Electronic Supplementary Information

for

Formation of a four-bladed waterwheel-type chloro-bridged dicopper(II) complex with dithiamacrocycle via double exo-coordination

Seulgi Kim,^a In-Hyeok Park,^{*b} Han-Byeol Choi,^a Huiyeong Ju,^a Eunji Lee,^a Tun Seng Herng,^{bc} Jun Ding,^c Jong Hwa Jung^a and Shim Sung Lee^{*a}

^aDepartment of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea

^bDepartment of Chemistry, National University of Singapore, 117543, Singapore

^cDepartment of Materials Science and Engineering, National University of Singapore, 119260, Singapore

Table of Contents

Experimental Procedures	S3
Fig. S1. ¹ H-NMR spectrum of L ¹	S6
Fig. S2. ¹³ C-NMR spectrum of L^1	S6
Fig. S3. ¹ H-NMR spectrum of L ²	S7
Fig. S4. ¹³ C-NMR spectrum of L ²	S7
Fig. S5. Crystal structure of 2·····	S 8
Fig. S6. IR spectra of (a) L^2 and (b) 2	S 8
Fig. S7. PXRD patterns for (a) 1 and (b) 2	S9
Fig. S8. Supramolecular interactions in 2	S10
Fig. S9. ¹ H-NMR spectral comparisons of (a) L^2 and (b) 2	S11
Table S1. Crystal and Experimental Data	S12
Table S2. Selected Bond Lengths and Bond Angles for 1	S13
Table S3. Selected Bond Lengths and Bond Angles for 2·····	S13
Table S4. The H-bond Parameters of 2	S13

Experimental Procedures

General. All chemicals and solvents used in the syntheses were of reagent grade and were used without further purification. The electrospray ionization (ESI) mass spectra were obtained on a Thermo Scientific LCQ Fleet spectrometer. The nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 300 and 500 spectrometers (300 and 500 MHz). The Fourier transform infrared (FT-IR) spectra were measured with a Nicolet *i*S10 spectrometer. The elemental analysis was carried out on a LECO CHNS-932 elemental analyzer.

Scheme S1. Synthesis of L^1 and L^2 .

Synthesis of L¹. 1,2-Ethanedithiol (1.10 g, 11.68 mmol) and dichloride **5** (3.00 g, 8.45 mmol) were dissolved in DMF (50 mL) and added over one day to a suspension of Cs₂CO₃ (4.10 g, 12.58 mmol) in DMF (750 mL) stirred at 55 °C. The reaction mixture was allowed to stand for a further 10 h. After it was cooled to room temperature, the reaction mixture was filtered, and the solvent was evaporated. Water (100 mL) was added, and the mixture was extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate and filtered, and the solvent was removed to give a yellow oil. Flash column chromatography (SiO₂, *n*-hexane/ethyl acetate 8.5:1.5) afforded the final product L¹ as a colorless solid in 43% yield. mp 91-92 °C. IR (KBr, pellet): 3063, 2921, 2877, 1599, 1493, 1450, 1418, 1358, 1245, 1127, 1103, 949, 830, 757 cm⁻¹. Anal. Calcd for C₂₀H₂₄O₃S₂: C, 63.80; H, 6.42; S, 17.03. Found: C, 63.98; H, 6.43; S, 17.36%. ¹H-NMR (300 MHz, CDCl₃, δ): 6.85-7.35 (m, 8H, Ar*H*), 4.16 (t, 4H, ArOC*H*₂), 3.99 (t, 4H, ArOCH₂C*H*₂), 3.83 (s, 4H, ArC*H*₂), 2.75 (s, 4H, ArCH₂SC*H*₂). ¹³C-NMR (75 MHz, CDCl₃) 156.42, 130.89, 128.23, 127.58, 121.30, 111.38, 70.20, 68.03, 31.41, 29.43. Mass spectrum m/z (ESI): 377.2 [L¹+H]⁺.

