Electronic Supplementary Information

Synthesis and structures of mono- and di-nuclear aluminium and zinc complexes bearing α -diimine and related ligands, and their use in the ring opening polymerization of cyclic esters

Lin Xiao,^a Yanxia Zhao,^{a*} Sijie Qiao,^a Ziyue Sun,^a Orlando Santoro^b and Carl Redshaw^{a,b*}

^a College of Chemistry and Material Science, Northwest University, 710069 Xi'an, China ^b Department of Chemistry & Biochemistry, The University of Hull, Cottingham Rd, Hull, HU6 7RX, U.K.

Contents

Chart S1. Imine-based frameworks utilized in bi-nickel-based olefin polymerization chemistry

Scheme S1. Synthesis of the ligands L^{*i*Pr-NO}, L^{Et-NO} and L^{*i*pr-N4}.

Figure S1. Molecular structure of L^{*i*Pr-N4}

Figure S2. The molecular structure of L^{*i*Pr-N2-ArCH2Ar-N2}

Figure S3. The molecular structure of **1** (left), **3** (right) (thermal ellipsoids are set at the 20% probability level; H atoms are omitted for clarity).

Figure S4. Optimized structures of 4 and its isomers 4a and 4b.

Table S1. Relative energies of compounds 4, 4a and 4b.

Table S2. Crystallographic data and refinement details for compounds L^{iPr-N4} , 1–3.

 Table S3. Crystallographic data and refinement details for compounds 4–7.

Table S4. Crystallographic data and refinement details for compounds $L^{iPr-N2-ArCH2Ar-N2}$ and 8.

Figure S5. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for ligand L^{*i*Pr-NO}.

Figure S6. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for ligand L^{*i*Pr-NO}.

Figure S7. ¹H NMR (400 MHz DMSO 298K) spectrum for ligand L^{Et-NO}.

Figure S8. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for ligand L^{Et-NO}.

Figure S9. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for ligand L^{ipr-N4}.

Figure S10. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for ligand L^{ipr-N4}.

Figure S11. ¹³H NMR (400 MHz CDCl₃ 298K) spectrum for ligand L^{iPr-N2-ArCH2Ar-N2}

Figure S12. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for ligand L^{iPr-N2-ArCH2Ar-N2}

Figure S13. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for compound 1.

Figure S14. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 1.

Figure S15. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for compound 2.

Figure S16. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 2.

Figure S17. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for compound **3**.

Figure S18. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 3.

Figure S19. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for compound 4.

Figure S20. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 4.

Figure S21. ¹H NMR (400 MHz THF-d₈ 298K) spectrum for compound 5.

Figure S22. ¹³C NMR (100.6 MHz THF-d₈ 298K) spectrum for compound 5.

Figure S23. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for compound 6.

Figure S24. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 6.

Figure S25. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for compound 7.

Figure S26. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 7.

Figure S27. ¹³H NMR (400 MHz CDCl₃ 298K) spectrum for compound 8.

Figure S28. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 8

Figure S29. 2D J-resolved ¹H NMR (CDCl₃, 400 MHz, 298 K) spectrum of the PLA synthesized with **6** at 80 °C (Table 6, entry 2).

Figure S30. 2D J-resolved ¹H NMR (CDCl₃, 400 MHz, 298 K) spectrum of the PLA synthesized with 7 at 30 °C (Table 6, entry 3).

Figure S31. 2D J-resolved ¹H NMR (CDCl₃, 400 MHz, 298 K) spectrum of the PLA synthesized with 7 at 80 °C (Table 6, entry 4).

Chart S1. Imine-based frameworks utilized in bi-nickel-based olefin polymerization chemistry. [1]

Scheme S1. Synthesis of the ligands L^{iPr-NO}, L^{Et-NO} and L^{ipr-N4}.

Figure S1. The molecular structure of L^{*i*Pr-N₄} (thermal ellipsoids are set at the 20% probability level; H atoms are omitted for clarity): C1–N1 1.269(3), C1–C2 1.498(3), C1–C3 1.497(4), C2–N2 1.277(3), C2–C4 1.483(4), N2–N3 1.405(3), C5–N3 1.279(3), C5–C7 1.479(4), C5–C6 1.496(3), C6–N4 1.274(3), C6–C8 1.496(4); N1–C1–C2 116.0(2), C1–C2–N2 115.6(2), C2–N2–N3 115.2(2), N2-C3-N5 114.7(2), N3–C5–C6 115.6(2), C5–C6–N4 116.2(2).

Figure S2. The molecular structure of $L^{iPr-N_2-ArCH_2Ar-N_2}$ (thermal ellipsoids are set at the 20% probability level; H atoms are omitted for clarity): C1–N1 1.291(4), C1–C2 1.505(4), C1–C1A 1.518(4), N1–C1–C2 126.5(3), N1–C1–C1 116.4(4), C2–C1–C1 117.1(4), C7–C3–C7 121.7(5).

