## **Supporting Information**

## Fluorination and reduction of CaCrO<sub>3</sub> by topochemical methods

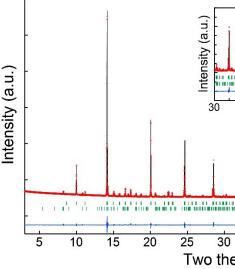
Christian A. Juillerat,<sup>1, 2\*</sup> Yoshihiro Tsujimoto,<sup>1, 3\*</sup> Akira Chikamatsu,<sup>4</sup> Yuji Masubuchi,<sup>5</sup> Tetsuya Hasegawa,<sup>4</sup> Kazunari Yamaura<sup>1, 3</sup>

<sup>1</sup> Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

<sup>2</sup> Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

<sup>3</sup> Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-0808, Japan

<sup>4</sup> Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan


<sup>5</sup> Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-8628, Japan

\*Corresponding authors Email: juillerc@email.sc.edu, TSUJIMOTO.Yoshihiro@nims.go.jp

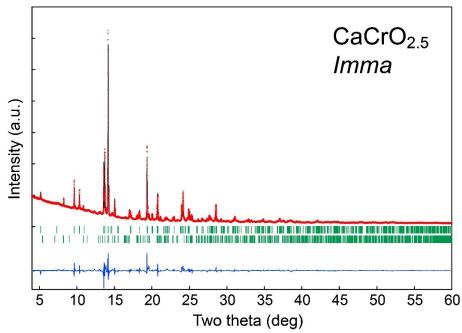
| Table S1.   | Crystallographic   | Parameters    | Refined   | from               | Synchrotron | X-ray   | Powder |
|-------------|--------------------|---------------|-----------|--------------------|-------------|---------|--------|
| Diffraction | Data Collected fro | om the Fluori | inated Ca | CrO <sub>3</sub> a | t Room Temp | erature |        |

| atom       | site | x         | У         | Z         | g | $B_{\rm iso}$ / Å <sup>2</sup> |
|------------|------|-----------|-----------|-----------|---|--------------------------------|
| Ca         | 4c   | 0.0068(4) | 0.0411(1) | 1/4       | 1 | 0.347(14)                      |
| Cr         | 4b   | 1/2       | 0         | 0         | 1 | 0.559(11)                      |
| <i>X</i> 1 | 8d   | 0.7096(6) | 0.2949(5) | 0.0294(4) | 1 | 0.25(3)                        |
| X2         | 4c   | 0.0825(8) | 0.4857(6) | 1/4       | 1 | 0.25                           |

Space group *Pbnm* (No. 62): a = 5.34098(9) Å, b = 5.40324(9) Å, c = 7.53180(10) Å. *R* indicies are  $R_{wp} = 2.01\%$ ,  $R_B = 3.73\%$ , and  $R_F = 2.40\%$ . No deficiencies were found at all site occupancies (g). All of the anion sites (X) were assumed to be O.  $B_{iso}$  values for X1 and X2 sites were constrained to the same.



**Figure S2.** Rietveld refinement against the SXRD data collected from CaCrO<sub>3</sub> at room lifference (blue solid


temperature. The observed (red crosses), calculated (black solid line), and difference (blue solid line) plots are shown. The vertical lines represent  $CaCrO_3$  (87%) and  $CaCr_2O_4$  (13%) from top to

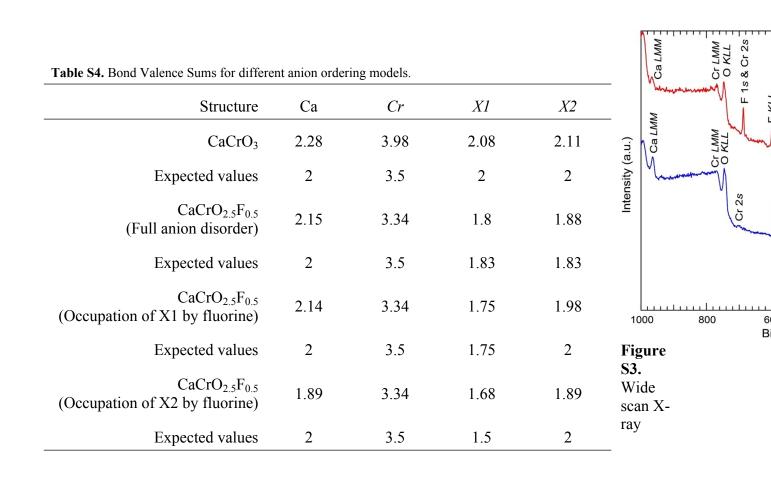
bottom. The inset shows an enlarged plot in a high  $2\theta$ region.

