# **Electronic Supplementary Information (ESI†)**

# Two Ni/Co-substituted sandwich-type germanomolybdates based on unprecedented trivacant polyanion [α-GeMo<sub>10</sub>O<sub>36</sub>]<sup>8-</sup>

Hui Xu,<sup>a</sup> Xing-Man Liu,<sup>c</sup> Tan Su,<sup>\*a,b</sup> Wei-Chao Chen,<sup>c</sup> and Zhong-Min Su<sup>\*a</sup>

<sup>a</sup>College of Chemistry, Jilin University, Changchun, 130012, PR China

<sup>b</sup>Institute of Theoretical Chemistry, Jilin University, Changchun 130021, PR China

<sup>c</sup>College of Chemistry, Northeast Normal University, Changchun 130024, PR China

\*Corresponding author :

E-mail address: sutan\_jlu@jlu.edu.cn; zmsu@nenu.edu.cn

### CONTENTS

# Section 1 Synthesis, Crystal Data, and Structure

- 1.1 Materials and Methods
- 1.2 Synthesis
- 1.3 Crystal Data
- 1.4 Structures of 1 and 2
- **1.5 Selected Bond Lengths for 1 and 2**
- 1.6 Selected Hydrogen Bond Lengths and Bond Angles for 1 and 2
- 1.7 BVS Calculation
- 1.8 Summary of Sandwich-type Germanomolybdates

Section 2 Materials Characterization

Section 3 Photocatalytic Activity Measurements

Section 4 Electrochemical and Electrocatalytic Properties

### Section 1 Synthesis, Crystal Data, and Structure of 1 and 2

#### **1.1 Materials and Methods**

All the reagents were purchased from commercial sources and used without further purification. The C, H, and N elemental analyses were performed on a Perkin-Elmer 2400 CHN elemental analyzer. IR spectra were recorded in the range of 4000–400 cm<sup>-1</sup> using an Alpha Centaurt FT/IR spectrophotometer using KBr pellets. Powder X-ray diffraction (PXRD) patterns were collected using a Siemens D5005 diffractometer with Cu-K $\alpha$  ( $\lambda = 1.5418$  Å). TG analyses were performed using a Perkin-Elmer TG-7 analyzer under flowing nitrogen with the heating rate of 10 °C·min<sup>-1</sup>. X-ray photoelectron spectroscopy (XPS) analyses were performed using a VG ESCALABMKII spectrometer with an Al-K $\alpha$  (1486.6 eV) achromatic X-ray source. UV–Vis absorption spectra were obtained by using a Shimadzu UV-2550 spectrometer. The gas product in photocatalytic reaction was measured by Shimadzu Gas Chromatography.

### 1.2 Synthesis

#### (1) Synthesis of $\{[Ni_3(NH_2-trz)_6(H_2O)_6][Ni_4(H_2O)_2(HGeMo_{10}O_{36})_2]\} \cdot 10H_2O$ (1)

GeO<sub>2</sub> (0.01 g, 0.096 mmol), (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O (0.2 g, 0.16 mmol), NiCl<sub>2</sub>·6H<sub>2</sub>O (0.01 g, 0.04 mmol), Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O (0.01 g, 0.04 mmol), and NH<sub>2</sub>-trz (0.02 g, 0.24 mmol), were mixed in distilled water (3 mL). The mixture was stirred for 30 min and the pH of the reaction mixture was maintained at 2.0-3.0 by addition of 1M HCl (aq). The solution was transferred to a Teflon-lined steel autoclave kept at 180 °C for three days, and then cooled to room temperature. Pale green block were collected by filtration, washed with distilled water, and dried in air. Yield: 32% (based on Mo). Elemental analysis calcd (found %) for  $C_{12}H_{62}Ge_2Mo_{20}N_{24}Ni_7$ : C, 3.23 (3.18); H, 1.39 (1.28); N, 7.54 (7.47).

#### (2) Synthesis of $\{ [Co_3(NH_2-trz)_6(H_2O)_6] [Co_4(H_2O)_2(HGeMo_{10}O_{36})_2] \} \cdot 11H_2O(2)$ .

The synthetic methods of **2** are similar to **1**, except that use  $CoCl_2 \cdot 6H_2O$ . (0.01g, 0.04 mmol) and  $Co(CH_3COO)_2 \cdot 4H_2O$  (0.01g, 0.04 mmol) instead of  $NiCl_2 \cdot 6H_2O$  and  $Ni(CH_3COO)_2 \cdot 4H_2O$ . Pale orange-yellow block crystals were collected. Yield: 34% (based on Mo). Elemental analysis calcd (found %) for  $C_{12}H_{64}Co_7Ge_2Mo_{20}N_{24}O_{91}$ : C, 3.22 (3.16); H, 1.43 (1.32); N, 7.50 (7.42).

