Supporting Information

Novel phthiocol based organometallics with tridentate coordination sphere and their unexpected cytotoxic behavior

Heiko Geisler, ${ }^{a}$ Debora Wernitznig, ${ }^{a}$ Michaela Hejl, ${ }^{a}$ Natalie Gajic, ${ }^{a}$ Michael A. Jakupec, ${ }^{\text {a,b }}$ Wolfgang Kandioller, ${ }^{\text {a,b** }}$ and Bernhard K. Keppler ${ }^{\text {a,b }}$
${ }^{a}$ Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str.
42, 1090 Vienna
${ }^{\text {b }}$ Research Cluster "Translational Cancer Research", Währinger Str. 42, 1090 Vienna
*wolfgang.kandioller@univie.ac.at; Tel.: +43-1-4277-52609; Fax: +43-1-4277-9526

Table of Contents

Materials and methods .. 2
Synthesis of 2-hydroxy-3-methylnaphthalene-1,4-dione (L) .. 4
Synthesis of complexes (1a-e, 2a-c)... 5
NMR Spectra ... 14
X-ray analysis .. 31
UV-Vis stability measurements ... 48
Cytotoxicity in Cell Cultures ... 54

Materials and methods

2-Hydroxy-3-methyl-1,4-dione $\mathbf{L}^{1,2}, \quad\left[\mathrm{RuCl}_{2}(p-\mathrm{cym})\right]_{2}{ }^{3}, \quad\left[\mathrm{OsCl}_{2}(p-\mathrm{cym})\right]_{2}{ }^{4}$ and 4-amino-1Hpyrazole ${ }^{5}$ were synthesized according to literature known procedures. Following chemicals and solvents were used without further purification for the syntheses: ruthenium(III) chlorid hydrate, osmium tetroxide (Johnson Matthey), 1H-pyrazole, triethylamine (Acros Organics), 2-methyl-naphthalene-1,4-dione, 4-methyl-1 H -pyrazole, Pd on activated charcoal, 6-amino-1 H indazole (Aldrich), 4-nitro-1H-pyrazole (Flourochem), α-terpinene (Alfa Aesar), sodium carbonate (Merck), hydrazine dihydrochloride (Sigma-Aldrich), hydrogen (Messer), hydrochloric acid (37\%), sulfuric acid (95\%), silica gel (mesh 40-63 $\mu \mathrm{m}$), ethyl acetate (Reag.Ph.Eur.ACS), n hexane (Reag.Ph.Eur.ACS), dichloromethane (stabilized with 0.2% ethanol) (VWR), methanol (HPLC grade), ethanol absolute (Laboratory reagent grade) (Fluka), ammonia hydroxide solution (20-24\%) (W.Neubus Enkel GmbH) and $1 H$-indazole (Polivalent-95). Microwave reactions were performed with a Biotage ${ }^{\circledR}$ Initiator+ system. Elemental analysis were conducted by the microanalytical laboratory of the faculty of chemistry of the University of Vienna with a Perkin Elmer 2400 CHN elemental analyzer
${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and 2D-NMR spectra were recorded at 298 K on a Bruker Avance III HD 700 MHz or Bruker Avance III 600 MHz spectrometers at $600.25 / 700.40 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $150.95 / 176.13 \mathrm{MHz}$ $\left({ }^{13} \mathrm{C}\right)$. UV-Vis stability measurements were performed on a Perkin Elmer lambda 35 photometer with PTP (Peltier Temperature Programmer) and Julabo AWC 100 recirculating cooler.

Cell culture. In this study, the following human cancer cell lines were used: A549 (non-small cell lung carcinoma), SW480 and HCT-116 (both colon carcinoma) were kindly provided by Brigitte Marian, Institute of Cancer Research, Department of Medicine I, Medical University of Vienna. The cell line CH1/PA-1 (ovarian teratocarcinoma) was kindly provided by Lloyd R. Kelland (CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, UK). HCT-15 (colon carcinoma, CCL-247™) were obtained from ATCC®.

All cell culture media (including supplements) and reagents were obtained from Sigma-Aldrich, and all plasticware from StarLab, unless stated otherwise. A549, CH1/PA-1 and SW480 cells were grown in MEM supplemented with 10% fetal calf serum (FCS; from BioWest), 1 mM sodium pyruvate, 4 mM L-glutamine and $1 \% \mathrm{v} / \mathrm{v}$ nonessential amino acids (from $100 \times$ solution) and Lglutamine. HCT-116 and HCT-15 cells were maintained in McCoy's 5a and RPMI 1640 medium,
respectively, each supplemented with 10% FCS and L-glutamine. All cells were cultured as adherent monolayers in $75 \mathrm{~cm}^{2}$ flasks and kept in a humidified incubator at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$.

MTT assay. Cytotoxicity of the compounds was determined by using the colorimetric MTT assay (MTT = 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). $1 \times 10^{3} \mathrm{CH1} / \mathrm{PA}-1$, 2×10^{3} SW480 and 3×10^{3} A549 cells were seeded in $100 \mu \mathrm{~L}$ per well into 96-well microculture plates. After 24 h , test compounds were dissolved in DMSO (Fisher Scientific), serially diluted in complete MEM (to final DMSO content not exceeding $0.5 \% \mathrm{v} / \mathrm{v}$) and added in $100 \mu \mathrm{~L}$ per well. After 96 h , the drug-containing medium was replaced with $100 \mu \mathrm{~L}$ of RPMI 1640/MTT mixture [6 parts of RPMI 1640 medium (supplemented with 10% heat-inactivated fetal bovine serum and 4 mM L-glutamine), 1 part of MTT solution in phosphate-buffered saline ($5 \mathrm{mg} / \mathrm{mL}$)]. After incubation for 4 h , the MTT-containing medium was replaced with $150 \mu \mathrm{~L}$ DMSO per well to dissolve the formazan product formed by viable cells. Optical densities at 550 nm (and at a reference wavelength of 690 nm) were measured with a microplate reader (ELx808, Bio-Tek). The 50% inhibitory concentrations $\left(\mathrm{IC}_{50}\right)$ relative to untreated controls were interpolated from concentration-effect curves. At least three independent experiments were performed, each with triplicates per concentration level.

Spheroid formation. For spheroid generation, HCT-116, HCT-15, CH1/PA-1 and A549 cells were harvested from culture flasks by trypsinization, resuspended in their respective supplemented medium and seeded in ultra-low attachment round-bottom 96-well plates (Nunclon Sphera ${ }^{\mathrm{TM}}$, Thermo Fisher Scientific) at a density of 500 viable cells per well. Plates were incubated at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ for 96 hours to allow spheroid formation and then used for the experiments.

Abstract

Alamar Blue assay. The test compounds were first dissolved in DMSO, and stock solutions were prepared in appropriate medium according to the cell line and diluted stepwise to obtain a serial dilution. $100 \mu \mathrm{l}$ of the respective dilutions were added to each well, and the plates were incubated for 96 hours at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. A $440 \mu \mathrm{M}$ resazurin sodium salt solution in PBS was prepared and $20 \mu \mathrm{l}$ were added to each well. The plates were incubated for 16 hours at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. Fluorescence was measured and recorded with a Synergy HT reader (BioTek). All the results originate from at least three technical and biological replicates.