**Table S2.** Crystallographic Parameters Refined from Synchrotron X-ray Powder Diffraction Data Collected from CaCrO<sub>3</sub> at Room Temperature.

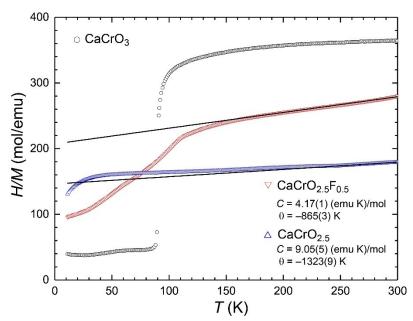
| atom | site | x         | У          | Ζ         | g | $B_{\rm iso}$ / Å <sup>2</sup> |
|------|------|-----------|------------|-----------|---|--------------------------------|
| Ca   | 4c   | -0047(2)  | 0.03029(8) | 1/4       | 1 | 0.511(7)                       |
| Cr   | 4b   | 1/2       | 0          | 0         | 1 | 0.235(6)                       |
| 01   | 8d   | 0.7132(2) | 0.2863(2)  | 0.0331(2) | 1 | 0.31(2)                        |
| 02   | 4c   | 0.0611(3) | 0.4896(3)  | 1/4       | 1 | 0.38(3)                        |

Space group *Pbnm* (No. 62): a = 5.28912(1) Å, b = 5.31796(1) Å, c = 7.48677(1) Å. *R* indicies are  $R_{wp} = 4.06\%$ ,  $R_B = 3.21\%$ , and  $R_F = 2.40\%$ . All site occupancies were fixed to unity.




**Figure S3.** Rietveld refinement against the SXRD data collected from  $CaCrO_{2.5}$  at room temperature. The observed (red crosses), calculated (black solid line), and difference (blue solid line) plots are shown. The vertical lines represent  $CaCrO_{2.5}$  (86%) and  $CaCr_2O_4$  (14%) from top to bottom.

**Table S3.** Crystallographic Parameters Refined from Synchrotron X-ray Powder Diffraction DataCollected from CaCrO2.5 at Room Temperature.


| atom | site | x         | y           | Z         | g   | $B_{\rm iso}$ / Å <sup>2</sup> |
|------|------|-----------|-------------|-----------|-----|--------------------------------|
| Ca   | 8h   | 0         | 0.61380(15) | 0.4980(7) | 1   | 1.19(5)                        |
| Cr1  | 4a   | 0         | 0           | 0         | 1   | 0.59(5)                        |
| Cr2  | 8i   | 0.4273(4) | 1/4         | 0.5114(8) | 0.5 | 0.17(7)                        |

| 01 | 8g | 1/4      | 0.0065(7) | 1/4       | 1   | 0.94(9) |
|----|----|----------|-----------|-----------|-----|---------|
| 02 | 8h | 0        | 0.1399(3) | 0.0608(9) | 1   | 0.94    |
| 03 | 8i | 0.197(2) | 1/4       | 0.673(2)  | 0.5 | 0.94    |

Space group *Imma* (No. 74): a = 5.52141(6) Å, b = 14.48419(13) Å, c = 5.46196(5) Å. *R* indicies are  $R_{wp} = 6.20\%$ ,  $R_B = 9.83\%$ , and  $R_F = 6.93\%$ . All site occupancies were fixed to unity or half.  $B_{iso}$  values for O1, O2, and O3 sites were constrained to the same value.



photoelectron spectra collected from  $CaCrO_3$  and its fluorinated phase at 300 K.



**Figure S4.** Temperature dependence of the inverse susceptibility of  $CaCrO_3$ ,  $CaCrO_{2.5}$ , and  $CaCrO_{2.5}F_{0.5}$ . The Curie-Weiss fit to the data for  $CaCrO_{2.5}$  and  $CaCrO_{2.5}F_{0.5}$  gave physically meaningless Weiss temperatures and much higher Curie constants than those expected from the oxidation states of chromium ions.