Supporting Information

Syntheses, structures and catalytic activity of tetranuclear Mg complexes in the ROP of cyclic esters under industrial relevant conditions

Swarup Ghosh, Christoph Wölper, Alexander Tjaberings, André H. Gröschel, Stephan Schulz*

Content

I. Characterization of 1-4

Figures S1-S3. ¹H, ¹³C NMR and IR spectra of 1.

Figures S4-S6. ¹H, ¹³C NMR and IR spectra of 2.

Figures S7-S9. ¹H, ¹³C NMR and IR spectra of **3**.

Figures S10-S12. ¹H, ¹³C NMR and IR spectra of 4.

Figure S9-S12. IR spectra of 1-4.

Figures S13-S16. DOSY NMR spectra of 1-4.

II. Crystallographic Details

Table S1. Crystal data for compound 1, 2[thf]₂, 3[thf]₂ and 4[thf]₂.

Table S2. Mg-O and Mg-N bond lengths as well as O-Mg-O and Mg-O-Mg bond angles of compound 1, 2[thf]₂, 3[thf]₂ and 4[thf]₂.

III. Polymerization Studies

Figure S17. Homonuclear decoupled ¹H-NMR spectrum of *rac*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *rac*-LA and **1** in ratio 200:1 at 140 °C.

Figure S18. Homonuclear decoupled ¹H-NMR spectrum of *rac*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *rac*-LA and **2** in ratio 200:1 at 140 °C.

Figure S19. Homonuclear decoupled ¹H-NMR spectrum of *L*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *L*-LA and **1** in ratio 200:1 at 140 °C.

Figure S20. ¹H-NMR spectrum of *rac*-PLA in CDCl₃ obtained by reaction of *rac*-LA and **1** in ratio 50:1 at 140 °C.

Figure S21. MALDI-TOF spectrum of *rac*-PLA obtained by reaction of *rac*-LA and 1 (50:1) at 140 °C.

Figure S22. ¹H-NMR spectrum of ε -PCL in CDCl₃ obtained by reaction of ε -CL and 1 (50:1) at 80 °C.

Figure S23. MALDI-TOF spectrum of ε -PCL in CDCl₃ obtained by reaction of ε -CL and 1 (50:1) at 80 °C

Figure S24. ¹H-NMR spectrum of *rac*-PLA in CDCl₃ obtained by reaction of *rac*-LA and **1** in the presence of benzyl alcohol as a co-initiator (50:1:2) at 140 °C.

Figure S25. MALDI-TOF spectrum of *rac*-PLA in CDCl₃ obtained by reaction of *rac*-LA and **1** in the presence of benzyl alcohol as a co-initiator (50:1:2) at 140 °C.

Figure S26. ¹H-NMR spectrum of ε -PCL in CDCl₃ obtained by reaction of ε -CL and **1** in the presence of benzyl alcohol as a co-initiator (50:1:2) at 80 °C.

Figure S27. MALDI-TOF spectrum of ε -PCL in CDCl₃ obtained by reaction of ε -CL and **1** in the presence of benzyl alcohol as a co-initiator (50:1:2) at 80 °C.

Figure 28. IR spectrum of *rac*-PLA obtained by reaction of *rac*-LA and 1 in 50:1 molar ratio at 140 °C.

Figure 29. IR spectrum of ε -PCL obtained by reaction of ε -CL and 1 in 50:1 molar ratio at 80 °C.

Figure 30. GPC diagram of *rac*-PLA obtained by reaction of *rac*-LA and **1** in 2000:1 molar ratio at 140 °C.

Figure 31. GPC diagram of *rac*-PLA obtained by reaction of *rac*-LA and **1** in 10000:1 molar ratio at 140 °C.

Figure 32. GPC diagram of ε -PCL obtained by reaction of ε -CL and 1 in 5000:1 molar ratio at 80 °C.