Synthesis of 2-hydroxy-3-methylnaphthalene-1,4-dione (L)

Scheme S1: Synthetic pathway to phthiocol (L)
The 2-hydroxy-3-mehtylnaphtalene-1,4-dione (Phthiocol, L) was prepared as described in literature with minor modifications. ${ }^{1}$
2-Methyl-1,4-naphthoquinone ($1.54 \mathrm{~g}, 8.933 \mathrm{mmol}, 1 \mathrm{eq}$.) was suspended in 100 mL methanol and cooled with an ice bath. Sodium carbonate ($0.28 \mathrm{~g}, 2.680 \mathrm{mmol}, 0.3$ eq.) and hydrogen peroxide solution ($30 \%, 1.72 \mathrm{~mL}, 517 \mathrm{mg}, 15.186 \mathrm{mmol}, 1.7 \mathrm{eq}$.) were dissolved in 10 mL water and added to the yellow suspension. The mixture was stirred for 0.5 h with ice cooling and for further 3 h at room temperature. The mixture was diluted with water and the volume of methanol was reduced by evaporation. The white precipitate was separated, washed with water and dried in vacuo. The epoxide was suspended in THF and ca. 4 g of silica gel and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1.76 \mathrm{~mL}, 3.24 \mathrm{~g}$, $33.052 \mathrm{mmol}, 3.7 \mathrm{eq}$.) were added. The suspension was evaporated with 500 mbar and $70{ }^{\circ} \mathrm{C}$ until dryness. The formed yellow solid was dissolved in dichloromethane, filtrated and washed with saturated sodium bicarbonate solution. The dark red aqueous layers were combined and acidified with concentrated HCl . The yellow suspension was extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and dried in vacuo. Yield: 1.33 g yellow powder ($7.068 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.10 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13\left(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 / 8}\right), 8.08(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{5 / 8}$), 7.75 (ddd, $J=7.6,7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 / 7}$), 7.68 (ddd, $J=7.6,7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 / 7}$), 7.29 $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{OH}}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right)$. Anal. Calc. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$: C 70.21\%, H 4.29\%. Found: C: 69.82\%, H 4.23\%

Synthesis of complexes (1a-e, 2a-c)

General procedure

Scheme S2: Synthetic pathway to $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{II}}$ complexes (1a-c, 2a-c)
The respective metal dimer (1eq.), 1,2-diazole (1.9-2.2 eq.), 1,4-naphthoquinone (L) (2.1-2.2 eq.) and sodium methoxide (4.5 eq .) or triethylamine (10 eq .) were dissolved in 12 mL methanol and stirred under microwave irradiation at $50-60^{\circ} \mathrm{C}$ for $6-12$ minutes. Afterwards, the mixture was evaporated, the remaining residue was dissolved in dichloromethane and filtered. The solution was purified by column chromatography (Eluent: EtOAC/n-hexane/ NEt_{3} or $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}$). The fractions were combined, evaporated and the oily residue was dissolved in dichloromethane. For precipitation, excess of diethyl ether and n-hexane were added until precipitation started and the mixture was stored at $4{ }^{\circ} \mathrm{C}$ overnight for complete precipitation. The solid was separated and washed twice with diethyl ether and once with n-hexane. The yellowish powder was dried in vacuo. Yield: 41-84\%.

The reaction was performed according to the general procedure, using bis[dichlorido $\left(\eta^{6}-p\right.$ cymene)ruthenium(II) ($150 \mathrm{mg}, 0.245 \mathrm{mmol}, 1 \mathrm{eq}$.), $1 H$-pyrazole ($35 \mathrm{mg}, 0.514 \mathrm{mmol}, 2.1 \mathrm{eq}$.), 2-hydroxy-3-methylnaphthalene-1,4-dione (L) ($97 \mathrm{mg}, 0.514 \mathrm{mmol}, 2.1 \mathrm{eq}$.), sodium methoxide ($60 \mathrm{mg}, 1.102 \mathrm{mmol}, 4.5$ eq.). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 8 minutes under microwave irradiation. Flash column chromatography with EtOAc / n-hexane/ $\mathrm{NEt}_{3}(90 / 5 / 5)$. Yield: 99 mg yellow powder($0.202 \mathrm{mmol}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR ($600.25 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.33$ (dd, $J=2.2,0.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 8.12-8.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.62-7.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 6.68(\mathrm{dd}, J=2.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{5^{\prime}}\right), 6.34\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 5.98\left(\mathrm{~d}, J=5.8 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.87\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.63-$ $5.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.86\left(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 1.33(\mathrm{dd}, J=$ $6.9,1.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{f}}$). ${ }^{13} \mathrm{C}$ NMR ($150.95 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 183.9$ (C2), 183.6 (C4), 141.5 (C3'), 137.8 ($\mathrm{C}_{\text {arom. }}$), 134.1 ($\left.\mathrm{C}_{\text {arom. }}\right), \quad 132.3$ ($\left.\mathrm{C}_{\text {arom. }}\right), \quad 131.2$ ($\left.\mathrm{C}_{\text {arom. }}\right), \quad 127.9\left(\mathrm{C}_{5}\right.$ '), 127.7 ($\left.\mathrm{C}_{\text {arom. }}\right)$, 127.1 ($\mathrm{C}_{\text {arom. }}$), $108.7(\mathrm{C} 4$ '), $105.6(\mathrm{C} 3), 101.0(\mathrm{Cd}), 98.7(\mathrm{Ca}), 94.8(\mathrm{C} 1), 83.3(\mathrm{Cc}), 83.1(\mathrm{Cc})$, $80.2(\mathrm{Cb}), 80.1(\mathrm{Cb}), 32.7(\mathrm{Ce}), 23.0(\mathrm{Cf}), 22.8(\mathrm{Cf}), 18.3(\mathrm{Cg}), 8.1(\mathrm{C} 9)$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Ru}: \mathrm{C} 58.88 \%$, H 4.94%, N 5.72%. Found: C: 58.53%, H 5.16\%.

The reaction was performed according to the general procedure, using bis[dichlorido $\left(\eta^{6}-p\right.$ cymene)ruthenium(II) ($40 \mathrm{mg}, 0.065 \mathrm{mmol}, 1 \mathrm{eq}$.), $1 H$-indazole ($15 \mathrm{mg}, 0.130 \mathrm{mmol}, 2 \mathrm{eq}$.), 2-hydroxy-3-methylnaphthalene-1,4-dione (L) $(27 \mathrm{mg}, ~ 0.143 \mathrm{mmol}$, 2.2. eq), triethylamine ($90.5 \mu \mathrm{~L}, 66 \mathrm{mg}, 0.650 \mathrm{mmol}, 10$ eq.). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 minutes under microwave irradiation. Flash column chromatography with EtOAc $/ n$-hexane $/ \mathrm{NEt}_{3}(90 / 5 / 5)$. Yield: 44 mg yellow powder ($0.082 \mathrm{mmol}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($600.25 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.18(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}$) , $8.07-8.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.80-7.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{\text {arom. }}$), $7.56-7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.07-7.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.01-6.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 6.14$ $\left(\mathrm{d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 6.08\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 5.77\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.68(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}$), $5.22\left(\mathrm{dd}, J=8.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right.$), 2.83 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}$), 2.28 ($\mathrm{s}, 3 \mathrm{H}$, H_{g}), $1.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 1.27\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) .{ }^{13} \mathrm{C}$ NMR (150.95 MHz, DMSO) $\delta 180.8(\mathrm{C} 2)$, 180.2 (C4), 137.0 ($\mathrm{C}_{\text {arom. }}$), 135.2 ($\mathrm{C} 3^{\prime}$), 135.1 ($\mathrm{C}_{\text {arom. }}$), 132.7 ($\mathrm{C}_{\text {arom. }}$), 130.6 ($\mathrm{C}_{\text {arom }}$), 129.8 ($\mathrm{C}_{\text {arom. }}$), 127.8 ($\mathrm{C}_{\text {arom. }}$), $127.0\left(\mathrm{C}_{\text {arom. }}\right), 125.4\left(\mathrm{C}_{\text {arom. }}\right), 124.2\left(\mathrm{C}_{\text {arom }}\right), 121.7\left(\mathrm{C}_{\text {arom. }}\right), 121.5\left(\mathrm{C}_{\text {arom. }}\right), 109.5$ $\left(\mathrm{C}_{\text {arom }}\right)$, $102.6(\mathrm{C} 3), 98.6(\mathrm{Cd}), 97.3(\mathrm{Ca}), 95.8\left(\mathrm{C}_{1}\right), 82.6(\mathrm{Cb}), 82.3(\mathrm{Cb}), 79.0(\mathrm{Cc}), 78.2(\mathrm{Cc})$, $30.9(\mathrm{Ce}), 22.6(\mathrm{Cf}), 22.3(\mathrm{Cf}), 17.6(\mathrm{Cg}), 8.1(\mathrm{C} 9)$. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Ru} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$: C 61.80%, H 4.91%, N 5.15%. Found: C 61.62%, H 5.16\%, N 5.41\%.