|                                                                                | 1                                                                                                                | 2                                                                                                                |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Empirical formula                                                              | C <sub>12</sub> H <sub>62</sub> Ge <sub>2</sub> Mo <sub>20</sub> N <sub>24</sub> Ni <sub>7</sub> O <sub>90</sub> | C <sub>12</sub> H <sub>64</sub> Co <sub>7</sub> Ge <sub>2</sub> Mo <sub>20</sub> N <sub>24</sub> O <sub>91</sub> |
| M                                                                              | 4457.79                                                                                                          | 4477.34                                                                                                          |
| λ/Å                                                                            | 0.71073                                                                                                          | 1.54178                                                                                                          |
| T/K                                                                            | 296.15                                                                                                           | 173.0                                                                                                            |
| Crystal system                                                                 | Triclinic                                                                                                        | Triclinic                                                                                                        |
| Space group                                                                    | <i>P</i> -1                                                                                                      | <i>P</i> -1                                                                                                      |
| a, Å                                                                           | 13.9330(19)                                                                                                      | 13.9114(12)                                                                                                      |
| <i>b</i> , Å                                                                   | 14.2147(19)                                                                                                      | 14.1874(12)                                                                                                      |
| <i>c</i> , Å                                                                   | 14.591(2)                                                                                                        | 14.6356(13)                                                                                                      |
| <i>α</i> /°                                                                    | 110.716(2)                                                                                                       | 110.550(4)                                                                                                       |
| β/°                                                                            | 98.574(2)                                                                                                        | 98.559(4)                                                                                                        |
| γ/°                                                                            | 112.773(2)                                                                                                       | 112.651(4)                                                                                                       |
| $V(Å^3)$                                                                       | 2351.3(6)                                                                                                        | 2357.5(4)                                                                                                        |
| Ζ                                                                              | 1                                                                                                                | 1                                                                                                                |
| <i>Dc</i> /Mg m <sup>-3</sup>                                                  | 3.147                                                                                                            | 3.152                                                                                                            |
| <i>F</i> (000)                                                                 | 2120.0                                                                                                           | 2123                                                                                                             |
| $\theta$ Range/°                                                               | 1.680-28.322                                                                                                     | 1.708-33.427                                                                                                     |
| Reflections collected /unique/                                                 | 17517/11563/0.0243                                                                                               | 31585/11563/ 0.0243                                                                                              |
| Rint                                                                           |                                                                                                                  |                                                                                                                  |
| Data/restraints/parameters                                                     | 11563/36/720                                                                                                     | 8291/18/732                                                                                                      |
| $R_{I}/wR_{2}$ [I $\geq 2\sigma(I)$ ] <sup>a</sup>                             | 0.0351/0.0824                                                                                                    | 0.0310/0.0675                                                                                                    |
| $R_1/wR_2^b$ (all data)                                                        | 0.0483/0.0893                                                                                                    | 0.0405/0.0716                                                                                                    |
| GoF on $F^2$                                                                   | 1.039                                                                                                            | 1.050                                                                                                            |
| ${}^{a}R_{1} = \sum   F_{0}  -  F_{C}   / \sum  F_{0} ; {}^{b}wR_{2} = \sum [$ | $[w(F_0^2 - F_C^2)^2] / \sum [w(F_0^2)^2]^{1/2}$                                                                 |                                                                                                                  |

Table S1. Crystal data and structure refinements for 1 and 2.

Single-crystal X-ray Crystallography. The single-crystal diffraction for 1 was collected on a Bruker Apex CCD II area-detector diffractometer equiped with graphite-monochromated Mo K $\alpha$ radiation ( $\lambda = 0.71073$  Å) and Data of 2 was collected on a Bruker D8-Venture diffractometer with a Turbo X-ray Source (Cu K $\alpha$  radiation,  $\lambda = 1.5418$ Å), respectively. All non-hydrogen atoms were refined with anisotropic displacement parameters. All structures were solved by the direct method and refined with the full-matrix least-squares technique on  $F^2$  using the SHELX-2018 program package. Selected bond lengths for 1 and 2 are listed in Tables S2 and S3<sup>†</sup>. The X-ray crystallographic data of 1 and 2 have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number CCDC 1961645 and 1961646, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

### 1.4 Structure



Scheme S1. Summary Keggin  $\{GeW_{10}\}$  units in the reported germantungstates.



Scheme S2. The unprecedented { $\alpha$ -GeMo<sub>10</sub>O<sub>36</sub>} unit derives from the well-known { $\alpha$ -GeMo<sub>12</sub>O<sub>40</sub>}.

## 1.5 Selected Bond Lengths for 1 and 2

Table S2. Selected bond lengths (Å) of 1.

| Mo(1)-O(7)    | 1.692(4) | Mo(2)-O(15)#1 | 2.298(3) | Mo(3)-O(9)    | 1.689(4) |
|---------------|----------|---------------|----------|---------------|----------|
| Mo(1)-O(8)    | 1.807(4) | Mo(2)-O(18)   | 1.832(4) | Mo(3)-O(10)   | 2.006(4) |
| Mo(1)-O(11)   | 1.957(3) | Mo(2)-O(20)   | 1.693(4) | Mo(3)-O(14)   | 1.745(4) |
| Mo(1)-O(12)   | 1.813(3) | Mo(2)-O(26)   | 2.180(3) | Mo(3)-O(27)   | 2.103(3) |
| Mo(1)-O(15)#1 | 2.387(3) | Mo(2)-O(31)   | 1.799(3) | Mo(3)-O(28)   | 1.909(3) |
| Mo(1)-O(26)   | 2.141(4) | Mo(2)-O(33)   | 1.964(3) | Mo(3)-O(37)#1 | 2.297(3) |
| Mo(4)-O(6)    | 1.692(4) | Mo(5)-O(3)    | 1.678(4) | Mo(6)-O(4)    | 1.697(4) |
| Mo(4)-O(13)   | 1.815(4) | Mo(5)-O(8)    | 2.011(4) | Mo(6)-O(19)   | 1.970(4) |
| Mo(4)-O(22)#1 | 2.170(4) | Mo(5)-O(27)   | 1.804(4) | Mo(6)-O(21)   | 1.754(4) |
| Mo(4)-O(24)   | 2.306(3) | Mo(5)-O(30)   | 1.844(3) | Mo(6)-O(28)#1 | 1.948(3) |
| Mo(4)-O(33)#1 | 1.986(3) | Mo(5)-O(32)   | 2.064(4) | Mo(6)-O(30)#1 | 2.079(3) |
| Mo(4)-O(34)   | 1.799(3) | Mo(5)-O(37)#1 | 2.396(3) | Mo(6)-O(37)   | 2.285(3) |