Figure 33. GPC diagram of ε -PCL obtained by reaction of ε -CL and 1 in 10000:1 molar ratio at 80 °C.

Table S3. Polymerization data for *rac*-LA and ε -CL with 1-4 with BnOH as an initiator (200:1:4) under the solvent free condition.

Table S4. Polymerization data of *rac*-LA and ε -CL using catalyst 1 with varying $[M]_0/[C]_0$.

Figure S1. ¹H NMR (300 MHz, CDCl₃, 25 °C) spectrum of 1.

Figure S2. ¹³C NMR (75 MHz, CDCl₃, 25 °C) spectrum of 1.

Figure S4. ¹H NMR (300 MHz, CDCl₃, 25 °C) spectrum of 2.

Figure S5. ¹³C NMR (75 MHz, CDCl₃ 25 °C) spectrum of **2**.

Figure S6. IR spectrum of 2.

Figure S7. ¹H NMR (300 MHz, Toluene-d₈, 25 °C) spectrum of **3**.

Figure S8. ¹³C NMR (75 MHz, Toluene-d₈, 25 °C) spectrum of 3.

573 118	928 928 92238 92253 92253 92253 92253 92253 92253 92253 92253 92253 92253 92253 92253 92253 92253 92253 92253 92253 9228 9228 9228 9228 9228 9228 9228 922	068	28	3010101
.4			ö.o.	0000000000
100	11222211222113	10	64	00001110 00001110
			$\backslash /$	

Figure S10. ¹H NMR (300 MHz, Toluene-d₈, 25 °C) spectrum of 4.

Figure S11. ¹³C NMR (75 MHz, Toluene-d₈, 25 °C) spectrum of 4.

Figure S12. IR (300 MHz, Toluene-d₈, 25 °C) spectrum of 4.

Figure S13. DOSY spectrum of (300 MHz, CDCl₃, 25 °C) spectrum of 1.

Figure S14. DOSY spectrum of (300 MHz, THF-d₈, 25 °C) spectrum of 2.

10

Figure S15. DOSY spectrum of (300 MHz, Toluene-d₈, 25 °C) spectrum of **3**.

Figure S16. DOSY spectrum of (300 MHz, Toluene-d₈, 25 °C) spectrum of 4.

II. Crystallographic Details

Compounds	1	2·THF	3·THF	4·THF	
Empirical formula	$C_{93}H_{132}Mg_4N_4O_8$	$C_{64}H_{84}Cl_8Mg_4N_4O_{14}$	$C_{64}H_{84}Br_8Mg_4N_4O_{14}$	$C_{80}H_{124}Mg_4N_4O_{14}$	
Formula weight (Da)	1531.26	1514.19	1869.87	1463.06	
<i>T</i> /K	100(2)	100(2)	100(2)	100(2)	
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	
Crystal system,	monoclinic	tetragonal	orthorhombic	monoclinic	
Space group	Рс	P43	Pna21	$P2_{1}/c$	
<i>a</i> /Å	11.1710(13)	15.6933(9)	14.6910(13)	11.1387(7)	
b /Å	15.5751(19)	15.6933(9)	21.9463(18)	20.3990(13)	
<i>c</i> /Å	26.121(3)	28.4979(19)	22.8370(18)	17.5736(11)	
α (°)	90	90	90	90	
β (°)	102.316(7)	90	90	91.793(4)	
γ (°)	90	90	90	90	
V (Å ³)	4440.2(9)	7018.5(9)	7362.9(11)	3991.1(4)	
Ζ,	2	4	4	2	
Calc. density (g cm ⁻³)	1.145	1.433	1.687	1.217	
Abs. coef. (mm ⁻¹)	0.097	0.422	4.454	0.110	
Crystal size (mm)	$0.287 \times 0.140 \times 0.084$	$0.277 \times 0.254 \times 0.178$	$0.160 \times 0.150 \times 0.070$	0.266 × 0.110 × 0.052	
θ range data collect. (°)	1.866- 33.219	1.429- 33.256	1.287°- 28.351°	1.530-28.282	
Refl. collected	105877	197302	153221	71773	
Ind. refl.	30207	26563	18268	9730	
Data/restraints/parameters	18046/1103/1010	21850/1285/979	12006/1495/1051	6143/285/530	
Flack-Parameter <i>x</i>	-0.11(11)	see comment	0.056(3)	—	
Goodness-of-fit on F^2	1.027	1.027	1.055	1.037	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0817	R1 = 0.0488	R1 = 0.0455	R1 = 0.0578	
	wR2 = 0.1634	wR2 = 0.1132	wR2 = 0.0922	wR2 = 0.1314	
<i>R</i> indices (all data)	R1 = 0.1564	R1 = 0.0709	R1 = 0.0927	R1 = 0.1107	
	wR2 = 0.1992	wR2 = 0.1262	wR2 = 0.1033	wR2 = 0.1600	

