799579000	
1 1.169319000 -1.846209000 16.954058000	
6 -0.365747000 -0.588449000 17.794264000	
1 -0.414801000 -1.137342000 18.731964000	
42 0.700957000 0.521202000 11.698901000	
9	
Zero-point correction= 0.601666	
Thermal correction to Energy= 0.647469	
Thermal correction to Enthalpy= 0.648413	
Thermal correction to Gibbs Free Energy= 0.522809	
Sum of electronic and zero-point Energies= -2831.265531	
Sum of electronic and thermal Energies= -2831.219728	
Sum of electronic and thermal Enthalpies= -2831.218784	
Sum of electronic and thermal Free Energies= -2831.344388	
15 1.784446000 4.738888000 8.076203000	
15 2.224754000 6.226072000 11.309194000	
6 -2.059707000 3.902054000 6.984737000	
1 -2.733897000 3.063159000 7.138536000	
6 -0.785978000 3.871122000 7.539365000	
1 -0.472024000 3.000638000 8.114790000	
6 -0.073693000 4.133174000 10.769934000	
8 5.020427000 3.064198000 9.956778000	

6	3.715863000	7.228687000	10.922010000	
8	-1.194648000	4.300807000	10.989144000	
7	3.536407000	8.288719000	7.247711000	
6	4.934556000	6.577100000	10.725989000	
1	4.982657000	5.491507000	10.779738000	
6	0.094370000	4.942436000	7.358866000	
7	2.537391000	8.679425000	7.967541000	
8	2.247715000	2.547858000	13.346493000	
6	3.678220000	8.626044000	10.871612000	
1	2.735459000	9.150724000	11.021358000	
6	3.915102000	3.365177000	10.144563000	
6	4.833469000	9.350932000	10.606463000	
1	4.785407000	10.435499000	10.550289000	
6	0.759413000	7.773079000	9.393568000	
8	1.154139000	0.914928000	9.388940000	
6	-2.469737000	5.004676000	6.242092000	
1	-3.469478000	5.034129000	5.815214000	
6	2.965512000	7.240714000	13.868112000	
1	3.702016000	7.851858000	13.351968000	
6	-1.596785000	6.069209000	6.047396000	
1	-1.908636000	6.933440000	5.464943000	
6	4.611172000	6.268160000	6.595593000	
6	5.020170000	6.657880000	5.324867000	
1	4.498872000	7.469665000	4.824519000	
6	6.081229000	5.990570000	4.726294000	
1	6.408266000	6.284022000	3.731855000	
6	1.945400000	6.538724000	15.940082000	
1	1.878973000	6.594936000	17.024011000	
6	-0.235644000	7.587774000	11.582882000	
1	-0.207823000	7.240863000	12.612918000	
6	5.263519000	5.254542000	7.286845000	

1	4.959599000	5.006736000	8.302093000
6	2.128496000	6.385933000	13.145294000
6	-0.319374000	6.037645000	6.598159000
1	0.350869000	6.881288000	6.442510000
6	6.091273000	7.303403000	10.458677000
1	7.030150000	6.779679000	10.293793000
6	1.202827000	5.604766000	13.848340000
1	0.549020000	4.921908000	13.308454000
6	2.874851000	7.312181000	15.255309000
1	3.539705000	7.977468000	15.801419000
6	0.824023000	7.294555000	10.721069000
6	6.040507000	8.691076000	10.394288000
1	6.940170000	9.260192000	10.172650000
6	-0.328253000	8.551480000	8.993724000
1	-0.334825000	8.943206000	7.978166000
6	2.452827000	6.444152000	7.921734000
6	1.105140000	5.685294000	15.231522000
1	0.378578000	5.069295000	15.755694000
6	2.128971000	3.022701000	12.296724000
6	3.073983000	3.559412000	4.345052000
1	3.026923000	3.946336000	3.329688000
6	6.304330000	4.574788000	6.667571000
1	6.795439000	3.761034000	7.196212000
6	2.488819000	4.271993000	5.381460000
1	1.977821000	5.210998000	5.169011000
6	-1.329815000	8.334807000	11.159353000
1	-2.138976000	8.540926000	11.855768000
6	1.463023000	1.964919000	9.778988000
6	3.714595000	2.349177000	4.604747000
1	4.168765000	1.789694000	3.790131000
6	6.710376000	4.938205000	5.387180000