| Mo(7)-O(13)   | 2.105(4) | Mo(8)-O(2)    | 1.687(4) | Mo(9)-O(5)    | 1.706(4) |
|---------------|----------|---------------|----------|---------------|----------|
| Mo(7)-O(19)   | 1.854(4) | Mo(8)-O(11)   | 1.966(3) | Mo(9)-O(10)   | 1.839(4) |
| Mo(7)-O(23)   | 1.690(4) | Mo(8)-O(22)   | 2.170(4) | Mo(9)-O(12)   | 2.106(3) |
| Mo(7)-O(24)   | 2.245(3) | Mo(8)-O(24)#1 | 2.384(3) | Mo(9)-O(15)#1 | 2.230(3) |
| Mo(7)-O(29)#1 | 2.082(3) | Mo(8)-O(29)   | 1.812(4) | Mo(9)-O(18)   | 2.087(4) |
| Mo(7)-O(36)   | 1.767(4) | Mo(8)-O(32)   | 1.796(4) | Mo(9)-O(25)   | 1.743(3) |
| Mo(10)-O(1)   | 1.737(4) | Ni(1)-O(25)   | 2.038(3) | Ni(2)-O(14)#1 | 2.050(4) |
| Mo(10)-O(11)  | 2.156(4) | Ni(1)-O(31)   | 2.065(4) | Ni(2)-O(10W)  | 2.045(4) |
| Mo(10)-O(17)  | 1.704(4) | Ni(1)-O(34)   | 2.056(4) | Ni(2)-O(21)   | 2.037(4) |
| Mo(10)-O(22)  | 1.991(4) | Ni(1)-O(35)   | 2.077(3) | Ni(2)-O(31)   | 2.086(4) |
| Mo(10)-O(26)  | 1.982(4) | Ni(1)-O(35)#1 | 2.083(3) | Ni(2)-O(34)#1 | 2.075(3) |
| Mo(10)-O(33)  | 2.189(3) | Ni(1)-O(36)   | 2.042(3) | Ni(2)-O(35)   | 2.060(3) |
| Ni(3)-N(7)    | 2.103(4) | Ni(4)-O(1W)   | 2.067(4) | Ge(1)-O(15)   | 1.757(3) |
| Ni(3)-N(7)#2  | 2.103(4) | Ni(4)-O(2W)   | 2.097(4) | Ge(1)-O(24)   | 1.749(3) |
| Ni(3)-N(8)#2  | 2.098(4) | Ni(4)-O(3W)   | 2.103(4) | Ge(1)-O(35)   | 1.753(3) |
| Ni(3)-N(8)    | 2.098(4) | Ni(4)-N(6)    | 2.077(5) | Ge(1)-O(37)   | 1.755(3) |
| Ni(3)-N(11)#2 | 2.068(4) | Ni(4)-N(9)    | 2.037(4) |               |          |
| Ni(3)-N(11)   | 2.068(4) | Ni(4)-N(12)   | 2.084(5) |               |          |
|               |          |               |          |               |          |

Table S3. Selected bond lengths (Å) of 2.

| Mo(1)-O(5)  | 2.106(4) | Mo(2)-O(6)  | 1.802(4) | Mo(3)-O(1)  | 1.793(4) |
|-------------|----------|-------------|----------|-------------|----------|
| Mo(1)-O(13) | 2.096(4) | Mo(2)-O(10) | 1.834(4) | Mo(3)-O(2)  | 1.976(4) |
| Mo(1)-O(17) | 2.226(4) | Mo(2)-O(14) | 2.416(4) | Mo(3)-O(3)  | 2.185(4) |
| Mo(1)-O(18) | 1.746(4) | Mo(2)-O(21) | 2.015(4) | Mo(3)-O(13) | 1.826(4) |
| Mo(1)-O(24) | 1.844(4) | Mo(2)-O(23) | 2.055(4) | Mo(3)-O(17) | 2.313(4) |
| Mo(1)-O(30) | 1.709(4) | Mo(2)-O(29) | 1.681(4) | Mo(3)-O(26) | 1.691(4) |
| Mo(4)-O(2)  | 1.984(4) | Mo(5)-O(3)  | 2.141(4) | Mo(6)-O(7)  | 2.090(4) |
| Mo(4)-O(4)  | 1.791(4) | Mo(5)-O(5)  | 1.819(4) | Mo(6)-O(12) | 1.680(4) |
| Mo(4)-O(11) | 2.178(4) | Mo(5)-O(8)  | 1.952(4) | Mo(6)-O(15) | 1.762(4) |
| Mo(4)-O(20) | 1.818(4) | Mo(5)-O(17) | 2.401(3) | Mo(6)-O(19) | 1.854(4) |
| Mo(4)-O(28) | 1.700(4) | Mo(5)-O(21) | 1.806(4) | Mo(6)-O(20) | 2.103(4) |
| Mo(4)-O(36) | 2.305(4) | Mo(5)-O(32) | 1.683(4) | Mo(6)-O(36) | 2.249(4) |