 Table S1. Crystallographic data for compound 1, 2, 3 and 4.

	1	2[thf] ₂	3[thf] ₂	4[thf] ₂
Mg-O _{endo}	2.042(5)	2.015(3)	2.056(5)	1.9808(17)
	2.073(5)	2.033(3)	2.063(5)	1.9937(16)
	2.073(5)	2.077(3)	2.192(5)	2.0698(15)
	2.046(5)	1.958(3)	2.051(6)	2.0069(16)
	2.053(5)	2.065(3)	2.073(5)	2.0654(16)
	2.060(5)	2.167(3)	2.020(5)	2.1010(16)
	2.042(5)	2.039(3)	2.035(5)	2.1096(16)
	2.044(5)	2.048(3)	2.165(5)	
	2.076(5)	2.053(3)	2.043(5)	
	2.046(5)	2.046(3)	2.071(5)	
	2.060(5)	2.081(3)	2.055(5)	
	2.063(5)	2.166(3)	2.039(5)	
Mg-O _{exo}	1.928(5)	1.938(3)	1.946(5)	1.9373(16)
	1.915(5)	1.958(3)	1.927(5)	
	1.936(5)	1.932(3)	1.952(5)	
	1.922(5)	1.953(3)	1.943(5)	
Mg–N	2.120(7)	2.142(3)	2.157(6)	2.1725(19)
	2.120(6)	2.161(4)	2.147(7)	2.166(2)
	2.114(6)	2.152(4)	2.147(6)	
	2.119(6)	2.154(3)	2.171(6)	
O-Mg-Oendo	84.9(2)	86.41(11)	84.18(18)	106.95(7)
	84.5(2)	84.98(11)	81.73(19)	81.75(6)
	84.2(2)	85.21(12)	81.6(2)	83.30(6)
	85.4(2)	84.16(11)	86.1(2)	99.53(7)
	83.0(2)	81.42(11)	85.4(2)	176.00(7)
	84.2(2)	81.73(11)	84.46(19)	80.83(6)
	85.7(2)	85.82(11)	84.23(19)	80.16(6)
	84.8(2)	85.22(11)	82.7(2)	84.77(6)
	82.7(2)	85.27(11)	81.61(19)	103.83(6)
	84.7(2)	84.59(11)	85.5(2)	
	84.3(2)	81.75(11)	84.74(19)	
	84.8(2)	81.43(11)	85.3(2)	

Table S2. Mg-O and Mg-N bond lengths as well as O-Mg-O and Mg-O-Mg bond angles of compound1, 2[thf]2, 3[thf]2 and 4[thf]2.

