Electronic Supplementary Information for

Syntheses and electronic, electrochemical, and theoretical studies of a series of µ-Oxo-triruthenium carboxylates bearing orthometalated phenazines

Camila F.N. da Silva,¹ Malik Al-Afyouni,² Congcong Xue,² Frederico Henrique do C. Ferreira,³ Luiz Antônio S. Costa,³ Claudia Turro,² Sofia Nikolaou¹*

¹LABIQSC² – Laboratório de Atividade Biológica e Química Supramolecular de Composto de Coordenação, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto - SP, Brazil.

²Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.

³NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil.

Figure ESI1. ESI-MS spectrum of $[Ru_3(\mu_3-O)(\mu-OAc)_5\{\mu-\eta^1(C),\eta^2(N,N)-dppn\}(py)_2]^+$ ion. The inset shows the molecular ion at m/z 1105 detected in ESI-MS spectrum, with emphasis on the isotopic pattern of the Ru₃ unit (the gray bar inside each peak corresponds to the theoretically predicted isotopic pattern).

Figure ESI2. ESI-MS spectrum of $[Ru_3(\mu_3-O)(\mu-OAc)_5\{\mu-\eta^1(C),\eta^2(N,N)-dppz\}(py)_2]^+$ ion. The inset shows the molecular ion at m/z 1055 detected in ESI-MS spectrum, with emphasis on the isotopic pattern of the Ru₃ unit (the gray bar inside each peak corresponds to the theoretically predicted isotopic pattern).

Figure ESI3. ESI-MS spectrum of $[Ru_3(\mu_3-O)(\mu-OAc)_5\{\mu-\eta^1(C),\eta^2(N,N)-dppzCH_3\}(py)_2]^+$ ion. The inset shows the molecular ion at m/z 1069 detected in ESI-MS spectrum, with emphasis on the isotopic pattern of the Ru₃ unit (the gray bar inside each peak corresponds to the theoretically predicted isotopic pattern).

Figure ESI4. ESI-MS spectrum of $[Ru_3(\mu_3-O)(\mu-OAc)_5\{\mu-\eta^1(C),\eta^2(N,N)-dppzCl\}(py)_2]^+$ ion. The inset shows the molecular ion at m/z 1089 detected in ESI-MS spectrum, with emphasis on the isotopic pattern of the Ru₃ unit (the gray bar inside each peak corresponds to the theoretically predicted isotopic pattern).

Figure ESI5. ESI-MS spectrum of $[Ru_3(\mu_3-O)(\mu-OAc)_5\{\mu-\eta^1(C),\eta^2(N,N)-phen\}(py)_2]^+$.

Figures ESI6. ¹H NMR spectrum of compound **1** [Ru₃(μ ₃-O)(μ -OAc)₅{ μ - η ¹(C), η ²(N,N)-dppn}(py)₂]PF₆, recorded from 10⁻² mol L⁻¹ acetonitrile-d₃ solution.

Figures ESI7. ¹H NMR spectrum of compound **2** [Ru₃(μ_3 -O)(μ -OAc)₅{ μ - η^1 (C), η^2 (N,N)-dppz}(py)₂]PF₆, recorded from 10⁻² mol L⁻¹ dichloromethane-_{d2} solution.

Figures ESI8. ¹H NMR spectrum of compound **3** [Ru₃(μ_3 -O)(μ -OAc)₅{ μ - η^1 (C), η^2 (N,N)-dppzCH₃}(py)₂]PF₆, recorded from 10⁻² mol L⁻¹ dichloromethane-_{d2} solution.

Figures ESI9. ¹H NMR spectrum of compound **4** [Ru₃(μ_3 -O)(μ -OAc)₅{ μ - η^1 (C), η^2 (N,N)-dppzCl}(py)₂]PF₆, recorded from 10⁻² mol L⁻¹ dichloromethane-d2 solution.