The reaction was performed according to the general procedure, using bis[dichlorido($\eta^{6}-p$ cymene)ruthenium(II) ($50 \mathrm{mg}, 0.082 \mathrm{mmol}, 1 \mathrm{eq}$), 4-methyl- $1 H$-pyrazole ($13.64 \mu \mathrm{~L}, 14 \mathrm{mg}$, $0.164 \mathrm{mmol}, 2$ eq.), 2-hydroxy-3-methylnaphthalene-1,4-dione (L) ($34 \mathrm{mg}, 0.180 \mathrm{mmol}, 2.2 \mathrm{eq}$.), triethylamine ($114.3 \mu \mathrm{~L}, 83 \mathrm{mg} 0.820 \mathrm{mmol}, 10$ eq.). The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 10 minutes under microwave irradiation. Flash column chromatography with EtOAc/nhexane $/ \mathrm{NH}_{4} \mathrm{OH}(88 / 10 / 2)$. Yield: 69 mg yellow powder ($0.137 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.600.25 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 8.11-8.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.62-7.55(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}_{\text {arom. }}$), $6.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right.$), $5.94\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.85\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.60-$ $5.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.86\left(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{6}\right), 1.74(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{9}\right), 1.34\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 1.33\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H}_{\mathrm{f}}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ 183.9 (C2), $183.8(\mathrm{C} 4), 141.3$ ($\mathrm{C}^{`}$), 137.9 ($\mathrm{C}_{\text {arom }}$), 134.1 ($\mathrm{C}_{\text {arom. }}$.), 132.2 ($\mathrm{C}_{\text {arom }}$), 131.1 ($\mathrm{C}_{\text {arom. }}$.), 127.8 ($\mathrm{C}_{\text {arom. }}$), 127.0 ($\mathrm{C}_{\text {arom. }}$), 126.9 (C^{\prime}), 119.9 (C^{\prime}), 105.5 (C3), $101.0(\mathrm{Cd}), 98.6(\mathrm{Ca}), 94.5$ $(\mathrm{C} 1), 83.3(\mathrm{Cc}), 83.0(\mathrm{Cc}), 80.2(\mathrm{Cb}), 80.0(\mathrm{Cb}), 32.7(\mathrm{Ce}), 23.0(\mathrm{Cf}), 22.8(\mathrm{Cf}), 18.3(\mathrm{Cg}), 8.9$ (C6'), 8.1 (C9). Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Ru}$: C 59.63%, H 5.20%, N 5.56%. Found: C: 59.68\%, H 5.44\%, N 5.64\%.

The reaction was performed according to the general procedure, using bis[dichlorido($\eta^{6}-p$ cymene)ruthenium(II) ($50 \mathrm{mg}, 0.082 \mathrm{mmol}, 1 \mathrm{eq}$.), 4 -amino- $1 H$-pyrazole ($14 \mathrm{mg}, 0.164 \mathrm{mmol}$, 2 eq.), 2-hydroxy-3-methylnaphthalene-1,4-dione (L) ($34 \mathrm{mg}, 0.180 \mathrm{mmol}, 2.2$ eq.), triethylamine ($114.3 \mu \mathrm{~L}, 83 \mathrm{mg} 0.820 \mathrm{mmol}, 10 \mathrm{eq}$.$) . The mixture was stirred at 50^{\circ} \mathrm{C}$ for 12 minutes under microwave irradiation. Flash column chromatography with EtOAc/n-hexane $/ \mathrm{NH}_{4} \mathrm{OH}(88 / 10 / 2)$. Yield: 46 mg brown powder ($0.091 \mathrm{mmol}, 55 \%$) ${ }^{1} \mathrm{H}$ NMR (600.25 MHz , MeOD) $\delta 8.10-8.05$ $(\mathrm{m}, 1 \mathrm{H}$, Harom. $), 7.91\left(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.63-7.55\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 6.21(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{5^{\prime}}\right), 5.92\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.83\left(\mathrm{~d}, J=5.8 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.56(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 2 \mathrm{H}$, H_{b}), 2.86 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 1.35-1.32\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right)$. ${ }^{13} \mathrm{C}$ NMR ($150.95 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 183.9$ (C4), 183.7 (C2), 138.0 (Carom.), 134.1 (Carom.), 132.9 (C4'), 132.3 (C3'), 132.1 (Carom.), 131.1 (Carom.), 127.8 (Carom.), 127.0 (Carom.), 116.9 (C5'), $105.4(\mathrm{C} 3), 100.9(\mathrm{Cd}), 98.6(\mathrm{Ca}), 94.6(\mathrm{C} 1), 83.3(\mathrm{Cc}), 82.9(\mathrm{Cc}), 80.1(\mathrm{Cb}), 80.0(\mathrm{Cb}), 32.7(\mathrm{Ce})$, $23.0(\mathrm{Cf}), 22.8(\mathrm{Cf}), 18.3(\mathrm{Cg}), 8.1(\mathrm{C} 9) . \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Ru} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 56.53 \%$, H 5.06\%, N 8.26%. Found: C $56.21 \%, \mathrm{H} 4.99 \%$, N 8.64%.

The reaction was performed according to the general procedure, using bis[dichlorido($\eta^{6}-p-$ cymene)ruthenium(II) ($100 \mathrm{mg}, 0.163 \mathrm{mmol}, 1 \mathrm{eq}$.), 6-amino- $1 H$-indazole ($41 \mathrm{mg}, 0.310 \mathrm{mmol}$, 1.9 eq.), 2-hydroxy-3-methylnaphthalene-1,4-dione (L) $\quad(64 \mathrm{mg}, \quad 0.342 \mathrm{mmol}, ~ 2.1 \mathrm{eq}$.$) ,$ triethylamine ($227.3 \mu \mathrm{~L}, 165 \mathrm{mg} 1.630 \mathrm{mmol}, 10 \mathrm{eq}$.). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 6 minutes under microwave irradiation. Flash column chromatography with EtOAc/nhexane $/ \mathrm{NH}_{4} \mathrm{OH}(88 / 10 / 2)$. Yield: 77 mg yellow/greenish crystals ($0.091 \mathrm{mmol}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($600.25 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.66\left(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 8.17\left(\mathrm{ddd}, J=7.9,1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 7.72$ (ddd, $J=7.6,1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}$), 7.66 (ddd, $J=7.7,7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}$), 7.59 (ddd, $J=7.5$, $7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}$), $7.40\left(\mathrm{dd}, J=8.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 6.50\left(\mathrm{dd}, J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right.$), 5.98 (d, $\left.J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 5.87\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 5.61\left(\mathrm{dd}, J=5.60,5.61 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.47(\mathrm{dd}$, $\left.J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 2.88\left(\right.$ hept, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 1.37-$ 1.33 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{e}}$). ${ }^{13} \mathrm{C}$ NMR ($150.95 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 184.4$ (C2), 184.2 (C4), 150.5 (C3a'), 139.8 (C6'), 138.4 (C7a'), 137.0 (C7'), 134.3 (C8a), 132.2 (Carom.), 131.3 (Carom.), 128.47 (C8), 127.1 (C5), 122.7 (C4'), 119.3 (C4a), 115.8 (C5'), 106.8 (C3), 101.1 (Cd), 98.7 (Ca), 94.0 (C1), 92.1 (C 3 '), $83.6(\mathrm{Cb}), 83.3(\mathrm{Cb}), 80.6(\mathrm{Cc}), 80.5(\mathrm{Cc}), 32.69(\mathrm{Ce}), 23.1(\mathrm{Cf}), 22.9(\mathrm{Cf}), 18.3(\mathrm{Cg}), 8.0$ (C9). $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Ru} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C 57.33%, H 4.73%, $\mathrm{N} 7.04 \%$. Found: C 56.99%, H 4.97\%, N 7.09\%.