O-Mg-Oexo	107.4(2)	162.81(14)	98.1(2)	141.91(8)
	94.8(2)	110.34(13)	177.6(2)	110.60(7)
	168.0(2)	92.36(12)	99.4(2)	96.31(6)
	102.0(2)	98.27(12)	108.4(2)	
	93.8(2)	177.38(13)	164.8(3)	
	174.4(2)	99.54(12)	92.4(2)	
	93.3(2)	113.07(13)	179.9(3)	
	100.1(2)	161.07(14)	95.7(2)	
	176.5(2)	94.76(12)	97.4(2)	
	105.9(2)	178.71(14)	163.3(3)	
	169.2(2)	96.28(12)	111.2(2)	
	94.5(2)	97.43(12)	96.7(2)	
Mg–O–Mg	95.9(2)	95.92(12)	98.4(2)	102.08(7)
	94.9(2)	94.78(12)	93.3(2)	97.90(7)
	94.7(2)	97.94(12)	94.6(2)	96.65(6)
	97.3(2)	98.14(12)	95.9(2)	95.23(6)
	94.3(2)	93.83(12)	94.2(2)	95.79(6)
	95.1(2)	93.91(11)	97.7(2)	
	95.0(2)	94.87(12)	95.3(2)	
	96.7(2)	96.89(12)	97.3(2)	
	93.8(2)	94.09(12)	94.3(2)	
	95.8(2)	94.99(12)	95.3(2)	
	95.5(2)	98.35(12)	97.6(2)	
	94.4(2)	94.51(11)	94.9(2)	

III. Polymerization Studies

Figure S17. Homonuclear decoupled ¹H-NMR spectrum of *rac*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *rac*-LA and **1** in 200:1 molar ratio at 140 °C.

Figure S18. Homonuclear decoupled ¹H-NMR spectrum of *rac*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *rac*-LA and **2** in 200:1 molar ratio at 140 °C.

Figure S19. Homonuclear decoupled ¹H-NMR spectrum of *L*-PLA in CDCl₃ (methine H-atom region) obtained by reaction of *L*-LA and **1** in 200:1 molar ratio at 140 °C.

Figure S20. ¹H-NMR spectrum of *rac*-PLA in CDCl₃ obtained by reaction of *rac*-LA and **1** in 50:1 molar ratio at 140 °C.

Figure S21. MALDI-TOF spectrum of *rac*-PLA obtained by reaction of *rac*-LA and 1 in 50:1 molar ratio at 140 °C.

Figure S22. ¹H-NMR spectrum of ε -PCL in CDCl₃ obtained by reaction of ε -CL and 1 in 50:1 molar ratio at 80 °C.

Figure S23. MALDI-TOF spectrum of ε -PCL in CDCl₃ obtained by reaction of ε -CL and 1 in 50:1 molar ratio at 80 °C.

Figure S24. ¹H-NMR spectrum of *rac*-PLA in CDCl₃ obtained by reaction of *rac*-LA and **1** in the presence of benzyl alcohol as a co-initiator in 50:1:2 molar ratio at 140 °C.

Figure S25. MALDI-TOF spectrum of *rac*-PLA in CDCl₃ obtained by reaction of *rac*-LA and **1** in the presence of benzyl alcohol as a co-initiator in 50:1:2 molar ratio at 140 °C.

Figure S26. ¹H-NMR spectrum of ε -PCL in CDCl₃ obtained by reaction of ε -CL and **1** in the presence of benzyl alcohol as a co-initiator in 50:1:2 molar ratio at 80 °C.

Figure S27. MALDI-TOF spectrum of ε -PCL in CDCl₃ obtained by reaction of ε -CL and **1** in the presence of benzyl alcohol as a co-initiator in 50:1:2 molar ratio at 80 °C.

Figure 28. IR spectrum of *rac*-PLA obtained by reaction of *rac*-LA and **1** in 50:1 molar ratio at 140 °C.

Figure 29. IR spectrum of ε -PCL obtained by reaction of ε -CL and 1 in 50:1 molar ratio at 80 °C.

Figure 30. GPC diagram of *rac*-PLA obtained by reaction of *rac*-LA and **1** in 2000:1 molar ratio at 140 °C.

 100_{0} 00_{0} 0_{0} 0

Figure 31. GPC diagram of *rac*-PLA obtained by reaction of *rac*-LA and **1** in 10000:1 molar ratio at 140 °C.