Figures ESI10. ¹H NMR spectrum of compound **5** [Ru₃(μ_3 -O)(μ -OAc)₅{ μ - η^1 (C), η^2 (N,N)-phen}(py)₂]PF₆, recorded from 10⁻² mol L⁻¹ acetone-_{d6} solution.

Figure ESI11. Infrared spectra of compounds 1-5, collected in solid state from KBr pellets.

1 (dppn)	2 (dppz)	3 (CH ₃ -dppz)	4 (Cl-dppz)	5 (phen)	
557	555	557	569	569	vas[Ru ₃ O]
681	675	680	677	671	δ(OCO)
742	762	769	765	764	ν(CH)
841	843	842	842	844	$v_{as}(PF_6)$
			925		v(CCl)
1217	1194	1217	1207	1220	v (CH)
1486	1487	1488	1486	1485	v(CC)
1345	1351	1352	1352	1344	v(CN)
1418	1420	1416	1416	1415	v _s (COO ⁻)Ac
1543	1546	1544	1543	1541	vas(COO ⁻)Ac
1606	1607	1606	1607	1605	v _{as} (COO ⁻)Ac
	3118	3075	3086	3045	v(CH)

Table ESI 1: Tentative assignment of the main peaks observed in the IR spectra of compounds 1 – 5. All values are presented in cm⁻¹ units

v – stretching; δ - bending; s= symmetric; as = asymmetric.

Natural Bond Orbitals (NBO) calculations

The NBO stabilization energy is based on concrete Lewis electronic structure from the quantum mechanics treatment (equation 1).

$$\Delta E_{est} = \frac{-q_i \left| F_{ij} \right|^2}{\left(\varepsilon_j^{(NL)} - \varepsilon_i^{(L)} \right)} \quad \text{eq (1)}$$

Where $\varepsilon_i^{(NL)}$ is the energy of the non-Lewis NBO (i.e. π *); $\varepsilon_i^{(L)}$ is the energy of the orbital occupied by n; q_i is the occupancy of the orbital. The 'stabilization energy' ΔE_{est} is determined by second-order perturbation treatments.³

Orbitals of spin α						
Donation ΣEest (kcal mol-1)						
ruthenium ions – oxo bridge						
$n O(55) \rightarrow n^*Ru(56)$	76.71					
$n O(55) \rightarrow n^*Ru(57)$	67.41					
$n O(55) \rightarrow n^*Ru(58)$	23.48					
n O(55) → BD* O(55)-Ru(58) 42.39						
ruthenium – orthometalated						
$BD^* C(41)-Ru(57) \rightarrow n^*Ru(57)$	35.32					
ruthenium – acetates						
$n O(61) \rightarrow n^*Ru(57)$	32.20					
$n O(60) \rightarrow n^*Ru(57)$	74.32					
n O(59) → n*Ru(57)	85.09					
n O(68) → n*Ru(58)	84.64					
n O(65) → n*Ru(58)	90.52					
n O(66) → n*Ru(58)	101.93					
n O(67) → n*Ru(58)	95.32					
n O(63) → n*Ru(56)	44.20					
$n O(62) \rightarrow n^* Ru(56)$	94.21					
$n O(64) \rightarrow n^* Ru(56)$	84.75					
ruthenium – pyridine						
n N(39) → n*Ru(56)	64.91					
$n N(11) \rightarrow n^* Ru(58)$	18.71					
$n N(22) \rightarrow n^* Ru(57)$	67.46					
Orbitals of spin β	Orbitals of spin ß					
Donation	ΣEest (kcal mol-1)					
ruthenium ions – oxo br	idge					
n O(55) → n*Ru(56)	86.15					
$n O(55) \rightarrow n^*Ru(57)$	88.38					
n O(55) → n*Ru(58)	86.68					
ruthenium – orthometalated						
BD* C(41)-Ru(57) \rightarrow n*Ru(57)	36.49					
ruthenium – acetates						
n O(61) → n*Ru(57)	32,61					
$n O(60) \rightarrow n^* Ru(57)$	72,39					
n O(59) → n*Ru(57)	81.83					
$n O(68) \rightarrow n^* Ru(58)$	38.82					
$n O(65) \rightarrow n^* Ru(58)$	35.19					
$n O(66) \rightarrow n^* Ru(58)$	30.91					
$n O(67) \rightarrow n^* Ru(58)$	69.44					
$n \Omega(63) \rightarrow n^* Ru(56)$	28 82					
$n \cap (62) \rightarrow n^* \operatorname{Ru}(56)$	77 7/					
$n O(62) \rightarrow n^* Pu(56)$	99.47					
	00.42					
$ n N(39) \rightarrow n^* Ru(56) $						
n N(11) -> n*Du(50)	64 10					
11 IV(⊥⊥) → 11 TU(JO) n N(22) → n*Du(57)	04.19					
$\Pi \Pi (22) \rightarrow \Pi (\Pi (37))$	07.14					

