Pebax $^{\circ}$ 1041 supported membranes with carbon nanotubes prepared via phase inversion for CO₂/N₂ separation

Javier Sánchez-Laínez*, Marcos Ballester-Catalán, Enrique Javierre-Ortín, Carlos Téllez, Joaquín Coronas*

Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA) and Instituto de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain. Email: sanchezj@unizar.es and coronas@unizar.es.

Membrane characterization

Figure S1. Contact angle measurements of PSF supports (a), supported membranes prepared with 1.5 μ m (b), 2.6 μ m (c), 3.6 μ m (d), 4.1 μ m (e) and 8.0 μ m (with MWCNTs) (f) of Pebax[®] 1041, self-supported Pebax[®] 1041 membranes (g) and PSF supports coated with PTMSP (h).

Figure S2. SEM images of the surface of supported membranes: pristine Pebax[®] 1041, Pebax[®] 1041 containing MWCNTs and MWCNTs in powder form.

Figure S2. XRD analysis of supported membranes: pristine Pebax[®] 1041, Pebax[®] 1041 containing MWCNTs and MWCNTs in powder form.

Robeson upper-bound adapted

Table S1. Literature review with the values that defined the CO_2/N_2 upper-bound in 2008, including membrane thickness, CO_2 permeability in Barrer and CO_2/N_2 selectivity. The calculated CO_2 permeance in GPU is given.

Polymer	Thickness (µm)	CO ₂ permeability (Barrer)	CO ₂ permeance (GPU)	α (CO ₂ /N ₂)	Ref.
Phosphazene	100	250	2.5	62.5	1

Modified poly(dimethylsiloxane)	150	2000	13.3	34.2	2
PIM-7	28	1100	39.3	26.2	3
PIM-1	46	2300	50	25	3

The Robeson upper-bound, revisited in 2008⁴ was defined from pure component permeability data of dense membranes, allowing the determination of the state-of-the-art limits for polymeric membrane gas separation. The upper-bound relationship is expressed by $P_i = k \cdot \alpha_{ij}^n$, where P_i is the permeability of the more permeable gas, α is the separation factor (P_i/P_{ij}) and *n* is the slope of the log–log limit. It was observed that -1/n vs. d_{ij} (where d_{ij} is the difference between the gas molecular diameters $(d_j - d_i)$) yielded a linear relationship. Since gas permeability was defined in Barrer, we have calculated an CO₂/N₂ upper-bound relationship in GPU, using the values from the literature that defined the original upper-bound but changing the flow values from Barrer into GPU (see Table S1). These values were represented in Figure S1 and fitted to a logarithmic equation, resulting in the following upper-bound relationship: $P_{CO_2} = 512447 \cdot \alpha_{CO_2/N_2}^{-2.967}$. A factor *k* of 512447 GPU was obtained and the slope *n* of -2.967 was near the value found in the original publication, implying that its inverse corresponds to the difference between the gas molecular diameters of CO₂ (0.330 nm) and N₂ (0.364 nm).

Figure S4. CO_2/N_2 bound defined in GPU at 35 ^oC. Squares represent the values in GPU of Table S1. The fitting equation of the linear fitting is also given with the R^2 value

Comparison with the literature

Polymer	Filler	Operating temperature (°C)	Feed pressure (bar)	CO ₂ permeability (Barrer)	CO ₂ /N ₂ selectivity (-)	Year and reference
Pebax [®] 1657	-	35	3	110	36	20195
Dahaw®	-			80.6	48	
1657	20 wt% ZIF-8	20	10	156	40.5	20196
Dahaw®	-			52.1	93.0	
1657	0.2 wt% GO	RT	4	40.8	107	20197
Pebax®	-			572	43	
1657 /PEG- MEA	0.3wt% GO	35	1-9	600	55.8	2019 ⁸
Pebax [®] 2533	-	RT	10	202	22.8	2019 ⁹
Pebax [®] 1041	1 wt% MWCNTs	35	3	24	22.6	This work

Table S2. Pebax® based membrane performances for CO₂/N₂ separation

References

1 C. J. Orme, M. K. Harrup, T. A. Luther, R. P. Lash, K. S. Houston, D. H. Weinkauf and F. F. Stewart, *J. Membr. Sci.*, 2001, **186**, 249-256.

2 U. Senthilkumar and B. Reddy, J. Membr. Sci., 2007, 292, 72-79.

3 P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown and D. Fritsch, J. Membr. Sci., 2005, 251, 263-269.

4 L. M. Robeson, J. Membr. Sci., 2008, 320, 390-400.

5 L. Martínez-Izquierdo, M. Malankowska, J. Sánchez-Laínez, C. Téllez and J. Coronas, *R. Soc. Open Sci., 2019, 6.,* 190866-19086.

6 W. Zheng, R. Ding, K. Yang, Y. Dai, X. Yan and G. He, *Sep. Purif. Technol.*, 2018, (DOI:<u>https://doi.org/10.1016/j.seppur.2018.04.010</u>).

7 S. A. Mohammed, A. M. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W. J. Lau, N. Yusof, W. N. W. Salleh and A. F. Ismail, *Sep. Purif. Technol.*, 2019, **223**, 142-153 (DOI:<u>https://doi.org/10.1016/j.seppur.2019.04.061</u>).

8 J. E. Shin, S. K. Lee, Y. H. Cho and H. B. Park, J. Membr. Sci., 2019, 572, 300-308.

9 H. Sanaeepur, S. Mashhadikhan, G. Mardassi, A. E. Amooghin, B. Van der Bruggen and A. Moghadassi, *Korean J. Chem. Eng.*, 2019, **36**, 1339-1349.