| Mo(7)-O(7)   | 1.808(4) | Mo(8)-O(10)   | 2.087(4) | Mo(9)-O(6)    | 2.112(4) |
|--------------|----------|---------------|----------|---------------|----------|
| Mo(7)-O(8)   | 1.968(4) | Mo(8)-O(14)   | 2.287(4) | Mo(9)-O(14)   | 2.301(4) |
| Mo(7)-O(11)  | 2.170(4) | Mo(8)-O(19)   | 1.973(4) | Mo(9)-O(16)   | 1.747(4) |
| Mo(7)-O(23)  | 1.807(4) | Mo(8)-O(22)   | 1.749(4) | Mo(9)-O(24)   | 2.013(4) |
| Mo(7)-O(35)  | 1.693(4) | Mo(8)-O(27)   | 1.950(4) | Mo(9)-O(25)   | 1.692(4) |
| Mo(7)-O(36)  | 2.399(3) | Mo(8)-O(33)   | 1.687(4) | Mo(9)-O(27)   | 1.907(4) |
| Mo(10)-O(2)  | 2.186(4) | Co(1)-O(1)#1  | 2.114(4) | Co(2)-O(1)#1  | 2.112(4) |
| Mo(10)-O(3)  | 1.987(4) | Co(1)-O(1W)   | 2.066(4) | Co(2)-O(4)    | 2.098(4) |
| Mo(10)-O(8)  | 2.160(4) | Co(1)-O(4)#1  | 2.113(4) | Co(2)-O(9)#1  | 2.131(4) |
| Mo(10)-O(11) | 1.981(4) | Co(1)-O(9)    | 2.097(4) | Co(2)-O(9)    | 2.111(4) |
| Mo(10)-O(31) | 1.699(4) | Co(1)-O(16)   | 2.084(4) | Co(2)-O(15)   | 2.063(4) |
| Mo(10)-O(34) | 1.733(5) | Co(1)-O(22)   | 2.075(4) | Co(2)-O(18)#1 | 2.046(4) |
| Co(3)-O(2W)  | 2.132(5) | Co(4)-N(10)#2 | 2.146(5) | Ge(1)-O(9)    | 1.759(3) |
| Co(3)-O(3W)  | 2.137(5) | Co(4)-N(10)   | 2.146(5) | Ge(1)-O(14)   | 1.750(4) |
| Co(3)-O(4W)  | 2.095(5) | Co(4)-N(5)    | 2.116(5) | Ge(1)-O(17)   | 1.753(4) |
| Co(3)-N(9)   | 2.136(5) | Co(4)-N(5)#2  | 2.116(5) | Ge(1)-O(36)   | 1.753(3) |
| Co(3)-N(6)#2 | 2.145(5) | Co(4)-N(2)#2  | 2.148(5) |               |          |
| Co(3)-N(1)   | 2.076(5) | Co(4)-N(2)    | 2.148(5) |               |          |

# 1.6 Selected Hydrogen Bond Lengths and Bond Angles for 1 and 2

Table S4. Selected hydrogen bond lengths ( ) and bond angles (°) of 1.

| D-НА                 | d(DH)nm | d(HA)nm | d(DA)nm   | ∠(DHA)° |
|----------------------|---------|---------|-----------|---------|
| O(1W)-H(1WB)O(1)#3   | 0.85    | 1.86    | 2.673(6)  | 158.5   |
| O(3W)-H(3WB)O(7W)    | 0.89    | 1.89    | 2.672(9)  | 146.1   |
| O(4W)-H(4WA)O(10W)   | 0.85    | 1.83    | 2.603(6)  | 150.7   |
| O(4W)-H(4WB)O(30)#4  | 0.85    | 1.96    | 2.724(6)  | 148.9   |
| O(5W)-H(5WB)O(20)#3  | 0.85    | 2.08    | 2.893(8)  | 161.3   |
| O(7W)-H(7WB)O(5)     | 0.84    | 2.02    | 2.841(9)  | 167.1   |
| O(7WA)-H(7WC)O(13)#5 | 0.85    | 2.07    | 2.871(15) | 156.9   |
| O(7WA)-H(7WD)O(5)    | 0.85    | 1.99    | 2.835(15) | 176.6   |
| O(8W)-H(8WA)O(5W)#3  | 0.81    | 2.11    | 2.833(12) | 148.8   |
| O(8W)-H(8WB)O(9W)    | 0.85    | 2.03    | 2.81(2)   | 152.8   |

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z+1, #2 -x+1,-y+2,-z+2, #3 -x,-y+1,-z+1, #4 x,y,z+1, #5 -x+1,-y+2,-z+1.