Table ESI 2: Natural Bond Orbital (NBO) information for cluster 2. Stabilization energy values are given in kcal mol^{-1.}

Figure ESI13. Orbitals involved in the acetate \rightarrow Ru₃O donation-reception dynamics.

Figure ESI14. Orbitals involved in the dppz \rightarrow Ru₃O donation-reception dynamics.

Figure ESI15. Orbitals involved inside the [Ru₃O] donation-reception dynamics.

Figure ESI16: Ground-state absorbance spectra of free ligands in DMSO solution.

Figure ESI17. Cyclic voltammograms of clusters 1(A) - 5 (E), in 5,0x10⁻³ M CH₂Cl₂ solutions (0.1 M of NBu₄PF₆).

Determination of ligands pKa (2-4)

The pKa values of ligands (2–4) were determined by experimental procedure using the spectrophotometric method.¹Buffer solutions were prepared in the pH range from 1.00 to 8.00 by mixing the salts: (Citric Acid Buffer - Na₂HPO₄ and Tris·HCl Buffer, NH₂C(CH₂OH)₃.² For all solutions, 2% DMSO was used due to the low solubility of the ligands in aqueous medium. Spectral changes were recorded on a spectrophotometer model HP8453, AGILENT, at specific maximum wavelengths of each ligand.

Figure ESI18. Absorbance *vs* pH from spectrophotometric titration of ligands dppn (A), dppz (B), dppzCH₃ (C), dppzCl (D), phen (E).

Figure ESI19. Dependence of the methyl hydrogens δ values on the pka of the orthometalated ligands. The first row presents the correlations for the five ligands and the second row presents the correlations without the values of complex 5 (phen ligand).

Figure ESI20. Dependence of the IC (Intra-Cluster transition) energy on the pka of the orthometalated ligands. The first plot presents the correlations without the value of complex 5 (phen ligand) and the second plot presents the correlations for the five ligands.

Figure ESI21. Dependence of the $E_{1/2}$ values for the monoelectronic redox processes $[Ru_3O]^{1/0/-1}$ on the pka of the orthometalated ligands. The first line presents the correlations without the value of complex 5 (phen ligand) and the second line presents the correlations for the five ligands.

Figure ESI22.. FsTA spectra of clusters (A) [Ru₃O(CH₃COO)₆(py)₂MeOH]PF₆; (B) **2**; (C) **3**; (D) **4** and (E) **5**, in CH₂Cl₂ ($\lambda_{exc} = 700$ nm, 4 µJ).

² T. MORITA, M. V. ASSUMPÇÃO, *Manual de soluções, reagentes e solventes; padronização, preparação, purificação*, Edgard Blucher, 1976.

³ F. Weinhold F. and C. R. Landis, "Discovering Chemistry With Natural Bond Orbitals" John Wiley and Sons Inc. New York, 2012. ISBN: 978-1-118-11996-9.

¹ C.J. CUNHA, PhD thesis, University of Sao Paulo, Correlações Espectroscópicas e Eletroquímicas em Clusters Trigonais de Rutênio com Ligantes N-heterocíclicos, 1989.