1	7.527176000	4.406389000	4.905218000
6	3.194710000	2.580907000	6.945190000
1	3.248366000	2.196465000	7.960344000
6	-1.375873000	8.826277000	9.862014000
1	-2.219538000	9.424616000	9.527361000
6	2.562251000	3.798451000	6.695929000
6	3.764148000	1.855826000	5.901900000
1	4.251158000	0.906257000	6.110020000
7	3.512532000	6.936167000	7.205586000
6	1.863546000	7.590548000	8.436176000
42	1.936714000	3.789163000	10.444770000
			10
Zero	-point correction	=	0.602064 (Hartree/Particle)
Ther	mal correction to	• Energy=	0.648043
Ther	mal correction to	• Enthalpy=	0.648987
Ther	mal correction to	Gibbs Free Ener	rgy= 0.520144
Sum	of electronic and	l zero-point Ener	gies= -2831.539181
Sum	of electronic and	l thermal Energie	es= -2831.493202
Sum	of electronic and	l thermal Enthalp	vies= -2831.492258
Sum	of electronic and	l thermal Free En	ergies= -2831.621101
74	0.701203000	0.545233000	11.710194000
15	0.357541000	6.632005000	11.740051000
15	-0.071908000	1.734505000	13.800479000
8	1.978322000	-0.511709000	9.012821000
8	3.579319000	0.425173000	13.111416000
8	-2.161474000	0.421905000	10.274168000
8	0.206090000	-2.368783000	12.785287000
6	2.846242000	3.972047000	15.698010000
1	3.308366000	4.001930000	16.681792000
7	0.382347000	3.074267000	9.902289000
7	0.303198000	4.406386000	9.870562000

6	1.844576000	3.041408000	15.434110000
1	1.529611000	2.357800000	16.220038000
6	-1.156400000	1.183479000	16.368340000
1	-1.821076000	2.030611000	16.210248000
6	-2.735319000	2.309271000	13.185135000
1	-2.716566000	1.341841000	12.686144000
6	-1.132973000	0.482886000	10.807198000
6	-1.574167000	2.799770000	13.788050000
6	1.236335000	2.975075000	14.181907000
6	1.505101000	-0.130678000	10.002079000
6	3.250393000	4.855546000	14.707517000
1	4.034342000	5.582885000	14.901539000
6	2.550670000	0.500081000	12.580381000
6	-1.609049000	4.048641000	14.419859000
1	-0.709696000	4.445212000	14.889966000
6	-0.245359000	0.811404000	15.375454000
6	3.676506000	9.432712000	10.128846000
1	4.463255000	10.104159000	9.793868000
7	0.835780000	2.740628000	11.080613000
6	-1.202983000	7.016785000	10.839422000
6	2.816375000	7.197146000	10.413331000
1	2.945358000	6.120664000	10.295320000
6	-0.186672000	5.007220000	8.669536000
6	-2.789317000	4.784762000	14.458195000
1	-2.803985000	5.755205000	14.949342000
6	1.517158000	9.086816000	11.144719000
1	0.626372000	9.498229000	11.620023000
6	-1.364272000	8.020658000	9.883965000
1	-0.509454000	8.619079000	9.572071000
6	1.656224000	3.863987000	13.169175000
6	0.083164000	6.517974000	6.831338000

1	0.667900000	7.270463000	6.308569000
6	0.598239000	-0.282454000	15.596202000
1	1.305090000	-0.585761000	14.825229000
6	-3.945528000	4.281160000	13.867362000
1	-4.868494000	4.856164000	13.902029000
6	-1.220274000	0.471862000	17.561816000
1	-1.936572000	0.765160000	18.325941000
6	0.569549000	5.970606000	8.012779000
1	1.528219000	6.283286000	8.417944000
6	-1.138364000	6.096335000	6.316331000
1	-1.513901000	6.524263000	5.389988000
6	2.657179000	4.797607000	13.451745000
1	2.999654000	5.466789000	12.663860000
6	1.642162000	7.700793000	10.983737000
6	2.518482000	9.945265000	10.706991000
1	2.398710000	11.019360000	10.828344000
6	-1.876876000	5.118832000	6.977901000
1	-2.827681000	4.783046000	6.572329000
6	0.703266000	4.965266000	11.058311000
6	3.825841000	8.056946000	9.990429000
1	4.731342000	7.646945000	9.549013000
6	-2.309640000	6.242890000	11.209380000
1	-2.197437000	5.455245000	11.957065000
6	-3.915573000	3.045664000	13.226554000
1	-4.814427000	2.648832000	12.760399000
6	0.394130000	-1.295726000	12.368008000
6	-1.403240000	4.565090000	8.160196000
1	-1.957037000	3.796852000	8.694077000
6	-2.611196000	8.243645000	9.307136000
1	-2.725211000	9.026103000	8.559949000
6	-3.549334000	6.457882000	10.621380000

1 -4.396019000 5.838983000 10.911995000
6 -3.703798000 7.463436000 9.670715000
1 -4.675092000 7.638553000 9.213761000
6 1.075238000 3.865626000 11.821577000
6 0.538116000 -0.984821000 16.794076000
1 1.199333000 -1.832763000 16.953816000
6 -0.373011000 -0.610051000 17.776983000
1 -0.425824000 -1.165687000 18.710487000
11
Zero-point correction= 0.602090
Thermal correction to Energy= 0.647722
Thermal correction to Enthalpy= 0.648666
Thermal correction to Gibbs Free Energy= 0.523357
Sum of electronic and zero-point Energies= -2831.545714
Sum of electronic and thermal Energies= -2831.500082
Sum of electronic and thermal Enthalpies= -2831.499138
Sum of electronic and thermal Free Energies= -2831.624447
74 1.932286000 3.802878000 10.441595000
15 1.786183000 4.743299000 8.083303000
15 2.219285000 6.224218000 11.303967000
6 -2.050721000 3.884735000 6.981880000
1 -2.719504000 3.040572000 7.130086000
6 -0.777871000 3.858677000 7.538595000
1 -0.459836000 2.986198000 8.108474000
6 -0.065785000 4.153740000 10.757691000
8 5.010546000 3.092875000 9.950832000
6 3.713507000 7.221204000 10.916257000
8 -1.188518000 4.334012000 10.968505000
7 3.532124000 8.292634000 7.242970000
6 4.932996000 6.569800000 10.725448000
1 4.983002000 5.484745000 10.782093000

