Electronic Supplementary Information (ESI)

Spin modification in iron(II) complexes via covalent (dative) and dispersion guided non-covalent bonding with N-heterocyclic carbenes: DFT, DLPNO-CCSD(T) and MCSCF studies

Debashree Manna, a,b† Rabindranath Lo, a,b† and Pavel Hobza *a,b

^aInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic.

^bRegional Centre of Advanced Technologies and Materials, Palacký University, 77146 Olomouc, Czech Republic.

[†] Both authors contributed equally to this work and can be considered as the first author. Email: <u>pavel.hobza@uochb.cas.cz</u>

		B97 -D3	BLYP -D3	PBE- D3	B3LYP -D3	PBE0 -D3	B2- PLYP	DLPNO- CCSD(T)	CCSD(T)	H-L Gap
							-D3	~ /		
ImNH ₂	S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.624
	Т	83.7	84.2	83.9	85.4	84.3	81.9	88.7	73.0	
ImN(CH ₃) ₂	S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.337
、	Т	82.2	82.3	82.4	84.5	84.4	83.8	91.0	99.0	
ImN(CF ₃) ₂	S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.561
	Т	74.6	75.9	75.5	76.2	76.4	74.5	84.1	92.6	
ImN(CCl ₃) ₂	S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.271
	Т	60.5	62.1	64.2	66.6	70.3	71.8	89.7	81.7	

Table S1: Relative energies (kcal/mol) of Carbenes at singlet (S) and triplet (T) in various levels of theory and HOMO-LUMO gap (eV) of singlet carbenes are given.

	Mulliken	ESP	First PA	Dimerization energy
ImNH ₂	-0.249	-0.802	263.3	-13.1
ImN(CH ₃) ₂	-0.325	-0.948	272.3	-3.9
ImN(CF ₃) ₂	-0.265	-0.760	246.9	-0.1
ImN(CCl ₃) ₂	-0.242	-0.685	254.9	-3.3

Table S2: Mulliken and ESP charges on carbene carbon, first proton affinities (kcal/mol) and dimerization energies (kcal/mol) for the studied carbenes.

 Table S3: Interaction energies (kcal/mol) of FePc carbene complexes at B97-D3/TZVPP level.

	ΔE_{int}
FePcImNH ₂	-45.5
FePcImN(CH ₃) ₂	-35.7
FePcImN(CF ₃) ₂	-12.4
FePcImN(CCl ₃) ₂	-14.5

 Table S4: Relative energies (kcal/mol) of FePz...carbenes at various levels. CASPT2 values are

given in parenthesis.

		B97-D3	BLYP-D3	PBE-D3	B3LYP-	PBE0-	B2-	CASSCF	DLPNO-
					D3	D3	PLYP-		CCSD(T)
							D3		
FePzImNH ₂	S	0.0	0.0	0.0	0.0	0.0	8.6	0.0	0.0
	Т	15.9	19.8	21.2	9.2	6.6	0.0	10.7	44.4
								(12.3)	
	Q	27.5	33.0	34.0	18.1	13.2	10.3	38.6	11.6
FePzImN(CH ₃) ₂	S	0.0	0.0	0.0	0.7	2.5	32.2	0.0	0.0
(3)=	Т	6.2	11.0	12.8	0.0	0.0	16.0	20.6	39.2
								(28.6)	
	Q	13.2	28.7	30.0	6.4	2.7	0.0		51.4
FePzImN(CF ₃) ₂	S	1.4	0.0	0.0	8.4	10.6	41.9	2.2	2.9
	Т	0.0	4.5	5.3	0.0	0.0	13.6	0.0	0.0
	Q	6.4	21.5	21.9	6.9	1.8	0.0		31.3
FePzImN(CCl ₃) ₂	S	6.8	1.9	2.2	21.5	26.4	57.8	64.5	15.3
	Т	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Q	10.4	21.0	21.1	14.3	11.5	4.1	26.7	35.0

Table S5: Wiberg Bond Index and out-plane displacement (in Å) of Fe atom from the plane of

	Spin	Wiberg Bond	Out-of-plane displacement				
	State	index (WBI)	B97-D3	B3LYP-D3			
FePzImNH ₂	S	0.955	0.145	0.154			
FePzImN(CH ₃) ₂	S	0.910	0.433	0.458			
$FePzImN(CF_3)_2$	Т	0.390	0.464	0.369			
$FePzImN(CCl_3)_2$	Т	0.053	0.106	0.091			

Table S6: NBO and ESP charge transfer from carbenes to FePz molecule. The second order perturbation energy (kcal/mol), $E^{(2)}$ for back-bonding contribution for selected complexes.

		NBO	ESP	$E^{(2)}$
FePzImNH ₂	S	-0.657	-0.248	55.2
	Т	-0.393	-0.232	
	Q	-0.427	-0.269	
FePzImN(CH ₃) ₂	S	-0.647	-0.217	39.2
	Т	-0.387	-0.188	
	Q	-0.394		
FePzImN(CF ₃) ₂	S	-0.440	-0.045	
	Т	-0.247	-0.121	12.3
	Q	-0.198	-0.103	
FePzImN(CCl ₃) ₂	S	-0.293	0.054	
	Т	-0.038	0.005	0.9
	Q	-0.115	-0.045	

		ΔΕ	$\Delta E_{geo-prep}$	ΔE_{int}^{ref}	$\Delta E_{el-prep}^{ref}$	E _{elstat}	E_{exch}	ΔE^{Corr}_{int}	E _{disp}	$\Delta E^{C-(T)}_{int}$	$\Delta E_{no-disp}$
FePzImNH ₂	S	-33.5	31.0	-9.9	717.9	-634.6	-93.2	-54.6	-25.5	-6.7	-22.4
	Т	10.5	0.5	49.2	613.2	-507.3	-56.7	-39.2	-14.2	-4.8	-20.3
FePzImN(CH ₃) ₂	S	-26.8	39.7	-10.8	607.2	-534.7	-83.3	-55.8	-28.6	-6.7	-20.4
	Т	12.1	4.4	46.3	525.9	-428.2	-51.4	-38.6	-18.6	-5.4	-14.6
$FePzImN(CF_3)_2$	S	-7.6	52.8	1.4	623.3	-534.3	-87.6	-61.8	-31.6	-228.2	198.1
	Т	-10.1	5.5	6.5	186.7	-149.2	-31.0	-22.1	-16.5	-2.0	-3.6
FePzImN(CCl ₃) ₂	S	4.6	76.3	10.7	787.8	-664.5	-112.6	-82.4	-44.2	-11.2	-27.0
	Т	-11.6	0.42	7.0	57.3	-38.6	-11.7	-19.1	-15.2	-1.6	-2.3

Table S7: Calculated interaction energies (ΔE , kcal/mol) and their decomposition into reference and correlation energies from DLPNO-CCSD(T) method.

Fig. S1 Spin density difference for triplet a) Fe(II)-porphyrazine...ImN(CF₃)₂ and b) Fe(II)-porphyrazine...ImN(CCl₃)₂ (C- green, H-pink, N- blue, Fe- dark orange, Cl- yellow, F- cyan).

Fig. S2 Plots of reduced density gradient (RDG) against sign($\lambda 2$) $\rho(r)$ for the a) FePz...ImNH₂ and b) FePz...ImN(CCl₃)₂ complexes, using Multiwfn 3.6.