Supporting Information

La³⁺:Ni-Cl oxyhydroxide gels with enhanced electroactivity as positive materials for hybrid supercapacitors

Kunfeng Chen¹, Feng Liang^{2,3}, and Dongfeng Xue^{1,*}

¹State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
² Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
³ State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
*Corresponding author. E-mail: dongfeng@ciac.ac.cn

Calculation equation of energy density and power density of hybrid supercapacitors:

The specific energy density (E, Wh kg⁻¹) and power density (P, W kg⁻¹) for an asymmetric supercapacitor can be calculated using the following equations:

$$E = \frac{\int I \cdot V(t) dt}{3.6m}$$

$$P = \frac{3600E}{\Delta t}$$

where E (Wh kg⁻¹) is the energy density, P (W kg⁻¹) is the power density, I (A) is the discharge current, $\int I \cdot V(t) dt$ is the area under the discharge curve, m (g) is the total mass of the active material (positive and negative electrodes), and Δt (s) is the discharge time.

Fig. S1 Photo of La³⁺:Ni-Cl oxyhydroxide gels.

Fig. S2 XRD patterns of Ni-Cl oxyhydroxide and La³⁺:Ni-Cl oxyhydroxide gels with adding different amount of La³⁺.

Sample	As-obtai	ned sample		After electrochemical test			
	La/Ni	La/(Ni+La)	Cl/(Ni+La)	La/Ni	La/(Ni+La)	Cl/(Ni+La)	
Ni	/	/	0.35	/	/	0.022	
La0.05	0.020	0.022	0.29	0.031	0.030	0.019	
La0.10	0.050	0.048	0.30	0.044	0.042	0.019	
La0.15	0.072	0.067	0.23	0.074	0.069	0.023	
La0.20	0.136	0.120	0.26	0.081	0.075	0.038	
La0.25	0.125	0.111	0.25	0.113	0.102	0.043	

Table S1 Elemental ratios calculated based on EDS analysis of Ni-Cl oxyhydroxide gels with different La³⁺ amounts before and after electrochemical test.

Table S2 Element ratios of Ni-Cl oxyhydroxide gels with different La³⁺ amounts from EDS before electrochemical test.

Sample	Ni	0	Cl	С	La	La/Ni	La/(Ni+L	Cl/(Ni+La
							a))
Ni	18.58	48.81	6.56	26.05	-	-	-	0.35
La0.05	4.16	43.12	1.25	51.48	0.092	0.02	0.022	0.29
La0.1	26.16	45.9	8.36	18.26	1.31	0.050	0.048	0.30
La0.15	27.62	42.73	6.84	20.83	1.98	0.072	0.067	0.23
La0.2	14.67	43.51	4.26	35.57	2	0.136	0.120	0.26
La0.25	14.53	59.05	4.12	20.48	1.82	0.125	0.111	0.25

Table S3 Element ratios of Ni-Cl oxyhydroxide gels with different La³⁺ amounts from EDS after electrochemical test.

Sample	Ni	La	Cl	Κ	0	La/Ni	La/(Ni+La)	Cl/(Ni+La)
Ni	16.08	0	0.35	13.05	39.44	-	-	0.022
La0.05	19.77	0.61	0.39	8.12	48.32	0.031	0.030	0.019
La0.1	19.24	0.84	0.39	9.77	42.44	0.044	0.042	0.019
La0.15	15.85	1.17	0.39	5.78	39.92	0.074	0.069	0.023
La0.2	15.76	1.28	0.64	14.07	47.22	0.081	0.075	0.038
La0.25	11.59	1.31	0.56	7.81	54.40	0.113	0.102	0.043

Fig. S3 SEM images of Ni-Cl oxyhydroxide and La³⁺:Ni-Cl oxyhydroxide gels with adding different amount of La³⁺: (a) 0.05 mmol, (b) 0.20 mmol, (a) 0.25mmol,

Fig. S4 SEM image (a), element mapping (b-e) and EDS (f) of Ni-Cl oxyhydroxide gels.

Fig. S5 SEM image (a), element mapping (b-f) and EDS (g) of La³⁺:Ni-Cl oxyhydroxides (La0.15).

Fig. S6. (a and b) FTIR spectra of ethonal, propylene oxide, acetonitrile, and NiCl₂·6H₂O.

Supercapacitors	Potential window	Power density	Energy density	Ref.
3D-ICHA a-Ni(OH)2//AC	1.55V	0.14 kW/kg 2.9 kW/kg	14.8 Wh/kg 9.0 Wh/kg	1
Ni foam-supported Ni ₂ P nanosheet//AC	1.4V	0.34 kW/kg 5.3 kW/kg	26.0 Wh/kg 10.0 Wh/kg	2
Ni(OH) ₂ /graphene // porous graphene	1.6V	0.17 kW/kg	77.8 Wh/kg	3
Ni(OH) ₂ -Co ₂ (OH) ₃ Cl bilayer nanocomposites//AC	1.7 V	0.26 kW/kg 4.2 kW/kg	37.6 Wh/kg 20.0 Wh/kg	4
CNT/Ni(OH) ₂ //RGO	1.8 V	1.8 kW/kg 2.7 kW/kg	35.0 Wh/kg 26.2 Wh/kg	5
Co ₃ O ₄ @Ni(OH) ₂ //AC	1.65V	0.033W/kg 1.7 kW/kg	41.8 Wh/kg 18.4 Wh/kg	6
Co ₃ O ₄ @Ni(OH) ₂ //RGO	1.65V	0.036 kW/kg 1.9 kW/kg	41.9 Wh/kg 18.5 Wh/kg	6
La ³⁺ :Ni-Cl oxyhydroxide gel (La0.05)//AC	1.5V	1.0 kW/kg 13.9 kW/kg	30.7 Wh/kg 13.9 Wh/kg	This work

Table S4 Compare of energy densities and power densities of hybrid supercapacitors reported in literatures

Fig. S7 (a) CV curves at different scan rates and (b) discharge curves of Ni-Cl oxyhydroxide//AC.

Fig. S8 Elemental mapping of La³⁺:Ni-Cl oxyhydroxide gel (La0.10) electrode after electrochemical testing.

References:

- 1 C. D. Gu, X. Ge, X. L. Wang, J. P. Tu, J. Mater. Chem. A, 2015, 3, 14228-14238.
- 2 K. Zhou, W. Zhou, L. Yang, J. Lu, S. Cheng, W. Mai, Z. Tang, L. Li, S. Chen, *Adv. Funct. Mater.*, 2015, **25**, 7530–7538.
- 3 J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, *Adv. Funct. Mater.*, 2012, **22**, 2632–2641.
- 4 Z. Zhang, W. Dua, X. Ren, Z. Shen, X. Fan, S. Wei, C. Wei, Z. Cao, B. Zhang, *Appl. Surf. Sci.*, 2019, **469**, 624–633.
- 5 R. R. Salunkhe, J. Lin, V. Malgras, S. Dou, J. Kim, Y. Yamauchi, *Nano Energy*, 2015, 11, 211-218.
- 6 C. Tang, X. Yin, H. Gong, ACS Appl. Mater. Interfaces, 2013, 5, 10574-10582.