| D-HA                 | d(DH)nm | d(HA)nm | d(DA)nm   | ∠(DHA)° |
|----------------------|---------|---------|-----------|---------|
| O(1W)-H(1WA)O(5W)#3  | 0.85    | 1.79    | 2.595(7)  | 156.6   |
| O(2W)-H(2WB)O(7W)    | 0.87    | 1.90    | 2.680(12) | 149.8   |
| O(2W)-H(2WB)O(7WA)   | 0.87    | 1.86    | 2.703(16) | 164.5   |
| O(5W)-H(5WA)O(10)#4  | 0.82    | 2.07    | 2.741(7)  | 139.3   |
| O(6W)-H(6WA)O(9W)#5  | 0.85    | 1.99    | 2.82(3)   | 163.7   |
| O(6W)-H(6WA)O(9WA)#5 | 0.85    | 1.85    | 2.70(5)   | 170.4   |
| O(7W)-H(7WA)O(3W)#6  | 0.75    | 2.12    | 2.855(15) | 167.7   |
| O(7W)-H(7WB)O(30)#7  | 0.84    | 2.06    | 2.808(11) | 148.5   |
| O(7WA)-H(7WC)O(20)#8 | 0.85    | 2.04    | 2.822(13) | 152.6   |
| O(7WA)-H(7WD)O(30)#7 | 0.89    | 1.97    | 2.833(13) | 164.2   |
| O(9WA)-H(9WD)O(8W)#4 | 0.87    | 2.00    | 2.85(4)   | 165.4   |

Table S5. Selected hydrogen bond lengths ( ) and bond angles (°) of 2.

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y-2,-z, #2 -x+2,-y,-z+1, #3 -x+1,-y-1,-z+1, #4 x,y+1,z, #5 -x+1,-y,-z+1, #6 -x+2,-y,-z+2, #7 x+1,y+1,z+1, #8 x,y+1,z+1.

### **1.7 BVS Calculation**

| Table S6. The BVS calculation results of Mo a | and Ni atoms in | 1 <b>1</b> . |
|-----------------------------------------------|-----------------|--------------|
|-----------------------------------------------|-----------------|--------------|

| Code | Bond Valence | Code | Bond Valence |
|------|--------------|------|--------------|
| Ni1  | 1.902        | Mo4  | 6.062        |
| Ni2  | 1.907        | Mo5  | 6.052        |
| Ni3  | 2.352        | Mo6  | 6.022        |
| Ni4  | 2.1          | Mo7  | 6.025        |
| Mo1  | 5.802        | Mo8  | 6.082        |
| Mo2  | 6.143        | Mo9  | 6.111        |
| Mo3  | 6.067        | Mo10 | 5.917        |
|      |              |      |              |

Table S7. The BVS calculation results of Mo and Co atoms in 2.

| Code | Bond Valence | Code | Bond Valence |
|------|--------------|------|--------------|
| Col  | 1.978        | Mo4  | 6.037        |
| Co2  | 1.969        | Mo5  | 6.102        |
| Co3  | 2.147        | Mo6  | 6.089        |
| Co4  | 2.35         | Mo7  | 6.02         |
| Mo1  | 6.055        | Mo8  | 6.054        |
| Mo2  | 6.069        | Mo9  | 6.007        |
| Mo3  | 6.048        | Mo10 | 5.961        |