The reaction was performed according to the general procedure, using bis[dichlorido($\eta^{6}-p$ cymene)osmium(II) ($200 \mathrm{mg}, 0.253 \mathrm{mmol}, 1 \mathrm{eq}$.), 1 H -pyrazole ($34 \mathrm{mg}, 0.506 \mathrm{mmol}$), 2-hydroxy-3-methylnaphthalene-1,4-dione (L) ($105 \mathrm{mg}, 0.557 \mathrm{mmol}, 2.2 \mathrm{eq}$.), sodium methoxide (60 mg , $1.113 \mathrm{mmol}, 4.4 \mathrm{eq}$.). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 8 minutes under microwave irradiation. Flash column chromatography with EtOAc $/ n$-hexane/ $\mathrm{NEt}_{3}(90 / 5 / 5)$. Yield: 190 mg yellow powder ($0.328 \mathrm{mmol}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($700.40 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.29\left(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$), $8.17-$ $8.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.66-7.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.87\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.39(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{4}\right), 6.19\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 6.09\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.85\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right)$, $5.80\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.74$ (hept, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right)$, $1.31\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) .{ }^{13} \mathrm{C}$ NMR (176.13 MHz, MeOD) $\delta 184.6(\mathrm{C} 2), 183.1(\mathrm{C} 4), 141.4(\mathrm{C} 3 ‘)$, 136.7 ($\mathrm{C}_{\text {arom. }}$), 134.3 ($\mathrm{C}_{\text {arom. }}$), 132.5 ($\mathrm{C}_{\text {arom. }}$), 131.5 ($\mathrm{C}_{\text {arom. }}$), 127.8 ($\mathrm{C}_{\text {arom. }}$), 127.6 (C5'), 127.3 ($\mathrm{C}_{\text {arom }}$), $109.4\left(\mathrm{C}{ }^{\prime}\right)$, $105.4(\mathrm{C} 3), 98.1(\mathrm{C} 1), 90.8(\mathrm{Cd}), 89.1(\mathrm{Ca}), 73.9(\mathrm{Cc}), 73.4(\mathrm{Cc}), 70.4(\mathrm{Cb})$, $70.3(\mathrm{Cb})$, $33.1(\mathrm{Ce}), 23.4(\mathrm{Cf}), 23.2(\mathrm{Cf}), 18.6(\mathrm{Cg}), 8.1(\mathrm{C} 9)$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Os} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C 48.55%, $\mathrm{H} 4.12 \%$, $\mathrm{N} 4.67 \%$. Found: C $48.40 \%, \mathrm{H} 4.12 \%$, N 4.67\%.

The reaction was performed according to the general procedure, using bis[dichlorido $\left(\eta^{6}-p\right.$ cymene)osmium(II) ($200 \mathrm{mg}, 0.253 \mathrm{mmol}, 1 \mathrm{eq}$.), $1 H$-indazol ($60 \mathrm{mg}, 0.506 \mathrm{mmol}$), 2-hydroxy-3-methylnaphthalene-1,4-dione (L) ($105 \mathrm{mg}, 0.557 \mathrm{mmol}, 2.2 \mathrm{eq}$.), sodium methoxide (60 mg , $1.113 \mathrm{mmol}, 4.4 \mathrm{eq}$.). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 8 minutes under microwave irradiation. Flash column chromatography with EtOAc / n-hexane/ $\mathrm{NEt}_{3}(90 / 5 / 5)$. Yield: 178 mg yellow powder ($0.283 \mathrm{mmol} 56 \%$). ${ }^{1} \mathrm{H}$ NMR (700.40 MHz, DMSO- d_{6}) $\delta 9.17$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3$ '), 8.11 (dd, $J=7.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}$), $7.83-7.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.70-7.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}_{\text {arom. }}$), $7.13-7.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 6.33\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 6.26\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.98$ $\left(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.89\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.29\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 2.72$ (hept, J $\left.=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 1.27-1.23\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) .{ }^{13} \mathrm{C}$ NMR (176.13 MHz, DMSO) $\delta 181.0(\mathrm{C} 4), 180.3$ (C2), 135.9 ($\mathrm{C}_{\text {arom. }}$), 135.5 (C 3 '), 134.4 ($\mathrm{C}_{\text {arom. }}$), 132.8 ($\mathrm{C}_{\text {arom. }}$), 130.9 ($\mathrm{C}_{\text {arom. }}$), 130.1 ($\mathrm{C}_{\text {arom. }}$), 128.5 ($\mathrm{C}_{\text {arom. }}$), 127.0 ($\mathrm{C}_{\text {arom. }}$), 125.6 ($\mathrm{C}_{\text {arom. }}$), $124.6\left(\mathrm{C}_{\text {arom. }}\right), 122.1$ ($\mathrm{C}_{\text {arom. }}$), 121.9 ($\mathrm{C}_{\text {arom }}$), 109.6 ($\mathrm{C}_{\text {arom. }}$), $102.51(\mathrm{C} 3), 98.8(\mathrm{C} 1), 88.8(\mathrm{Cd}), 87.9(\mathrm{Ca}), 72.9(\mathrm{Cc}), 72.6$ $(\mathrm{Cc}), 69.2(\mathrm{Cb}), 68.5(\mathrm{Cb}), 31.3(\mathrm{Ce}), 23.0(\mathrm{Cf}), 22.6(\mathrm{Cf}), 17.8(\mathrm{Cg}), 8.2(\mathrm{C} 9)$. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Os} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 53.33 \%$, H 4.19\%, N 4.44%. Found: C $52.92 \%, \mathrm{H} 4.15 \%$, N 4.39%.