Figure S3. The molecular structure of **1** (left), **3** (right) (thermal ellipsoids are set at the 20% probability level; H atoms are omitted for clarity).

Theoretical Calculations

Structure optimization for the model compounds $[ArN-C(Me)_2C(Me)=NAIMe_2]_2(4)$ and its isomers 4a and 4b, were carried out at the DFT (B3LYP) level with a 6-31G*^{2,3} basis set using the Gaussian 09 program.⁴ Figure S4 shows the optimized geometries. Here DFT results show that 4 exhibits a slightly lower energy than the imino-amido isomer 4a ($\Delta E = 18.0$ kJ mol⁻¹) and 4b (30.3 kJ mol⁻¹).

Figure S4. Optimized structures of 4 and its isomers 4a and 4b.

Compound	Energy (E, a.u.)	ΔΕ
		(kJ/mol)
4	-2190.58568031	0
4a	-2190.57882952	18.0
4b	-2190.57413253	30.3

Table S1. Relative energies of compounds 4 and , 4a and 4b.

 Table S2. Crystallographic data and refinement details for compounds L^{iPr-N4}, 1–3.

Compound	L ^{iPr-N4}	1	2	3
Empirical	$C_{32}H_{46}N_4$	$C_{31}H_{49}AlN_2$	C ₂₇ H ₄₁ AlN ₂	2*C ₂₃ H ₃₃ AlN ₂
formula	106 72		120 (0	700.00
Fw	486.73	476.70	420.60	728.98
Crystal system	Triclinic	Triclinic	monoclinic	monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	Cc	$P2_{1}/c$
<i>a</i> /Å	10.030(4)	8.4984(18)	9.425(2)	14.239(13)
b/Å	12.557(4)	9.799(2)	37.074(9)	8.148(3)
c /Å	13.499(5)	19.426(4)	8.102(2)	38.13(2)
lpha /°	66.078(4)	82.115(3)	90	90
β /°	84.299(5)	80.860(2)	111.579(3)	91.22(3)
$\gamma/^{\circ}$	82.021(5)	69.630(2)	90	90
$V/\text{\AA}^3$	1537.3(9)	1491.4(5)	2632.9(11)	4423(5)
Ζ	2	2	4	4
$D_{\rm calc}/{ m g~cm^{-3}}$	1.051	1.062	1.061	1.095
F (000)	532	524	920	1584
μ /mm ⁻¹	0.062	0.088	0.092	0.100
θ range	1.785-24.970	2.132-24.997	2.197-24.958	2.719-25.242
Reflns collected	9657	9538	8102	21974
Independent reflns	5712	5095	8102	7701
Reflns [$I > 2\sigma(I)$]	3705	3943	7632	5035
$R_{\rm int}$	0.0326	0.0255	0.0285	0.0705
$R_1; wR_2 [I > 2\sigma(I)]$	0.0746; 0.1580	0.0608; 0.1741	0.0396; 0.1134	0.0589; 0.1038
R_1 ; wR_2 (all data)	0.0981; 0.1694	0.0782; 0.1873	0.0426; 0.1163	0.1043; 0.1256
GOF (F^2)	1.042	1.155	1.023	1.121

Table 55. Crystanographic data and remiented details for compounds 4 7.					
Compound	4	5	6	7.0.5toluene	
Empirical formula	$C_{38}H_{64}Al_2N_4$	$C_{34}H_{56}Al_2N_2O_2$	$C_{32}H_{50}ZnN_2$	$C_{54}H_{83}Zn_3N_3O_3\bullet$ 0.5toluene	
Fw	630.89	578.76	528.11	1064.49	
Crystal system	Monoclinic	Monoclinic	monoclinic	Orthorhombic	
Space group	P21/c	$P2_1/n$	$P2_{1}/c$	Pca21	
<i>a</i> /Å	13.900(5)	8.505(3)	8.5697(19)	28.2584(16)	
b/Å	18.370(6)	13.440(5)	19.226(4)	15.9307(9)	
c /Å	16.078(6)	14.919(7)	18.509(4)	13.3344(6)	
lpha /°	90	90	90	90	
$\beta/^{\circ}$	106.950(14)	94.584(13)	93.238(8)	90	
$\gamma/^{\circ}$	90	90	90	90	
$V/\text{\AA}^3$	3927(2)	1699.8(11)	3044.6(11)	6002.8(6)	
Ζ	4	2	4	4	
$D_{\text{calc}}/\text{g cm}^{-3}$	1.067	1.131	1.152	1.127	
F (000)	1384	632	1144	2168	
μ /mm ⁻¹	0.103	0.116	0.827	1.227	
θ range	1.727-24.997	2.669-25.342	2.388 - 26.364	2.459-26.389	
Reflns collected	37227	18303	17326	39300	
Independent reflns	6900	3091	6030	11494	
Reflns $[I > 2\sigma(I)]$	5479	2722	322	9673	
$R_{\rm int}$	0.0720	0.0285	0.0351	0.0485	
$R_1; wR_2 [I > 2\sigma(I)]$	0.0714; 0.2088	0.0330; 0.0731	0.0518; 0.1020	0.0399; 0.0749	
R_1 ; wR_2 (all data)	0.0877; 0.2088	0.0394; 0.0770	0.0696; 0.1093	0.0527; 0.0796	
$GOF(F^2)$	1.005	1.029	1.130	1.038	

 Table S3. Crystallographic data and refinement details for compounds 4–7.

