Supporting information

Pt-substituted Polyoxometalate Modification on Low-cost TiO2 Surface with High-efficient H2 Evolution Performance

Yun-Dong Cao,^a Di Yin,^a Ming-Liang Wang,^a Tao Pang,^{a,c} Yuguang Lv,^c Bo Liu,^b Guang-Gang Gao^{*a} Lulu Ma,^a Hong Liu,^{*a,c}

^a School of Materials Science and Engineering, University of Jinan, 250022, Jinan, China
 ^b Key Laboratory of Preparation and Application of Environmental Friendly Materials, The Ministry of Education, Jilin Normal University, Siping, 136000, China
 ^c College of Pharmacy, Jiamusi University, 154007, Jiamusi, China

E-mail: mse_gaogg@ujn.edu.cn; mse_liuh@ujn.edu.cn

Contents

Fig. S1 FTIR spectra of TiO₂-SiNH₂-PW₁₁Pt₂ before and after

photocatalytic hydrogen evolution reaction.

Fig. S2 SEM image of TiO_2 -SiNH₂-PW₁₁Pt₂ at different resolution of (a)

400 nm and (b) 800 nm. (c) The essential elemental mapping images.

Fig. S3 TEM image of pristine TiO₂.

Fig. S4 The plots of $(\alpha h \upsilon)^2$ vs. photon energy of TiO₂-Pt.

Fig. S5 CVs of $PW_{11}Pt_2$ in dimethyl sulfoxide containing 0.1 M Bu₄NPF₆ at a scan rate of 50 mV/s.

Fig. S6 (a) UV-vis diffuse reflection spectra of $PW_{11}Pt_2$. (b) The plots of $\ln(hv-E_g)$ vs. $\ln(\alpha hv)$ of $PW_{11}Pt_2$.

Fig. S7 Mott–Schottky plots of (a) TiO_2 , TiO_2 -NH₂ and (b) TiO_2 -NH₂-PW₁₁Pt₂.

Fig. S8 Gas chromatogram of reaction solution (after particating in 48h of photocatalytic reaction), aqueous solution of formaldehyde (containing 8% methanol to prevent formaldehyde polymerization) and methanol.

Fig. S9 EDS spectrum of TiO₂-SiNH₂-PW₁₁Pt₂.

 Table S1 The proportion of elements measured from EDS.

Table S2 Comparison of hydrogen evolution performance of differentPOM-TiO2 photocatalytic systems.

Fig. S1 FTIR spectra of TiO₂-SiNH₂-PW₁₁Pt₂ before and after photocatalytic

hydrogen evolution reaction.

Fig. S2 SEM image of TiO_2 -SiNH₂-PW₁₁Pt₂ at different resolution of (a) 400 nm and

(b) 800 nm. (c) The essential elemental mapping images.

Fig. S3 TEM image of pristine TiO₂.

Fig. S4 The plots of $(\alpha h \upsilon)^2$ vs. photon energy of TiO₂-Pt.

Fig. S5 CVs of $PW_{11}Pt_2$ in dimethyl sulfoxide containing 0.1 M Bu₄NPF₆ at a scan rate of 50 mV/s.

Fig. S6 (a) UV-vis diffuse reflection spectra of $PW_{11}Pt_2$. (b) The plots of $ln(hv-E_g)$ vs. $ln(\alpha hv)$ of $PW_{11}Pt_2$.

Fig. S7 Mott–Schottky plots of (a) TiO_2 , TiO_2 -NH₂ and (b) TiO_2 -NH₂-PW₁₁Pt₂.

Fig. S8 Gas chromatogram of reaction solution (after particating in 48 h of photocatalytic reaction), aqueous solution of formaldehyde (containing 8% methanol to prevent formaldehyde polymerization) and methanol.

Fig. S9 EDS spectrum of TiO_2 -SiNH₂-PW₁₁Pt₂.