Synthesis of L². 1,3-Propanedithiol (1.21 g, 11.09 mmol) and dichloride **5** (3.00 g, 8.45 mmol) were dissolved in DMF (50 mL) and added over one day, to a suspension of Cs₂CO₃ (4.11 g, 12.58 mmol) in DMF (750 mL) stirred at 55 °C. The reaction mixture was allowed to stand for a further 10 h. After it was cooled to room temperature, the reaction mixture was filtered, and the solvent was evaporated. Water (100 mL) was added, and the mixture was extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate and filtered, and the solvent was removed to give a yellow oil. Flash column chromatography (SiO₂, *n*-hexane/ethyl acetate 8:2) afforded the final product L² as a colorless solid in 37% yield. mp 103-104 °C. IR (KBr, pellet): 3061, 3033, 2928, 2879, 1598, 1494, 1452, 1361, 1293, 1248, 1125, 1103, 1049, 956, 945, 751 cm⁻¹. Anal. Calcd for C₂₁H₂₆O₃S₂: C, 64.58; H, 6.71; S, 16.42. Found: C, 64.98; H, 6.67; S, 16.65%. ¹H-NMR (300 MHz, CDCl₃, δ): 6.85-7.35 (m, 8H, Ar*H*), 4.19 (t, 4H, ArOCH₂), 4.01 (t, 4H, ArOCH₂CH₂), 3.79 (s, 4H, ArCH₂), 2.61 (t, 4H, ArCH₂SCH₂), 1.94 (m, 2H, S CH₂CH₂). ¹³C-NMR (75 MHz, CDCl₃) 156.45, 130.80, 128.16, 127.45, 121.12, 111.50, 70.38, 68.20, 30.69, 29.64, 29.13. Mass spectrum m/z (ESI): 391.5 [L²+H]⁺.

Preparation of $[Cu_2(L^1)(NO_3)_4]_n$ (1). Cu(NO₃)₂·3H₂O (9.8 mg, 0.041 mmol) in acetonitrile (1.0 mL) was added to a solution of L¹ (10.0 mg, 0.027 mmol) in dichloromethane (1.0 mL). Slow evaporation of the solution at room temperature afforded a dark green crystalline product 1 suitable for X-ray analysis. mp 169-170 °C. IR (KBr, pellet): 2929, 2868, 1599, 1484 (NO₃⁻), 1452, 1384, 1305, 1283, 1256, 1124, 1069, 1027 (NO₃⁻), 1012, 955, 945, 760 cm⁻¹. Anal. Calc. for C₂₀H₂₄N₂O₉S₂Cu: C, 42.59; H, 4.29; N, 4.97; S, 11.37. Found: C, 42.29; H, 4.23; N, 4.91; S, 11.74%.

Preparation of $[Cu_2(\mu$ -Cl)(L^2_{ox})_4]Cl(NO₃)_2 (2). A dichloromethane (1.0 mL) solution of L^2 (10.0 mg, 0.026 mmol) was allowed to diffuse slowly into an acetonitrile (1.0 mL) solution of Cu(NO₃)_2·3H₂O (18.6 mg, 0.078 mmol) in a capillary tube (i.d. 5 mm). Slow evaporation of the reaction mixture afforded a blue crystalline product 2. mp 178-179 °C. IR (KBr, pellet): 3019, 2928, 2868, 1601, 1496 (NO₃⁻), 1453, 1384, 1291, 1255, 1107, 1009 (S=O), 960, 761 cm⁻¹. ¹H-NMR (500 MHz, DMSO-*d*₆, δ): 7.31-6.93 (m, 8H, Ar*H*), 4.21-3.90 (d, 4H, Ar*CH*₂S), 4.17 (m, 4H, ArO*CH*₂), 3.86 (m, 4H, ArO*CH*₂*CH*₂), 2.88-2.69 (m, 4H, Ar*CH*₂S*CH*₂), 2.03-1.86 (m, 2H, S*CH*₂*CH*₂). Due to the disordered lattice solvent molecules and the hygroscopic nature, the elemental analysis result was not included.

X-Ray Crystallographic Analysis. Crystal data were collected on a Bruker SMART APEX II ULTRA diffractometer equipped with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Data collection, data reduction, and semi-empirical absorption correction were carried out using the software package of APEX2.^{S1} All of the calculations for the structure determination were carried out using the SHELXTL package.^{S2} Since the lattice acetonitrile molecule in **2** is highly disordered, the contribution of solvent electron density was removed by the SQUEEZE routine in PLATON.^{S3} Relevant crystal data collection and refinement data for the crystal structures are summarized in Table S1.