# Table S8. A detailed summary of sandwich-type germanomolybdates.

| Year | Compound<br>Formula                                                                                                                                                                                                                                                                                                             | Characteristics                                                                                                                             | Raw<br>materials                                                                                  | Reaction<br>solvent                              | Reaction conditions | Crystal<br>growth | Synthetic<br>Method                  | Ref          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|-------------------|--------------------------------------|--------------|
| 2009 | $\begin{split} & [Na_{12}(H_2O)_{36}][Cu_2(\beta\text{-}Y\text{-}GeMo_9O_{33})_2] \ 3H_2O \\ & [Na_6(H_2O)_{24}][Cr_2(\beta\text{-}Y\text{-}GeMo_9O_{33})_2] \ 7H_2O \\ & [Na_{11}(H_2O)_{25}]H[M_4(H_2O)_2(\alpha\text{-}B\text{-}GeMo_9O_{34})_2] \\ & 6H_2O \ (M = Ni^{II}, \ Mn^{II}, \ Co^{II}) \end{split}$               | the first di-/tetra-nuclear<br>transition-metal clusters and<br>trivacant Keggin<br>Germanomolybdate                                        | Na <sub>2</sub> MoO <sub>4</sub> ,<br>GeO <sub>2</sub>                                            | HAc-NaAc                                         | water bath<br>80°C  | 1-2<br>weeks      | evaporation<br>solvent               | 1            |
| 2010 | $\label{eq:2.1} \begin{array}{l} (Him)_8Na_7H_7[Cu(im)_4(CuGeMo_9O_{33})_2][(CuGeMo_9O_{33})_2]\cdot 41H_2O \end{array}$                                                                                                                                                                                                        | di-Cu <sup>II</sup> -substituted<br>[(CuGeMo <sub>9</sub> O <sub>33</sub> ) <sub>2</sub> ] <sup>12-</sup><br>1D chain-like framework        | Na <sub>2</sub> MoO <sub>4</sub> ,<br>GeO <sub>2</sub>                                            | HAc-NaAc                                         | heated<br>80°C      | 8 days            | evaporation<br>solvent               | 2            |
| 2012 | H(H <sub>2</sub> en) <sub>5</sub> [Cu(en) <sub>2</sub> ] [Eu(GeMo <sub>11</sub> O <sub>39</sub> ) <sub>2</sub> ]·11H <sub>2</sub> O                                                                                                                                                                                             | Europium substituted<br>monovacant<br>germanomolybdate                                                                                      | Na2MoO4,<br>GeO2, KCl, ,                                                                          | HAc-NaAc,<br>en,<br>CH <sub>3</sub> COOH,<br>HCl | heated<br>50°C      | 2 weeks           | conventional<br>aqueous<br>solutions | 3            |
| 2012 | $\begin{array}{l} (H_2en)_2H_7\{[Na_{0.5}(H_2O)_{3.5}]_2[Cu_2(\beta\mbox{-}Y\mbox{-}GeMo_9O_{33})_2]\}\mbox{-}6H_2O\\ (H_2en)_2H\{[Na_{2.5}(H_2O)_{12}]_2[Cu(en)_2][Cu_2(\beta\mbox{-}Y\mbox{-}GeMo_9O_{33})_2]\}\mbox{-}8H_2O\\ [Na_4(H_2O)_{12}]_2H_4[Cu_2(\beta\mbox{-}Y\mbox{-}GeMo_9O_{33})_2]\}\mbox{-}1H_2O \end{array}$ | di-Cu <sup>II</sup> -substituted [Cu <sub>2</sub> (β-Y-<br>GeMo <sub>9</sub> O <sub>33</sub> ) <sub>2</sub> ] <sup>12-</sup>                | Na2MoO4,<br>GeO2                                                                                  | HAc-NaAc,<br>en                                  | water bath<br>80°C  | 1-5 days          | evaporation<br>solvent               | 4            |
|      | $[Cu(en)_2]_2[Cu(en)_2(H_2O)]_2\{[Cu(en)_2]_2[Cu_2(\beta-Y-C_2M_2, O_1)])\}$                                                                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                   |                                                  |                     |                   | hydrothermal                         |              |
| 2013 | $[C_{3}H_{5}N_{2}]_{6}[GeMo_{11}Co(H_{2}O)O_{39}] \cdot 9H_{2}O$<br>$[C_{3}H_{5}N_{2}]_{6}[GeMo_{11}Ni(H_{2}O)O_{39}] \cdot 9H_{2}O$<br>$[C_{3}H_{5}N_{2}]_{6}[GeMo_{11}Mn(H_{2}O)O_{39}] \cdot 6H_{2}O$                                                                                                                        | the first examples of<br>transition-metal-mono<br>substituted<br>germanomolybdates                                                          | H <sub>4</sub> [α-<br>GeMo <sub>12</sub> O <sub>40</sub> ]·1<br>4H <sub>2</sub> O                 | HAc, NaOH                                        | heated<br>100°C     | 15 days           | evaporation<br>solvent a             | 5            |
| 2017 | $\label{eq:constraint} \begin{split} &[(CH_3)_4N]_6H_6\{Mn^{II}(GeMo_8O_{31})[Mn^{II}(CO)_3]_2\}_2\cdot 1\\ &2H_2O \end{split}$                                                                                                                                                                                                 | Tetravacant<br>germanomolybdates                                                                                                            | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub><br>,GeO <sub>2</sub> ,<br>ammonia | CH <sub>3</sub> CN/H <sub>2</sub> O              | refluxed<br>70°C    | —                 | evaporation<br>solvent               | 6            |
| 2017 | $\begin{array}{l} (C_4H_{10}ON)_8H_5[Er(GeMo_{11}O_{39})_2]\cdot 14H_2O\\ (C_4H_{10}ON)_8H_5[Gd(GeMo_{11}O_{39})_2]\cdot 13H_2O\\ (C_4H_{10}ON)_8H_5[Dy(GeMo_{11}O_{39})_2]\cdot 15H_2O\\ (C_4H_{10}ON)_8H_5[Tb(GeMo_{11}O_{39})_2]\cdot 14H_2O \end{array}$                                                                    | the first examples of the<br>heavy rare earth metal<br>substituted<br>germanomolybdates                                                     | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub><br>,GeO <sub>2</sub> ,            | Morpholine<br>HCl, NaOH                          | heated<br>90°C      | 1-7 days          | evaporation<br>solvent               | 7            |
| 2019 | {[M <sub>3</sub> (NH <sub>2</sub> -<br>trz) <sub>6</sub> (H <sub>2</sub> O) <sub>6</sub> ][M <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> (HGeMo <sub>10</sub> O <sub>36</sub> ) <sub>2</sub> ]}·10H <sub>2</sub><br>O<br>(M = Ni/Co)                                                                                           | the first tetra-nuclear<br>transition-metal clusters<br>substituted trivacant Keggin<br>[GeM0 <sub>10</sub> O <sub>36</sub> ] <sup>8-</sup> | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub><br>,GeO <sub>2</sub>              | H2O<br>HCl                                       | room<br>temperatue  | 3 days            | hydrothermal<br>conditions           | This<br>work |

Section 2 Materials characterization



Fig. S1 Comparison of the simulated and synthesized XRD patterns of 1.



Fig. S2 Comparison of the simulated and synthesized XRD patterns of 2.



Fig. S3 IR spectrum of 1.



Fig. S4 IR spectrum of 2.



Fig. S5 (a) XPS spectra of 1 for Ni  $2p_{3/2}$  and Ni  $2p_{1/2}$ ; (b) XPS spectra of 1 for Mo  $3d_{5/2}$  and Mo



Fig. S6 (a) XPS spectra of 2 for Co  $2p_{3/2}$  and Co  $2p_{1/2}$ ; (b) XPS spectra of 2 for Mo  $3d_{5/2}$  and Mo

 $3d_{3/2}.$ 



 $3d_{3/2}.$ 



Fig. S9 The diffuse reflectance UV-Vis absorption spectrum of the powder samples of 1.