6	0.095489000	4.937054000	7.365309000
7	2.532569000	8.684065000	7.961835000
8	2.234817000	2.569123000	13.341594000
6	3.675155000	8.618575000	10.865987000
1	2.732093000	9.143182000	11.013785000
6	3.900647000	3.384278000	10.142202000
6	4.830614000	9.343936000	10.603177000
1	4.782042000	10.428432000	10.546576000
6	0.757968000	7.779172000	9.392260000
8	1.147011000	0.938424000	9.373737000
6	-2.466406000	4.988154000	6.243520000
1	-3.465481000	5.013146000	5.814828000
6	2.974565000	7.223228000	13.862018000
1	3.716425000	7.827141000	13.345216000
6	-1.599678000	6.058639000	6.054752000
1	-1.915404000	6.923210000	5.474950000
6	4.609460000	6.272871000	6.593500000
6	5.014371000	6.661923000	5.321241000
1	4.490451000	7.472266000	4.821312000
6	6.075134000	5.995885000	4.720711000
1	6.399149000	6.288860000	3.725143000
6	1.952003000	6.529004000	15.935159000
1	1.888369000	6.584694000	17.019276000
6	-0.236953000	7.589992000	11.581760000
1	-0.210183000	7.238617000	12.610251000
6	5.264913000	5.260917000	7.284163000
1	4.963960000	5.012253000	8.299948000
6	2.127624000	6.377189000	13.140502000
6	-0.323105000	6.032613000	6.607941000
1	0.342371000	6.880440000	6.455511000
6	6.089600000	7.296904000	10.459871000

1	7.029214000	6.773491000	10.298497000
6	1.195699000	5.604063000	13.844198000
1	0.534461000	4.927763000	13.305305000
6	2.887394000	7.294280000	15.249427000
1	3.559798000	7.952516000	15.794770000
6	0.820837000	7.296076000	10.718145000
6	6.038270000	8.684464000	10.393679000
1	6.938178000	9.253762000	10.173568000
6	-0.326846000	8.563181000	8.995737000
1	-0.332263000	8.959098000	7.981811000
6	2.452367000	6.448717000	7.923089000
6	1.102367000	5.684045000	15.227640000
1	0.371308000	5.074290000	15.752750000
6	2.120691000	3.039450000	12.286917000
6	3.076513000	3.553504000	4.359766000
1	3.028398000	3.939200000	3.344014000
6	6.305461000	4.582527000	6.662972000
1	6.798687000	3.769937000	7.191387000
6	2.491726000	4.266906000	5.395701000
1	1.979279000	5.204836000	5.182047000
6	-1.328895000	8.341814000	11.160939000
1	-2.137532000	8.547568000	11.857996000
6	1.456437000	1.987557000	9.772765000
6	3.718017000	2.344041000	4.620761000
1	4.171642000	1.783465000	3.806604000
6	6.707864000	4.945473000	5.381287000
1	7.524528000	4.414701000	4.897940000
6	3.200385000	2.578671000	6.961800000
1	3.254631000	2.194300000	7.976676000
6	-1.373186000	8.838241000	9.865488000
1	-2.214970000	9.440491000	9.533142000

6	2.566980000	3.795279000	6.710827000
6	3.768984000	1.852748000	5.918614000
1	4.256411000	0.903663000	6.127740000
7	3.510953000	6.940254000	7.205008000
6	1.860829000	7.595556000	8.433962000

References

- (a) S. J. Sabounchei, M. Ahmadi, T. Azizi and M. Panahimehr, *Synlett*, 2014, 25, 336-342; (b) H.-C. Li, C. An, G. Wu, G.-X. Li, X.-B. Huang, W.-X. Gao, J.-C. Ding, Y.-B. Zhou, M.-C. Liu and H.-Y. Wu, *Org. Lett.*, 2018, 20, 5573-5577.
- 2. A. Skarżyńska and A. Gniewek, J. Organomet. Chem., 2011, 696, 2985-2992.
- 3. X. Zhao, J. Zhang, Y. Zhao and X. Li, *Cata. Lett.*, 2015, **145**, 2010-2019.
- 4. Q. Mahmood, E. Yue, W. Zhang, G. A. Solan, T. Liang and W.-H. Sun, *Org. Chem. Front.*, 2016, **3**, 1668-1679.
- 5. R. Rossi, A. Carpita, A. Ribecai and L. Mannina, *Tetrahedron*, 2001, **57**, 2847-2856.
- 6. M. K. Reilly and S. D. Rychnovsky, *Synlett*, 2011, **2011**, 2392-2396.