The reaction was performed according to the general procedure, using bis[dichlorido($\eta^{6}-p$ cymene)osmium(II) ($200 \mathrm{mg}, ~ 0.253 \mathrm{mmol}, 1 \mathrm{eq}$), 4-methyl- $1 H$-pyrazole ($41.9 \mu \mathrm{~L}, 42 \mathrm{mg}$, 0.506 mmol), 2-hydroxy-3-methylnaphthalene-1,4-dione (L) ($105 \mathrm{mg}, ~ 0.557 \mathrm{mmol}, 2.2 \mathrm{eq}$.), sodium methoxide ($60 \mathrm{mg}, 1.113 \mathrm{mmol}, 4.4 \mathrm{eq}$.). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 8 minutes under microwave irradiation. Flash column chromatography with EtOAc/n-hexane/ $\mathrm{NEt}_{3}(90 / 5 / 5)$. Yield: 137 mg yellow powder ($0.231 \mathrm{mmol} 46 \%$). ${ }^{1} \mathrm{H}$ NMR ($700.40 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.16-8.11$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 8.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 7.66-7.59\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.15(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 6.07\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 5.82\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.77\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right)$, 2.73 (hept, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{6}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 1.31(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{f}}$). ${ }^{13} \mathrm{C}$ NMR ($176.12 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 183.2$ (C4), 181.9 (C2), 139.8 (C3'), 135.5 ($\mathrm{C}_{\text {arom. }}$), 132.9 ($\mathrm{C}_{\text {arom. }}$), 131.0 ($\mathrm{C}_{\text {arom. }}$), 130.0 ($\mathrm{C}_{\text {arom. }}$), 126.4 ($\mathrm{C}_{\text {arom. }}$), 125.8 ($\mathrm{C}_{\text {arom. }}$), 125.2 (C^{\prime} '), 119.2 (C^{\prime}), $103.8(\mathrm{C} 3), 96.5(\mathrm{C} 1), 89.4(\mathrm{Cd}), 87.6(\mathrm{Ca}), 72.4(\mathrm{Cb}), 71.9(\mathrm{Cb}), 69.0(\mathrm{Cc}), 68.8$ $(\mathrm{Cc}), 31.7(\mathrm{Cg}), 22.0(\mathrm{Cf}), 21.8(\mathrm{Cf}), 17.2(\mathrm{Ce}), 7.5(\mathrm{C} 6$) $), 6.7(\mathrm{C} 9)$. Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Os}$: C 50.66\%, H 4.42\%, N 4.73\%. Found: C 50.46\%, H 4.40\%, N 4.72\%.

NMR Spectra

Figure S : ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound \mathbf{L}

Figure $\mathrm{S} 2:{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 a}$

Figure S3: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 1a

Figure S4: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum compound $\mathbf{1 b}$

Figure $\mathrm{S} 5:{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 b}$

Figure S6: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $1 \mathbf{c}$

Figure $\mathrm{S} 7:{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 c}$

Figure $\mathrm{S} 8:{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $1 \mathbf{1 d}$

Figure $\mathrm{S} 9:{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 d}$

Figure S10: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 e}$

Figure $\mathrm{S} 11:{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 e}$

Figure S12: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2a

Figure S13: ${ }^{13} \mathrm{C}$-NMR spectrum of compound 2a

Figure S14: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 b}$

Figure S15: 13C-NMR spectrum of compound 2b

Figure S16: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2c

Figure S17: ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 c}$

X-ray analysis

The X-ray intensity data were measured on Bruker D8 Venture diffractometer equipped with multilayer monochromators, $\mathrm{Cu} / \mathrm{Mo} \mathrm{K} / \alpha$ INCOATEC micro focus sealed tubes and Oxford cooling system. The structures were solved by direct methods or charge flipping and refined by full-matrix least-squares techniques. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were inserted at calculated positions and refined with riding model. The following software was used: Bruker SAINT software package ${ }^{6}$ using a narrowframe algorithm for frame integration, $S A D A B S^{7}$ for absorption correction, $O L E X 2^{8}$ for structure solution, refinement, molecular diagrams and graphical user-interface, Shelxle ${ }^{9}$ for refinement and graphical user-interface SHELXS-2015 ${ }^{10}$ for structure solution, SHELXL-2015 ${ }^{11}$ for refinement, Platon ${ }^{12}$ for symmetry check and $\pi-\pi$ Interactions calculations. Experimental data and CCDCCodes Experimental data and CCDC-Code (Available online: http://www.ccdc.cam.ac.uk/conts/retrieving.html) can be found in Table S1. Crystal data, data collection parameters, and structure refinement details are given in Table S 2 to Table S17. Crystal structures and $\pi-\pi$ Interactions are visualized in Figure S18 to Figure S27.

Table S1: Experimental parameter and CCDC-Codes.

Sample	Machine	Source	Temp.	Detector Distance	Time/ Frame	\#Frames	Frame width	CCDC
	Bruker		$[\mathrm{K}]$	$[\mathrm{mm}]$	$[\mathrm{s}]$		$\left[{ }^{\circ}\right]$	
$\mathbf{4 1 7} \mathbf{1 a}$	D 8	Mo	100	30	15	752	0.400	1955180
$\mathbf{5 7 6} \mathbf{1 b}$	D 8	Mo	100	30	2	765	0.400	1955183
$\mathbf{5 4 2} \mathbf{1 c}$	D 8	Cu	100	30	26	2037	0.500	1955182
$\mathbf{6 4 0} \mathbf{1 d}$	D 8	Mo	100	30	5	816	1.000	1955187
$\mathbf{6 3 6} \mathbf{1 e}$	D 8	Cu	100	30	20	2533	1.000	1955186
$\mathbf{5 1 0 ~ 2 a}$	D	Mo	100	40	1.5	1214	0.500	1985181
$\mathbf{5 7 9} \mathbf{2 b}$	D 8	Mo	100	30	0.5	1200	0.500	1955184
$\mathbf{5 8 0} \mathbf{2 c}$	D		Cu	100	30	3	2281	1.000
1955185								

Figure S18: Crystal structure of 1a. C-C- Bond precision: $0.0068 \AA$. Solvent and counter ion omitted for clarity.

Table S2: Sample and crystal data (1a).

Chemical formula	C27H32N2O5Ru	Crystal system	monoclinic	
Formula weight [g/mol]	565.61	Space group	C2/c	
Temperature [K]	100	Z	8	
Measurement method	$\backslash \mathrm{f}$ and $\backslash \mathrm{w}$ scans	Volume [${ }^{\text {® }}$]	5052.2(4)	
Radiation (Wavelength [\AA §)	$\operatorname{MoK} \alpha(\lambda=0.71073)$	Unit cell dimensions [\AA ® $]$ and [${ }^{\circ}$]	32.8559(11)	90
Crystal size / [mm ${ }^{3}$]	$0.316 \times 0.053 \times 0.034$		8.4989(4)	96.9960(17)
Crystal habit	clear yellow needle		18.2283(7)	90
Density (calculated) / [$\mathrm{g} / \mathrm{cm}^{3}$]	1.487	Absorption coefficient / $\left[\mathrm{mm}^{-1}\right]$	0.661	
Abs. correction Tmin	0.6285	Abs. correction Tmax	0.746	
Abs. correction type	multiscan	F(000) [$\left.\mathrm{e}^{-}\right]$	2336	

Table S3: Data collection and structure refinement (1a).

Index ranges	$\begin{gathered} -39 \leq h \leq 30,-8 \leq \mathrm{k} \leq 10, \\ -21 \leq 1 \leq 21 \end{gathered}$	Theta range for data collection [${ }^{\circ}$]	4.502 to 50.692	
Reflections number	10516	Data / restraints / parameters		4622/0/325
Refinement method	Least squares	Final R indices	all data	$\mathrm{R} 1=0.0658, \mathrm{wR} 2=0.1218$
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$		$\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.0478, \mathrm{wR} 2=0.1130$
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.048	Weighting scheme	$\mathrm{w}=1 /[\mathrm{F} 2(\mathrm{Fo} 2)+(0.0001 \mathrm{P}) 2+32.9719 \mathrm{P}]$	
Largest diff. peak and hole [$\AA^{\AA^{-3}}$]	2.44/-1.33		where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	

Figure S19: Crystal structure of 1b. C-C- Bond precision: $0.0073 \AA$. Second independent moiety B and solvent omitted for clarity. Squeeze was used to cut the volume and the corresponding electron densities, because small electron densities in excluded volumes could not be matched. Details see cif-code.

Figure S20: Analysis of $\pi-\pi$ Interactions. The distance of $\mathrm{Cg}-\mathrm{Cg}$ amounts $3.809 \AA$ and $3.734 \AA$. Solvent and hydrogen omitted for clarity.