Element	apparent	K ratio	Wt%	Wt%	At%
	concentration			Sigma	
C K	0.58	0.00580	5.37	0.16	12.75
N K	0.00	0.00000	0.00	0.00	0.00
O K	1.42	0.01241	27.42	0.39	48.92
Si K	0.03	0.00030	0.18	0.11	0.19
P K	0.01	0.00013	0.08	0.07	0.07
Ti K	10.13	0.10133	62.80	0.46	37.42
W M	0.43	0.00433	3.51	0.27	0.55
Pt M	0.08	0.00080	0.64	0.22	0.09

 Table S1 The proportion of elements measured from EDS.

Catalyst	Photosensitizer	Co-catalyst	Electron donor	Hydrogen evolution rate	Reference
K ₁₀ Na ₁₂ [{Co ₃ (B-β-	Colloidal TiO ₂	K ₂ PtCl ₄	Polyvinyl alcohol	9.3 μ mol·g ⁻¹ ·h ⁻¹	[1]
SiW ₉ O ₃₃ (OH))(Β-β-					
$\alpha\text{-}K_8[SiW_{11}O_{39}]\text{-}8H_2O/\text{-}TiO_2$	Eosin Y	1.0 wt% Pt	TEOA	1.3 mmol·g ⁻¹ ·h ⁻¹	[2]
$\alpha_2 \text{-} K_{10} P_2 W_{17} O_{61} \text{\cdot} 15 H_2 O$	_	Pt/TiO ₂	Glycerol	29.0 µmol·g ⁻¹ ·h ⁻¹	[3]
Cs ₃ [PW ₁₁ O ₃₉ {cis-	TiO	-	EDTA·2Na	31.7 μmol·g ⁻¹ ·h ⁻¹	[4]
$Pt(NH_3)_2\}_2]\cdot 8H_2O$	1102				
$K_{14}[O{Re^{V}-(OH)(\alpha_{2}-$	TIO	-	EDTA·2Na	3.96 μmol·g ⁻¹ ·h ⁻¹	[5]
$P_2W_{17}O_{61})$ }2]·21H ₂ O	1102				
K ₁₄ [O{Re ^V -(OH)(α ₂ -	TIO	Pt	EDTA·2Na	80.3 µmol·g ⁻¹ ·h ⁻¹	[6]
$P_2W_{17}O_{61})$ }2]·21H ₂ O	HO_2				
TiO ₂ -SiNH ₂ -PW ₁₁ Pt ₂	P25	_	Methanol	4.5 mmol·g ⁻¹ ·h ⁻¹	This work

Table S2 Comparison of POM-TiO₂ photocatalytic systems.

Reference

- R. J. Liu, X. K. Shang, C. X. Li, X. L. Xing, X. L. Yu, G. J. Zhang, S. J. Zhang, H. B. Cao, L. H. Bi, *Int. J. Hydrogen Energ.*, 2013, 38, 9954.
- [2] X. Liu, Y. X. Li, S. Q. Peng, G. X. Lu, S. B. Li, Int. J. Hydrogen Energ., 2013, 38, 11709.
- [3] N. Fu, Z. L. Jin, Y. Q. Wu, G. X. Lu, D. Y. Li, J. Phys. Chem. C, 2011, 115, 8586.
- [4] C. N. Kato, Y. Morii, S. Hattori, R. Nakayama, Y. Makino, H. Uno, *Dalton. Trans.*, 2012, 41, 10021.
- [5] C. N. Kato, K. Hara, A. Hatano, K. Goto, T. Kuribayashi, K. Hayashi, A. Shinohara, Y. Kataoka, W. Mori, K. Nomiya, *Eur. J. Inorg. Chem.*, 2008, 2008, 3134.
- [6] C. N. Kato, K. Hara, M. Kato, H. Amano, K. Sato, Y. Kataoka, W. Mori, *Materials*, 2010, 3, 897.