Fig. S10 The diffuse reflectance UV-Vis absorption spectrum of the powder samples of 2.



Fig. S11 The plot of K-M function against energy E of 1.



Fig. S12 The plot of K-M function against energy E of 2.

### Section 3 Photocatalytic Activity Measurements

Photocatalytic tests were performed in a quartz tube under 1 atm pressure of CO<sub>2</sub>. A mixture of acetonitrile (4 mL), H<sub>2</sub>O (1 mL), triethanolamine (TEOA, 1 mL), compound **1** or **2** and  $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$  was put into the quartz tube. The reaction system was purified by bubbling pure carbon dioxide to remove oxygen for 15 min. Then, the mixture system was irradiated by a 300W Xenon lamp with a 420 nm cutoff filter under constant stirring. The temperature of the system was controlled at 20 °C. To detect the gas product of CO, 500 mL gas in the middle of the test tube was taken out by syringe and injected into FID detector, using argon as carrier gas. The volume of the CO produced was calculated by comparing the integrated area of the signals of CO

with a calibration curve. The injector and detector temperatures were set to 60°C. To detect the formation of hydrogen from the reaction mixture, 1000 mL of the headspace of the test tube was taken out by syringe and injected into a TCD detector, using a 5 Å molecular sieve column and argon as the carrier gas and reference gas.

**Table S9.** Comparison of our samples with the reported heterogeneous catalysts with  $Ru^{II}(bpy)_3^{2+}$  participation for CO generation in pure CO<sub>2</sub> condinaton.

| Catalyst                                                                                                                                                      | Light<br>absorber                                 | Light<br>source     | Reaction<br>medium                      | Products                             | TON<br>(CO) | TOF <sub>(CO)</sub><br>( min <sup>-1</sup> ) | Selectivity<br>(%) | Reference |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|-----------------------------------------|--------------------------------------|-------------|----------------------------------------------|--------------------|-----------|
| 1                                                                                                                                                             | Ru <sup>II</sup> (bpy) <sub>3</sub> <sup>2</sup>  | $\lambda > 420$     | MeCN/H <sub>2</sub>                     | CO, H <sub>2</sub>                   | 44.3        | 0.25                                         | 82                 | This Work |
| 2                                                                                                                                                             | Ru <sup>II</sup> (bpy) <sub>3</sub> <sup>2</sup>  | nm<br>λ > 420<br>nm | O/TEOA<br>MeCN/H <sub>2</sub><br>O/TEOA | $CO, H_2$                            | 76.5        | 0.42                                         | 62                 | This Work |
| Co-ZIF-9                                                                                                                                                      | $Ru^{II}(bpy)_3^{2+}$                             | $\lambda > 420$ nm  | MeCN/H <sub>2</sub><br>O/TEOA           | CO, H <sub>2</sub>                   | 52.3        | 1.74                                         | 58.3               | 8         |
| Co-ZIF-67                                                                                                                                                     | $Ru^{II}(bpy)_3^{2+}$                             | λ>420<br>nm         | MeCN/H <sub>2</sub><br>O/TEOA           | CO, H <sub>2</sub>                   | 112         | —                                            | 66.7               | 9         |
| Co1-G<br>nanosheets                                                                                                                                           | $Ru^{II}(bpy)_3^{2+}$                             | λ>420<br>nm         | MeCN/H <sub>2</sub><br>O/TEOA           | CO, H <sub>2</sub>                   | 678         | 3.77                                         | 79.4               | 10        |
| MOF-253–<br>Ru(CO) <sub>2</sub> Cl <sub>2</sub>                                                                                                               | $Ru^{II}(bpy)_3^{2+}$                             | 420-800<br>nm       | MeCN/TE<br>OA                           | СО,<br>НСОО-,                        | 7.3         | 0.015                                        | 13.3               | 11        |
| [Co <sub>2.67</sub> (SiW <sub>1</sub><br><sub>2</sub> O <sub>40</sub> )(H <sub>2</sub> O) <sub>4</sub> (<br>Htrz) <sub>4</sub> :Ch as                         | Ru <sup>II</sup> (bpy) <sub>3</sub> <sup>2+</sup> | λ>420<br>nm         | MeCN/H <sub>2</sub><br>O/TEOA           | П <sub>2</sub><br>СО, Н <sub>2</sub> | 53.3        | 0.29                                         | 50.5               | 12        |
| $\begin{array}{c} \text{Hu}_{2,4} ] \in [1,3] \\ \text{{Co}_{3}[SiW_{12} \\ O_{40}](H_{2}O)_{3}( \\ \text{Htrz})_{6}Cl \} Cl \\ \text{{6H}_{2}O} \end{array}$ | Ru <sup>II</sup> (bpy) <sub>3</sub> <sup>2+</sup> | λ>420<br>nm         | MeCN/H <sub>2</sub><br>O/TEOA           | CO, H <sub>2</sub>                   | 61.67       | 0.34                                         | 50.4               | 12        |

Table S10. The research of various reaction conditions.