Table S4: Sample and crystal data (1b).

Chemical formula	C28.7H27.75N2O3.17Ru	Crystal system	triclinic	
Formula weight [g/mol]	552.55	Space group	P-1	
Temperature [K]	100	Z	4	
Measurement method	\f and \w scans	Volume [$\left.\AA^{\text {³}}\right]$	2687.88(9)	
Radiation (Wavelength [\AA])	$\operatorname{MoK} \alpha(\lambda=0.71073)$	Unit cell dimensions [\AA ® $]$ and [${ }^{\circ}$]	11.4410(2)	107.7827(7)
Crystal size / [mm ${ }^{3}$]	$0.2 \times 0.06 \times 0.04$		15.6073(3)	99.4000(7)
Crystal habit	clear yellow needle		17.4184(3)	108.5729(6)
Density (calculated) / [g/cm ${ }^{3}$]	1.365	Absorption coefficient / $\left[\mathrm{mm}^{-1}\right]$	0.615	
Abs. correction Tmin	0.2162	Abs. correction Tmax	0.259	
Abs. correction type	multiscan	F(000) [$\left.\mathrm{e}^{-}\right]$	1133	

Table S5: Data collection and structure refinement (1b).

Index ranges	$\begin{gathered} -13 \leq \mathrm{h} \leq 13,-18 \leq \mathrm{k} \leq \\ 18,-20 \leq 1 \leq 20 \end{gathered}$	Theta range for data collection [${ }^{\circ}$]		. 652 to 50.68
Reflections number	28022	Data / restraints / parameters		9774/40/662
Refinement method	Least squares	Final R indices	all data	$\mathrm{R} 1=0.0651, \mathrm{wR} 2=0.1049$
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$		$\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.0455, \mathrm{wR} 2=0.0934$
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.039	Weighting scheme	$\mathrm{w}=1 /[\sigma 2(\mathrm{Fo} 2)+(0.0260 \mathrm{P}) 2+3.1126 \mathrm{P}]$	
Largest diff. peak and hole [e $\AA^{\AA^{-3}}$]	0.95/-0.68		where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	

Figure S21: Crystal structure of 1c. C-C- Bond precision: $0.0105 \AA$. Second independent moiety B omitted for clarity. Squeeze was used to cut the volume and the corresponding electron densities, because small electron densities in excluded volumes could not be matched. Details see cif-code.

Table S6: Sample and crystal data (1c).

Chemical formula	C25H26N2O3Ru	Crystal system	triclinic	
Formula weight [g/mol]	503.55	Space group	P-1	
Temperature [K]	100	Z	4	
Measurement method	\f and \w scans	Volume [$\AA^{\mathbf{3}}$]	2233.61(9)	
Radiation (Wavelength [\AA])	$\operatorname{CuK} \alpha(\lambda=1.54178)$	Unit cell dimensions [\AA] and [${ }^{\circ}$]	9.6758(2)	71.6959(13)
Crystal size / [mm ${ }^{3}$]	$0.05 \times 0.025 \times 0.025$		14.2466(3)	84.0849(14)
Crystal habit	clear yellow block		17.8729(4)	72.7405(13)
Density (calculated) / [g/cm ${ }^{3}$]	1.497	Absorption coefficient / [mm ${ }^{-1}$]	5.914	
Abs. correction Tmin	0.0245	Abs. correction Tmax	0.1163	
Abs. correction type	multiscan	F(000) [$\left.\mathrm{e}^{-}\right]$	1032	

Table S7: Data collection and structure refinement (1c).

Index ranges	$\begin{gathered} -10 \leq \mathrm{h} \leq 11,-16 \leq \mathrm{k} \leq \\ 16,-20 \leq 1 \leq 18 \end{gathered}$	Theta range for data collection [${ }^{\circ}$]	5.208 to 127.366	
Reflections number	15128	Data / restraints / parameters		7170/0/569
Refinement method	Least squares	Final R indices	all data	$\mathrm{R} 1=0.0730, \mathrm{wR} 2=0.1754$
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$		$\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.0650, \mathrm{wR} 2=0.1663$
Goodness-of-fit on \mathbf{F}^{2}	1.058	Weighting scheme	$\mathrm{w}=1 /[\mathrm{\sigma} 2(\mathrm{Fo} 2)+(0.1130 \mathrm{P}) 2+3.2250 \mathrm{P}]$	
Largest diff. peak and hole [e \AA^{-3}]	2.84/-0.42		where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	

Figure S22: Crystal structure of 1d. C-C- Bond precision: 0.0135 Å. Second independent molecule omitted for clarity. Squeeze was used to cut the volume and the corresponding electron densities, because small electron densities in excluded volumes could not be matched. Details see cif-code.

Table S8: Sample and crystal data (1d).

Chemical formula	C 24 H 25 N 3 O 3 Ru	Crystal system	monoclinic	
Formula weight [g/mol]	504.54	Space group	P21/n	
Temperature [K]	100	Z	8	
Measurement method	\f and \w scans	Volume [${ }^{\text {³}}$]	4641.7(6)	
Radiation (Wavelength [\AA])	$\operatorname{MoK} \alpha(\lambda=0.71073)$	Unit cell dimensions [\AA] and [${ }^{\circ}$]	11.3136(9)	90
Crystal size / [mm ${ }^{3}$]	$0.1 \times 0.05 \times 0.02$		23.5155(17)	102.414(3)
Crystal habit	clear orange plate		17.8647(15)	90
Density (calculated) / [$\mathrm{g} / \mathrm{cm}^{3}$]	1.444	Absorption coefficient / $\left[\mathrm{mm}^{-1}\right]$	0.705	
Abs. correction Tmin	0.0635	Abs. correction Tmax	0.0916	
Abs. correction type	multiscan	F(000) [$\left.\mathrm{e}^{-}\right]$	2064	

Table S9: Data collection and structure refinement (1d).

Index ranges	$\begin{gathered} -13 \leq \mathrm{h} \leq 13,-28 \leq \mathrm{k} \leq \\ 28,0 \leq 1 \leq 21 \end{gathered}$	Theta range for data collection [${ }^{\circ}$]	4.768 to 50.77	
Reflections number	16802	Data / restraints / parameters		8522/6/569
Refinement method	Least squares	Final R indices	all data	$\mathrm{R} 1=0.1232, \mathrm{wR} 2=0.2108$
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$		$\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.0884, \mathrm{wR} 2=0.1915$
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.07	Weighting scheme	$\mathrm{w}=1 /[\mathrm{\sigma} 2(\mathrm{Fo} 2)+(0.0714 \mathrm{P}) 2+38.3513 \mathrm{P}]$	
Largest diff. peak and hole [e \AA^{-3}]	1.34/-0.93		where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	

Figure S23: Crystal structure of 1e. C-C- Bond precision: $0.0144 \AA$. Squeeze was used to cut the volume and the corresponding electron densities, because small electron densities in excluded volumes could not be matched. Details see cif-code.

Table S10: Sample and crystal data (1e).

Chemical formula	C28H27N3O3Ru	Crystal system	monoclinic	
Formula weight [g/mol]	554.59	Space group		P21/c
Temperature [K]	100	Z		4
Measurement method	$\backslash \mathrm{f}$ and $\backslash \mathrm{w}$ scans	Volume [${ }^{\text {® }}$]		2853.5(4)
Radiation (Wavelength [\AA])	$\operatorname{CuK} \alpha(\lambda=1.54178)$	Unit cell dimensions [\AA § $]$ and [${ }^{\circ}$]	10.9871(9)	90
Crystal size / [mm^{3}]	$0.1 \times 0.1 \times 0.03$		9.5021(7)	98.361(3)
Crystal habit	clear yellow block		27.626(2)	90
Density (calculated) / [$\mathrm{g} / \mathrm{cm}^{3}$]	1.291	Absorption coefficient / $\left[\mathrm{mm}^{-1}\right]$		4.691
Abs. correction Tmin	0.0625	Abs. correction Tmax		0.1665
Abs. correction type	multiscan	F(000) [$\left.\mathrm{e}^{-}\right]$		1136

Table S11: Data collection and structure refinement (1e).