Magnetic Studies. A superconducting quantum interference device (SQUID) magnetometer MPMS was used for the magnetic characterization (see Fig. 5). Powder sample with a weight of 5-10 mg was sealed in a plastic capsule. Magnetic moment was measured in the temperature range of 2 K to 300 K. The empty plastic capsule exhibited diamagnetism and its magnetic moment was measured for correction. After correction for the diamagnetism of the plastic capsule and sample holder, the diamagnetism of monomer and paramagnetic contamination (for example free radical), the magnetic susceptibility was fitted using the PHI program^{S4} by means of an isotropic spin Hamiltonian (SH) accounting for the exchange coupling (Heisenberg-Dirac-van Vleck Hamitonian) and zero-field splitting (ZFC).

$$H = H_{ex} + H_{Zee} + H_{CF}$$

$$H_{ex} = -2J_{12}\vec{S_1}\vec{S_2}$$

$$H_{Zee} = \mu_B \sum_{i=1}^{2} \vec{S_i} g_i \vec{B}$$

$$H_{CF} = \sum D_i [S_{z,i}^2 - \frac{1}{3}S_i(S_i + 1) + \frac{E_i}{D_i}(S_{z,i}^2 - S_{y,i}^2)]$$

D: axial ZFS parameter; F: rhombic ZFS parameter; \vec{s} : spin vector; \vec{B} : magnetic field vector; g: g-factor; μ_B : Bohr magneton.

References

(S1) APEX2 Version 2009.1–0 Data Collection and Processing Software; Bruker AXS Inc.: Madison, Wisconsin, U.S.A., 2008.

(S2) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

(S3) Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; University of Ultrecht: Ultrecht, The Netherlands, 2003.

(S4) N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, *J. Comput. Chem.* 2013, **34**, 1164-1175.

Fig. S1 ¹H-NMR spectrum of L^1 in CDCl₃.

Fig. S2 13 C-NMR spectrum of L¹ in CDCl₃.

Fig. S3 ¹H-NMR spectrum of L² in CDCl₃

Fig. S4 ¹³C-NMR spectrum of L² in CDCl₃

Fig. S5 Crystal structure of $[Cu_2(\mu-Cl)(L^2_{ox})_4]Cl(NO_3)_2$ (2): (a) side view (two nitrate ions in the lattices are disordered.) and (b) top view (space-filling representation, noncoordinated anions are omitted).

Fig. S6 IR spectra of (a) L^2 and (b) **2**.

Fig. S7 Comparison of PXRD patterns for (a) **1** and (b) **2**: (top) as synthesized and (bottom) simulated from the single crystal X-ray data.

Fig. S8 Supramolecular interactions in 2: (a) octahedral environment of the chloride ion in 2 showing the CH···Cl⁻ H-bonds (dashed lines; the outer parts of the L^2_{ox} ligands are omitted for clarity) and (b) the interligand C-H···O H-bonds (dashed lines) in 2.

Fig. S9 ¹H-NMR spectral comparisons of (a) L^2 and (b) 2 in DMSO- d_6

The ¹H-NMR spectrum of **2** using DMSO- d_6 was observed to occur in the normal (diamagnetic) region and the nonequivalent proton peaks (axial: "*ax*" and equatorial: "*eq*") for each methylene group of H₃-H₅ are somewhat broadened (but still well resolved), presumably reflecting the restricted conformation of the 10-memberd metallacyclic part of the structure. Considering the similar spectral pattern and chemical shifts of the expected ¹H-NMR spectrum of L^2_{ox} with that of L^2 (Fig. S10a), the larger complexationinduced downfield shifts of H_{3eq} and H_{4eq} (adjacent to the sulfoxide) in **2** (Fig. S10b) relative to those of H₁, H₂, and H₅ in L^2 (Fig. S10a) indicates that **2** remains intact in DMSO- d_6 and is in keeping with complexation occurring through both sulfoxides of L^2_{ox} .