|   | POMs           | Reaction conditions                               | CO<br>(µmol) | H <sub>2</sub><br>(µmol) | Sel. ( CO ) (<br>%) |
|---|----------------|---------------------------------------------------|--------------|--------------------------|---------------------|
| 1 | а              | all                                               | 10.2         | 2.3                      | 82                  |
| 2 | b              | all                                               | 17.6         | 10.8                     | 62                  |
| 3 | a/b            | all                                               | n.d          | n.d                      |                     |
| 4 | a/b            | Without<br>[Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub> | n.d          | n.d                      | _                   |
| 5 | a/b            | Without TEOA                                      | n.d          | n.d                      | _                   |
| 6 | Without<br>a/b | all                                               | n.d          | 0.5                      | —                   |
| 7 | a              | all                                               | n.d          | 0.2                      | _                   |
|   | b              | all                                               | n.d          | 0.5                      | —                   |
| 8 | а              | all                                               | 4.6          | 16.3                     | 22.3                |
|   | b              | all                                               | 6.0          | 24.2                     | 20                  |

| 9 | а | all | 6.7  | 2.8 | 70.2 |
|---|---|-----|------|-----|------|
|   | b | all | 12.8 | 8.7 | 59.6 |

Reaction conditions: POMs (a = 1, b = 2) (1 mg),  $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$  (7 mg), MeCN(4 ml), TEOA (1 ml), H<sub>2</sub>O (1 ml), CO<sub>2</sub> (1 atm),  $\lambda \ge 420$  nm, 20 °C, 3 h. n.d. = Not detectable. Selectivity = n(CO)/n(CO+H<sub>2</sub>) × 100. 3 In the dark. 4 Without  $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ . 5 Without TEOA. 6 Without a or b. 7 Using Ar to replace CO<sub>2</sub>. 8 Using DMF to replace MeCN. 9 Using TEA to replace TEOA.

#### **Section 4 Electrochemical and Electrocatalytic Properties**

Cyclic voltammetry measurements of **1** and **2** were performed using an electrochemical workstation (CHI 660e, China) with a three-electrode system. The working electrode was a modified carbon paste electrode (CPE) with a twisted platinum wire as the counter electrode and an Ag/AgCl (saturated KCl) electrode as the reference electrode. The electrochemical measurements were tested in  $0.5M H_2SO_4$  and  $Na_2SO_4$  electrolyte solution. The preparation of the CPE were as follows: 0.5 g of graphite powder and 50 mg of **1** or **2** were mixed and ground together with an agate mortar and pestle to achieve a uniform and dry mixture, then 0.35 mL of paraffin oil was added and stirred with a glass rod. The homogenized mixture was packed into a 3 mm inner diameter glass tube. The surface was wiped with weighing paper, and an electrical contact was established with a copper rod through the back of the electrode.



**Fig. S13** The solid-state cyclic voltammograms of **1** in 0.5 M Na<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>SO<sub>4</sub> aqueous solution (pH = 2.5, scan rate: 100 mV s<sup>-1</sup>, top). CV of **1** at different scan rates (50, 100, 200, 300 and 400 mV s<sup>-1</sup>, down).



**Fig. S14** The solid-state cyclic voltammograms of **2** in 0.5 M Na<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>SO<sub>4</sub> aqueous solution (pH = 2.5, scan rate: 100 mV s<sup>-1</sup>, top). CV of **2** at different scan rates (50, 100, 200, 300 and 400 mV s<sup>-1</sup>, down).



Fig. S15 Cyclic voltammograms of 1 (a) and 2 (b) with adding  $H_2O_2$  different concentrations at the scan rate of 500 mV·s<sup>-1</sup>.

## References

- 1. S. Li, J. Zhao, P. Ma, J. Du, J. Niu and J. Wang, *Inorg. Chem.*, 2009, 48, 9819-9830.
- L. Zhao, X. Luo, L. Xu, N. Jiang, F. Li and Y. Li, *Inorg. Chem. Commun.*, 2010, 13, 554-557.
- L.-J. Yang, L. Xu, F.-Y. Li, Y.-C. Wang and B.-B. Xu, *Inorg. Chem. Commun.*, 2012, 15, 292-296.
- 4 S. Li, Y. Guo, D. Zhang, P. Ma, X. Qiu, J. Wang and J. Niu, *Dalton Trans.*, 2012, **41**, 5235.
- N. Wang, F. Li, Y. Wang, L. Xu, K. Cui and B. Xu, *Eur. J. Inorg. Chem.*, 2013, 2013, 1699-1705.
- 6. V. Singh, Y. Zhang, L. Yang, P. Ma, D. Zhang, C. Zhang, L. Yu, J. Niu and J. Wang,

Molecules, 2017, 22, 1351.

- Z. Jin, J. Bai, T. Wei, F. Li, C. Song, X. Luo and L. Xu, New. J. Chem., 2017, 41, 13490-13494.
- S. Wang, W. Yao, J. Lin, Z. Ding and X. Wang, *Angew. Chem. Int. Ed.*, 2014, 53, 1034-1038.
- 9. J. Qin, S. Wang and X. Wang, *Appl. Catal.*, *B*, 2017, **209**, 476-482.
- C. Gao, S. Chen, Y. Wang, J. Wang, X. Zheng, J. Zhu, L. Song, W. Zhang and Y. Xiong, *Adv Mater*, 2018, **30**, 1704624.
- 11. D. Sun, Y. Gao, J. Fu, X. Zeng, Z. Chen and Z. Li, *Chem. Commun*, 2015, **51**, 2645-2648.
- W. Yao, C. Qin, N. Xu, J. Zhou, C.-Y. Sun, L. Liu and Z.-M. Su, *CrystEngComm*, 2019, 21, 6423-6431.