Index ranges	$\begin{gathered} -13 \leq \mathrm{h} \leq 13,-10 \leq \mathrm{k} \leq \\ 11,-32 \leq 1 \leq 33 \end{gathered}$	Theta range for data collection [${ }^{\circ}$]	8.134 to 136.47	
Reflections number	38659	Data / restraints / parameters		5217/0/320
Refinement method	Least squares	Final R indices	all data	$\mathrm{R} 1=0.0979, \mathrm{wR} 2=0.2271$
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$		$\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.0974, \mathrm{wR} 2=0.2269$
Goodness-of-fit on \mathbf{F}^{2}	1.244	Weighting scheme	$\mathrm{w}=1 /[\sigma 2(\mathrm{Fo} 2)+37.2588 \mathrm{P}]$	
Largest diff. peak and hole [e $\AA^{\AA-3}$]	1.80/-1.65		where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	

Figure S24: Crystal structure of 2a. C-C- Bond precision: $0.0070 \AA$. Counter ion omitted for clarity
Table S12: Sample and crystal data (2a).

Chemical formula	C24H26N2O4Os	Crystal system		monoclinic
Formula weight [g/mol]	596.67	Space group		P21/n
Temperature [K]	100	Z		4
Measurement method	$\backslash \mathrm{f}$ and $\backslash \mathrm{w}$ scans	Volume [$\left.\AA^{\text {² }}\right]$		2052.02(17)
Radiation (Wavelength [\AA])	$\operatorname{MoK} \alpha(\lambda=0.71073)$	Unit cell dimensions [\AA] and [${ }^{\circ}$]	11.8354(6)	90
Crystal size / [mm ${ }^{3}$]	$0.41 \times 0.22 \times 0.2$		14.6547(7)	110.4966(15)
Crystal habit	clear yellow block		12.6306(6)	90
Density (calculated) / $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.931	Absorption coefficient / $\left[\mathrm{mm}^{-1}\right]$		6.25
Abs. correction Tmin	0.0887	Abs. correction Tmax		0.2651
Abs. correction type	multiscan	F(000) [$\left.\mathrm{e}^{-}\right]$		1168

Table S13: Data collection and structure refinement (2a).

Index ranges	$\begin{gathered} -14 \leq \mathrm{h} \leq 14,-17 \leq \mathrm{k} \leq \\ 17,-15 \leq 1 \leq 15 \end{gathered}$	Theta range for data collection [${ }^{\circ}$]	4.424 to 50.698	
Reflections number	22678	Data / restraints / parameters		3762/3/287
Refinement method	Least squares	Final R indices	all data	$\mathrm{R} 1=0.0323, \mathrm{wR} 2=0.0803$
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$		$\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.0306, \mathrm{wR} 2=0.0792$
Goodness-of-fit on F^{2}	1.103	Weighting scheme	$\mathrm{w}=1 /[\sigma 2$ (Fo2) $+(0.0343 \mathrm{P}) 2+4.0645 \mathrm{P}]$	
Largest diff. peak and hole $\left[\mathrm{e} \AA^{-3}\right.$]	2.16/-1.12		where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	

Figure S25: Crystal structure of 2b. C-C- Bond precision: 0.0142 Å. Second independent moiety B omitted for clarity. Squeeze was used to cut the volume and the corresponding electron densities, because small electron densities in excluded volumes could not be matched. Details see cif-code.

Figure S26: Analysis of $\pi-\pi$ Interactions. The distance of $\mathrm{Cg}-\mathrm{Cg}$ amounts $3.800 \AA$ and $3.750 \AA$. Hydrogen omitted for clarity.

Table S14: Sample and crystal data (2b).

Chemical formula	C28H26N2O3Os	Crystal system	triclinic	
Formula weight [g/mol]	628.71	Space group	P-1	
Temperature [K]	100	Z	4	
Measurement method	\f and \w scans	Volume [$\AA^{\text {3 }}$]	2702.76(13)	
Radiation (Wavelength [\AA])	$\operatorname{MoK} \alpha(\lambda=0.71073)$	Unit cell dimensions [$[\AA]$ and $\left[{ }^{\circ}\right]$	11.4724(3)	107.6878(10)
Crystal size / [mm ${ }^{3}$]	$0.2 \times 0.15 \times 0.1$		15.5715(4)	99.3524(10)
Crystal habit	clear yellow block		17.4570(5)	108.3467(10)
Density (calculated) / [$\mathrm{g} / \mathrm{cm}^{3}$]	1.545	Absorption coefficient / [mm ${ }^{-1}$]	4.747	
Abs. correction Tmin	0.0294	Abs. correction Tmax	0.099	
Abs. correction type	multiscan	F(000) [e^{-}]	1232	

Table S15: Data collection and structure refinement (2b).

Index ranges	$\begin{gathered} -14 \leq \mathrm{h} \leq 14,-19 \leq \mathrm{k} \leq \\ 19,-22 \leq 1 \leq 22 \end{gathered}$	Theta range for data collection [${ }^{\circ}$]		4.6 to 54.206
Reflections number	72850	Data / restraints / parameters		11905/0/621
Refinement method	Least squares	Final R indices	all data	$\mathrm{R} 1=0.0623, \mathrm{wR} 2=0.1242$
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$		$\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.0509, \mathrm{wR} 2=0.1186$
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.052	Weighting scheme	$\mathrm{w}=1 /[\sigma 2(\mathrm{Fo} 2)+(0.0237 \mathrm{P}) 2+45.5397 \mathrm{P}]$	
Largest diff. peak and hole [e $\AA^{\AA^{-3}}$]	3.65/-1.69		where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	

Figure S27: Crystal structure of 2c. C-C- Bond precision: $0.0054 \AA$
Table S16: Sample and crystal data (2c).

Chemical formula	C25H26N2O3Os	Crystal system	monoclinic	
Formula weight [g/mol]	592.68	Space group	P21/c	
Temperature [K]	100	Z	4	
Measurement method	\f and $\backslash \mathrm{w}$ scans	Volume [$\AA^{\mathbf{3}}$]	2131.7(2)	
Radiation (Wavelength [\AA])	$\operatorname{CuK} \alpha(\lambda=1.54178)$	Unit cell dimensions [\AA] and ${ }^{\circ}{ }^{\circ}$]	16.3690(9)	90
Crystal size / [mm^{3}]	$0.1 \times 0.05 \times 0.02$		7.6784(4)	110.5999(13)
Crystal habit	clear yellow block		18.1186(10)	90
Density (calculated) / [$\mathrm{g} / \mathrm{cm}^{3}$]	1.847	Absorption coefficient / [mm ${ }^{-1}$]	11.544	
Abs. correction Tmin	0.042	Abs. correction Tmax	0.1665	
Abs. correction type	multiscan	F(000) [$\left.\mathrm{e}^{-}\right]$	1160	

Table S17: Data collection and structure refinement (2c).