	L^1	L ²	1	2
Formula	$C_{20}H_{24}O_3S_2$	$C_{21}H_{26}O_3S_2$	$C_{20}H_{24}CuN_2O_9S_2$	$C_{84}H_{112}Cl_2Cu_2N_2O_{26}S_8$
Formula weight	376.51	390.54	564.07	2020.21
Temperature (K)	173(2)	173(2)	173(2)	173(2)
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Tetragonal
Space group	$P2_{1}/n$	$P2_{1}2_{1}2_{1}$	C2/c	I4/m
Ζ	4	4	8	2
<i>a</i> (Å)	14.7867(2)	7.9980(2)	17.2239(2)	16.627(9)
<i>b</i> (Å)	4.62090(10)	13.8621(3)	13.0421(2)	16.627(9)
<i>c</i> (Å)	27.4643(3)	17.8754(4)	20.8189(3)	19.050(10)
α (°)	90	90	90	90
eta (°)	94.3620(10)	90	90.6790(10)	90
γ (°)	90	90	90	90
$V(Å^3)$	1871.14(5)	1981.83(8)	4676.34(11)	5267(6)
$D_{\text{calc}}(g/\text{cm}^3)$	1.337	1.309	1.602	1.274
$2\theta_{\max}(^{\circ})$	52.00	52.00	52.00	52.00
$R_1, wR_2 \left[I > 2\sigma(I)\right]$	0.0332, 0.0828	0.0306, 0.0621	0.0423, 0.0816	0.0696, 0.1995
R_1, wR_2 [all data]	0.0394, 0.0862	0.0357, 0.0642	0.0737, 0.0915	0.1124, 0.2234
Goodness-of-fit on F^2	1.025	1.033	1.034	1.045
No. of reflection used [> $2\sigma(I)$]	$3586 [R_{int} = 0.0244]$	$3880 [R_{int} = 0.0357]$	$4532 [R_{int} = 0.0594]$	2677 [$R_{\rm int} = 0.0757$]

Table S1Crystal and Experimental Data

	0	с (<u>с</u> ,	
Cu1-S1	2.3339(8)	Cu1-S2	2.3507(8)
Cu1-O4	2.408(2)	Cu2-O5	1.9603(19)
Cu2-O7	1.952(2)		
S1-Cu1-S1A	180.0	S1-Cu1-S2	87.47(3)
S1-Cu1-S2A	92.53(3)	S2-Cu1-S2A	180.00(4)
S1-Cu1-O4A	88.38(6)	S1A-Cu1-O4A	91.63(6)
S1-Cu1-O4	91.62(6)	S2-Cu1-O4	82.58(5)
S1A-Cu1-O4	88.38(6)	S2-Cu1-O4A	97.43(5)
O4A-Cu1-O4	180.0	O7B-Cu2-O7	180.0
O7B-Cu2-O5	89.28(9)	O7-Cu2-O5	90.72(9)
O7-Cu2-O5B	89.28(9)	O5-Cu2-O5B	180.0

 Table S2
 Selected Bond Lengths (Å) and Bond Angles (deg) for 1

Symmetry operations: (A) -x,-y+1,-z (B) -x-1/2,-y+3/2,-z

	Table S3	Selected Bond	Lengths (Å)) and Bond Angles	(deg) for 2
--	----------	---------------	-------------	-------------------	-------------

Cu1-O3	1.945(3)	Cu1-Cl1	2.4699(17)	
O3-Cu1-O3C	89.37(2)	O3-Cu1-O3G	167.93(19)	
O3-Cu1-Cl1	96.04(9)	Cl-Cu-Cl	180	
Symmetry operation	s: (C) x,y+1,z	(G) x+1,y+1,z		

Table S4The H-bond Parameters of 2

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>А</th></dha<>	d(DA)	А
C-H12a…Cl1	0.99	2.9684(15)	150.039(30)	3.8579(21)	Cl
C-H12b…O1	0.99	2.464(1)	173.441(39)	3.4494(14)	01
C-H11b…O2	0.99	2.7433(14)	146.229(38)	3.6085(17)	O2