Compound	L ^{iPr-N2-ArCH2Ar-N2}	8·3.5toluene
Empirical formula	$C_{57}H_{80}N_4$	$\begin{array}{c} C_{57}H_{80}Cl_4N_4Zn_2\cdot 3.5\\ toluene \end{array}$
Fw	821.25	1410.59
Crystal system	monoclinic	monoclinic
Space group	C2/c	P21/n
a /Å	16.4092(9)	13.65(3)
b /Å	9.5095(9)	25.08(5)
c /Å	17.0073(10)	24.33(5)
lpha /°	90	90
eta /°	108.349(3)	92.47(7)
$\gamma / ^{\circ}$	90	90
$V/\text{\AA}^3$	2518.9(3)	8319(31)
Ζ	2	4
$D_{ m calc}/ m g\ m cm^{-3}$	1.083	0.873
F (000)	900	2312
μ /mm ⁻¹	0.062	0.732
θ range	2.51-25.10	2.32-21.79
Reflns collected	10737	14853
Independent reflns	5944	9937
Reflns $[I > 2\sigma(I)]$	1603	7649
$R_{ m int}$	0.0463	0.0819
$R_1; wR_2 [I > 2\sigma(I)]$	0.0936; 0.1672	0.0740; 0.1906
R_1 ; wR_2 (all data)	0.1268; 0.1849	0.1308; 0.2107
GOF (F^2)	1.058	1.024

Table S4. Crystallographic data and refinement details for compounds L^{*i*Pr-N2-ArCH2Ar-N2} and 8.

Figure S6. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for ligand L^{*i*Pr-NO}.

Figure S8. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for ligand L^{Et-NO}.

Figure S10. 13 C NMR (100.6 MHz CDCl₃ 298K) spectrum for ligand L^{ipr-N4}.

Figure S11. ¹³H NMR (400 MHz CDCl₃ 298K) spectrum for ligand $L^{iPr-N2-ArCH2Ar-N2}$

Figure S12. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for ligand L^{iPr-N2-ArCH2Ar-N2}

Figure S14. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 1.

Figure S15. ¹H NMR (400 MHz CDCl₃ 298K) spectrum for compound 2.

Figure S16. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound **2**.

Figure S18. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 3.

ure S20. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 4.

Figure S24. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 6.

ure S26. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 7.

Figure S27. ¹³H NMR (400 MHz CDCl₃ 298K) spectrum for compound 8.

Figure S28. ¹³C NMR (100.6 MHz CDCl₃ 298K) spectrum for compound 8.

Figure S29. 2D J-resolved ¹H NMR (CDCl₃, 400 MHz, 298 K) spectrum of the PLA synthesized with **6** at 80 °C (table 6, entry 2).

Figure S30. 2D J-resolved ¹H NMR (CDCl₃, 400 MHz, 298 K) spectrum of the PLA synthesized with 7 at 30 °C (table 6, entry 3).

Figure S31. 2D J-resolved ¹H NMR (CDCl₃, 400 MHz, 298 K) spectrum of the PLA synthesized with 7 at 80 °C (table 6, entry 4).

References

- [1] (a) H. -K. Luo and H. Schumann, J. Mol. Cat. A: Chem. 2005, 227, 153–161; (b) S. Jie,
 D. Zhang, T. Zhang, W. -H. Sun, J. Chen, Q. Ren, D. Liu, G. Zheng and W. Chen, J. Organomet. Chem. 2005, 690, 1739–1749; (c) J. D. A. Pelletier, J. Fawcett, K. Singh and
 G. A. Solan, J. Organomet. Chem. 2008, 693, 2723–2731; (d) S. Kong, K. Song, T. Liang,
 C. -Y. Guo, W. -H. Sun and C. Redshaw, Dalton Trans. 2013, 42, 9176–9187; (e) L. Zhu,
 Z. -S. Fu, H. -J. Pan, W. Feng, C. Chen and Z. -Q. Fan, Dalton Trans. 2014, 43, 2900–2906;
 (f) Q. Xing, K. Song, T. Liang, Q. Liu, W. -H. Sun and C. Redshaw, Dalton Trans. 2014, 43, 7830–7837.
- [2] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- [3] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785–789.
- [4] Gaussian 09, Revision C.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,; K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.