Index ranges	$\begin{gathered} -19 \leq h \leq 19,-8 \leq \mathrm{k} \leq 9, \\ -21 \leq 1 \leq 21 \end{gathered}$	Theta range for data collection [${ }^{\circ}$]	10.432 to 137.18	
Reflections number	31965	Data / restraints / parameters		3888/0/285
Refinement method	Least squares	Final R indices	all data	$\mathrm{R} 1=0.0301, \mathrm{wR} 2=0.0796$
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$		$\mathrm{I}>2 \sigma(\mathrm{I})$	$\mathrm{R} 1=0.0298, \mathrm{wR} 2=0.0794$
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.11	Weighting scheme	$\mathrm{w}=1 /[\mathrm{\sigma} 2(\mathrm{Fo} 2)+(0.0451 \mathrm{P}) 2+2.5141 \mathrm{P}]$	
Largest diff. peak and hole $\left[\mathrm{e} \AA^{-3}\right.$]	1.81/-0.80		where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	

UV-Vis stability measurements

DMSO/DMF was obtained from VWR. PBS buffer solution was adjusted with NaOH or HCl to pH 7.4. Stock solutions with a concentration of 10 mM in DMSO/DMF were prepared. $1980 \mu \mathrm{~L}$ PBS buffer solution, $12 \mu \mathrm{~L}$ DMSO/DMF and $8 \mu \mathrm{~L}$ of the stock solution were added to a quartz cuvette $(\mathrm{d}=1 \mathrm{~cm})$ to obtain a concentration of $40 \mu \mathrm{M}$ with 1% DMSO/DMF. The UV-Vis spectra were recorded in the range of $200-750 \mathrm{~nm}$ at $20^{\circ} \mathrm{C}$ on a Perkin Elmer lambda 35 photometer with PTP (Peltier Temperature Programmer) and Julabo AWC 100 recirculating cooler.

Figure S28: UV-Vis spectrum of phthiocol \mathbf{L}, with $40 \mu \mathrm{M}$ in $\mathrm{PBS} / 1 \% \mathrm{DMF}(\mathrm{pH}=7.4), 24 \mathrm{~h}$

Figure S29: UV-Vis spectrum of KP2048 1, with $40 \mu \mathrm{M}$ in PBS/1\% DMF ($\mathrm{pH}=7.4$), 24 h . Red: $\mathrm{t}=0$; black: $\mathrm{t}=24 \mathrm{~h}$

Figure S30. UV-Vis spectrum of 1a, with $40 \mu \mathrm{M}$ in $\mathrm{PBS} / 1 \%$ DMSO $(\mathrm{pH}=7.4)$, 72 h

Figure S31: UV-Vis spectrum of $\mathbf{1 b}$, with $40 \mu \mathrm{M}$ in PBS/1\% DMSO ($\mathrm{pH}=7.4$), 72 h

Figure S32: UV-Vis spectrum of $\mathbf{1 c}$, with $40 \mu \mathrm{M}$ in $\mathrm{PBS} / 1 \%$ DMSO $(\mathrm{pH}=7.4), 72 \mathrm{~h}$

Figure S33: UV-Vis spectrum of $\mathbf{1 d}$, with $40 \mu \mathrm{M}$ in $\mathrm{PBS} / 1 \%$ DMSO $(\mathrm{pH}=7.4)$, 72 h

Figure S34: UV-Vis spectrum of $\mathbf{1 e}$, with $40 \mu \mathrm{M}$ in $\mathrm{PBS} / 1 \%$ DMSO ($\mathrm{pH}=7.4$), 72 h

Figure S35: UV-Vis spectrum of 2a, with $40 \mu \mathrm{M}$ in PBS/1\% DMSO ($\mathrm{pH}=7.4$), 72 h

Figure S36: UV-Vis spectrum of 1a, with $40 \mu \mathrm{M}$ in $\mathrm{PB} / 1 \%$ DMSO ($20 \mathrm{mM}, \mathrm{pH}=5.8$), 48 h

Figure S37: UV-Vis spectrum of 1a, with $40 \mu \mathrm{M}$ in PB PB/1\% DMSO ($20 \mathrm{mM}, \mathrm{pH}=6.2$), 48 h

Figure S38: UV-Vis spectrum of 1a, with $40 \mu \mathrm{M}$ in $\mathrm{PB} \mathrm{PB} / 1 \% \mathrm{DMSO}(20 \mathrm{mM}, \mathrm{pH}=6.7), 48 \mathrm{~h}$

Figure S39: UV-Vis spectrum of 1a, with $40 \mu \mathrm{M}$ in $\mathrm{PB} \mathrm{PB} / 1 \% \mathrm{DMSO}(20 \mathrm{mM}, \mathrm{pH}=7.9,48 \mathrm{~h}$

Figure S40: Absorption vs. time at 363 nm at different pH values (5.8-7.9) of compound 1a

Cytotoxicity in Cell Cultures

Table S18: In vitro anticancer activity (IC_{50} values) of 1,2-diazoles

Compound	IC $_{\mathbf{5 0}}[\boldsymbol{\mu M}]$		
	A549	$\mathbf{S W 4 8 0}$	$\mathbf{C H 1 / P A - 1}$
$\mathbf{H P z}$	>200	>200	>200
HInd	>200	>200	>200
4-MeHPz	>200	>200	>200
4-NH2-HPz	>200	>200	>200
$\mathbf{6 - N H} \mathbf{2}$-HInd	>200	>200	>200

Figure S41: Concentration-effect curves of Ru compounds $\mathbf{1 a} \mathbf{- 1 e}$ in monolayer cultures of the cancer cell lines A549 (top), PA-1/CH1 (middle) and SW480 (bottom) in the MTT assay (exposure time: 96 h). Values are means \pm standard deviations of at least three independent experiments.

Figure S42: Concentration-effect curves of Os compounds 2a-2c in monolayer cultures of the cancer cell lines A549 (top), PA-1/CH1 (middle) and SW480 (bottom) in the MTT assay (exposure time: 96 h). Values are means \pm standard deviations of at least three independent experiments.

References

1. Kathawate, L. et al. The first naphthosemiquinone complex of K+ with vitamin K3 analog: Experiment and density functional theory. Journal of Molecular Structure 1088, 56-63 (2015).
2. Zhu, R. et al. Practical Preparation of Diosphenols by Ring Opening of α, β-Epoxyketones Catalyzed by Silica Gel Supported Acids. Synlett 2007, 2267-2271 (2007).
3. Jensen, S. B., Rodger, S. J. \& Spicer, M. D. Facile preparation of $\eta 6-\mathrm{p}-\mathrm{cymene}$ ruthenium
 Organometallic Chemistry 556, 151-158 (1998).
4. Kiel, W. A., Ball, R. G. \& Graham, W. A. G. Carbonyl- η-hexamethylbenzene complexes of osmium. Carbon-hydrogen activation by (η-C6Me6)Os(CO)(H)2. Journal of Organometallic Chemistry 383, 481-496 (1990).
5. Maccallini, C. et al. Indazole, Pyrazole, and Oxazole Derivatives Targeting Nitric Oxide Synthases and Carbonic Anhydrases. ChemMedChem 11, 1695-1699 (2016).
6. Bruker SAINT v8.38A/B \& SAINT v7.56/7.68A Copyright © 2005-2019 Bruker AXS.
7. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. OLEX2 : a complete structure solution, refinement and analysis program. Journal of Applied Crystallography 42, 339-341 (2009).
9. Hübschle, C. B., Sheldrick, G. M. \& Dittrich, B. ShelXle : a Qt graphical user interface for SHELXL. Journal of Applied Crystallography 44, 1281-1284 (2011).
10. Sheldrick, G. M. (2015). SHELXL v 2016/4 University of Göttingen, Germany.
11. Sheldrick, G. M. (2015). SHELXS v 2016/4 University of Göttingen, Germany.
12. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallographica Section D Biological Crystallography 65, 148-155 (2009).
