Supporting Information

Half-sandwich ruthenium(II) complexes with tethered arene-phosphinite ligands: Synthesis, structure and application in catalytic cross dehydrogenative coupling reactions of silanes and alcohols

Rebeca González-Fernández, Pascale Crochet,* and Victorio Cadierno*

Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain

E-mail: crochetpascale@uniovi.es (P.C.); vcm@uniovi.es (V.C.).

Contents

Figures S1-S36: NMR spectra of the non-tethered complexes 5-7a-c .	S2-S19
Figures S37-S54: NMR spectra of the tethered complexes 9-10a-c .	S20-S28
Figures S55-S78: NMR spectra of the alkoxysilanes isolated from	
the catalytic reactions.	S29-S40
Figures S79: Kinetic profile of the dehydrogenative cross-coupling	
reaction of Me ₂ PhSiH with MeOH catalyzed by	
0.005 mol% of complex 10c .	S41

NMR spectra of the non-tethered complexes 5-7a-c

Figure S1: ³¹P{¹H} NMR spectrum (121 MHz, CDCl₃) of complex 5a.

Figure S2: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 5a.

Figure S3: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 5a.

60 50 ppm -10 -20 -40 -50 -30 Figure S4: ${}^{31}P{}^{1}H$ NMR spectrum (121 MHz, CD₂Cl₂) of complex 5b.

Figure S5: ¹H NMR spectrum (300 MHz, CD₂Cl₂) of complex 5b.

Figure S6: ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD_2Cl_2) of complex 5b.

Figure S7: ${}^{31}P{}^{1}H$ NMR spectrum (121 MHz, CD₂Cl₂) of complex 5c.

Figure S8: ¹H NMR spectrum (300 MHz, CD₂Cl₂) of complex 5c.

Figure S9: ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD_2Cl_2) of complex 5c.

Figure S10: ${}^{31}P{}^{1}H$ NMR spectrum (121 MHz, CDCl₃) of complex 6a.

Figure S11: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 6a.

Figure S12: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 6a.

Figure S13: ³¹P{¹H} NMR spectrum (121 MHz, CDCl₃) of complex 6b.

Figure S14: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 6b.

Figure S15: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 6b.

Figure S16: ${}^{31}P{^{1}H}$ NMR spectrum (121 MHz, CDCl₃) of complex 6c.

Figure S17: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 6c.

Figure S18: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 6c.

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 ppm

-120

-140

30 20 10

60 50 40

150

130

110

90 80 70

Figure S20: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 7a.

Figure S21: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 7a.

Figure S22: ${}^{31}P{}^{1}H$ NMR spectrum (121 MHz, CD₂Cl₂) of complex 7b.

210

190

170

150

130

110

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 ppm

Figure S23: ¹H NMR spectrum (300 MHz, CD₂Cl₂) of complex 7b.

Figure S24: ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD_2Cl_2) of complex 7b.

Figure S25: ${}^{31}P{}^{1}H$ NMR spectrum (121 MHz, CD₂Cl₂) of complex 7c.

-120

Figure S26: ¹H NMR spectrum (300 MHz, CD₂Cl₂) of complex 7c.

Figure S27: ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD₂Cl₂) of complex 7c.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 ppm

Figure S28: ³¹P{¹H} NMR spectrum (121 MHz, CDCl₃) of complex 8a.

Figure S29: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 8a.

Figure S30: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 8a.

Figure S31: ³¹P{¹H} NMR spectrum (121 MHz, CDCl₃) of complex 8b.

Figure S32: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 8b.

Figure S33: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 8b.

Figure S34: ${}^{31}P{}^{1}H$ NMR spectrum (121 MHz, CDCl₃) of complex 8c.

Figure S35: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 8c.

Figure S36: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 8c.

NMR spectra of the tethered complexes 9-10a-c

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 Figure S37: ${}^{31}P{}^{1}H$ NMR spectrum (121 MHz, CDCl₃) of complex 9a.

Figure S38: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 9a.

Figure S39: ${}^{13}C{}^{1H}$ NMR spectrum (100 MHz, CD₂Cl₂) of complex 9a.

 $\mathbf{P}^{\mathsf{ppm}} = \mathbf{P}^{\mathsf{ppm}}$

Figure S40: ³¹P{¹H} NMR spectrum (121 MHz, CDCl₃) of complex 9b.

Figure S41: ¹H NMR spectrum (300 MHz, CDCl₃) of complex 9b.

Figure S42: ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, DMSO- d_6) of complex 9b.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90

Figure S44: ¹H NMR spectrum (300 MHz, CD₂Cl₂) of complex 9c.

Figure S45: ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD₂Cl₂) of complex 9c.

Figure S46: ${}^{31}P{^{1}H}$ NMR spectrum (121 MHz, CDCl₃) of complex 10a.

Figure S47: ¹H NMR spectrum (300 MHz, CD₂Cl₂) of complex 10a.

Figure S48: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 10a.

Figure S49: ${}^{31}P{}^{1}H$ NMR spectrum (121 MHz, CDCl₃) of complex 10b.

Figure S50: ¹H NMR spectrum (300 MHz, CD₂Cl₂) of complex 10b.

and the second second

Figure S51: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 10b.

Figure S52: ³¹P{¹H} NMR spectrum (121 MHz, CDCl₃) of complex 10c.

Figure S53: ¹H NMR spectrum (300 MHz, CD₂Cl₂) of complex 10c.

Figure S54: ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of complex 10c.

NMR spectra of the alkoxysilanes isolated from the catalytic reactions

Figure S55: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOMe.

Figure S56: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOMe.

Figure S57: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOEt.

Figure S58: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOEt.

Figure S59: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOⁿPr.

Figure S60: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOⁿPr.

Figure S61: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOⁿBu.

Figure S62: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOⁿBu.

Figure S63: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOBn.

ppm -10 Figure S64: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOBn.

Figure S65: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOⁱPr.

Figure S66: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOⁱPr.

Figure S67: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOCH₂CH₂ⁱPr.

Figure S68: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOCH₂CH₂ⁱPr.

Figure S69: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOCHMeEt.

Figure S70: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOCHMeEt.

Figure S71: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiO^cHeptyl.

Figure S72: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiO^cHeptyl.

Figure S73: ¹H NMR spectrum (300 MHz, CDCl₃) of Me₂PhSiOCH₂C=CH.

Figure S74: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Me₂PhSiOCH₂C=CH.

ppm

Figure S75: ¹H NMR spectrum (300 MHz, CDCl₃) of Et₃SiOMe.

Figure S76: ${}^{13}C{}^{1}H$ NMR spectrum (75 MHz, CDCl₃) of Et₃SiOMe.

Figure S77: ¹H NMR spectrum (300 MHz, CDCl₃) of Ph₃SiOMe.

Figure S78: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Ph₃SiOMe.

Figure S79: ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃) of Ph₃SiOMe. Kinetic profile of the dehydrogenative cross-coupling reaction of Me₂PhSiH with MeOH catalyzed by 0.005 mol% of complex **10c** (entry 13 of Table 2 of the manuscript).