Figure 32. GPC diagram of ε -PCL obtained by reaction of ε -CL and 1 in 5000:1 molar ratio at 80 °C.

Figure 33. GPC diagram of ε -PCL obtained by reaction of ε -CL and **1** in 10000:1 molar ratio at 80 °C.

Entry	Catalyst	Monomer	Temp ° C	Time ^a (s)	Conv ^b %	$M_{ m n}^{ m (Obs)c}$ (kg/mol)	$M_{\rm n}^{\rm (Theo)d}$ (kg/mol)	$M_{\rm n}^{\rm (NMR)e}$ (kg/mol)	$M_{ m w}/M_{ m n}$
1	1	rac-LA	140	150	97	6.33	7.10	6.50	1.1
2	2	rac-LA	140	200	95	5.81	6.85	6.30	1.1
3	3	rac-LA	140	400	92	9.56	6.63	8.25	1.2
4	4	rac-LA	140	180	97	5.98	7.10	6.30	1.2
5	1	ε-CL	80	60	98	5.54	5.59	5.85	1.2
6	2	ε-CL	80	90	97	5.33	5.64	5.16	1.3
7	3	ε-CL	80	300	95	9.16	5.53	8.75	1.4
8	4	ε-CL	80	80	95	5.48	5.53	5.10	1.3

Table S3. Polymerization data for *rac*-LA and ε -CL with **1-4** with BnOH as an initiator in 200:1:4 ratios at the solvent free condition.

^{*a*}Time of polymerization measured when quenching the polymerization reaction at complete conversion. ^{*b*}Determined by ¹H NMR in CDCl₃. ^{*c*}Measured by gel permeation chromatography at 40 °C in THF relative to polystyrene standards. ^{*d*}Theoretical mol. Wt. = $[M]_0/[C]_0[BnOH]_0 \times mol.$ Wt. (monomer) × % conversion + M^{end} ^{groups}. ^{*e*}Determined by ¹H NMR in CDCl₃.

Table S4. Polymerization data of *rac*-LA and ε -CL using catalyst **1** with varying $[M]_0/[C]_0$

Entry	Monomer	[M] ₀ /[C] ₀	Temp	Time ^a	Yield ^b	$M_{\rm n}^{\rm (obs)c}$	$M_{\rm n}^{\rm (Theo)d}$	$M_{\rm w}/M_{\rm n}$
			(° C)	(s)	(%)	(kg/mol)	(kg/mol)	
1	rac-LA	200:1	140	175	96	13.8	28.8	1.4
2	rac-LA	400:1	140	290	95	26.1	57.5	1.5
3	rac-LA	600:1	140	400	95	40.9	86.4	1.6
4	rac-LA	800:1	140	610	92	54.2	115.3	1.8
5	rac-LA	1000:1	140	730	90	66.4	144.1	1.8
6	rac-LA	400 (400):1	140	320 (320)	90	51.1	115.3	1.8
7	ε-CL	200:1	80	70	98	14.1	22.8	1.3
8	<i>ε</i> −CL	400:1	80	155	98	26.8	45.6	1.4
9	<i>ε</i> −CL	600:1	80	190	96	38.2	68.4	1.3
10	ε-CL	800:1	80	240	95	51.1	91.2	1.4
11	ε-CL	1000:1	80	290	95	62.3	114.0	1.5
12	ε-CL	2000:1	80	380	92	125.5	228.0	1.8
13	€-CL	400 (400):1	80	120 (120)	94	53.4	91.2	1.6

^{*a*}Time required for complete conversion. ^{*b*}Isolated yield of the polymer after quenching. ^{*c*}Measured by GPC at 40 °C in THF, relative to polystyrene standards. ^{*d*} $M_n^{(Theo)}$ at 100% conversion = $[M]_0/[C]_0$ x mol. Wt. of monomer.