Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Reductive Haloyclosilazane Polymerization

Supporting Information Carlton P. Folster, Phi N. Nguyen, Rebekka S. Klausen^{a,*} ^aDepartment of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States. *Corresponding e-mail: klausen@jhu.edu

Table of Contents

1. Supplemental Figures and Tables	S-2
2. NMR Spectra	S-10
3. GPC Spectra	S-23
4. References	S-30

1. Supplemental Figures and Tables

S-2

Figure S2. Twist-boat configurations for *trans*- and *cis*-**Si5N** looking through Si₃-N axis drawn in GaussView to help visualize the C₂ axis in *trans*-**Si5N**. Hydrogens and allyl group omitted for clarity. Teal = Si, grey = C, green = Cl.

Figure S3. Stacked ¹H NMR spectra (CDCl₃, 400 MHz) of poly(**Si5N**) from Table 2 entries 2 (2 h), 3 (4 h), and 4 (50 h).

Figure S4. ²⁹Si{¹H} DEPT NMR spectrum of poly(Si5N) from Table 2, entry 5.

Figure S5. a) Emission spectra of **Si5N** (blue), **P1** (red), and **P2** (black) in THF. **Si5N** excitation wavelength = 250 nm. **P1** and **P2** excitation wavelength = 280 nm. **[Si5N]** = 1.25×10^{-5} M, [polymer = 0.0124 g/L. b) **P2** blue emission in THF; concentration of pictured sample = 0.1 g/L in THF.

Figure S6. UV-Vis absorption spectrum of **P2** before and after exposure to air for one day. Concentrations were 0.0124 g/L in THF for each sample.

Figure S7. Emission spectra of **P2** before (black) and after (red) exposing to air for one day. Excitation wavelength = 280 nm. Concentrations were 0.0124 g/L in THF for each sample.

Figure S8. Linear fits to determine the fluorescence quantum yield for **P2** in THF relative to a naphthalene standard in cyclohexane.

Figure S9. Absorption spectra of **P2** in THF (black = 6.20×10^{-3} g/L, red = 7.43×10^{-3} g/L, grey = 4.96×10^{-3} g/L, blue = 1.24×10^{-3} g/L) used to obtain the linear fit in Figure S7.

Figure S10. Emission spectra of **P2** in THF excited at 280 nm (black = 6.20×10^{-3} g/L, red = 7.43×10^{-3} g/L, grey = 4.96×10^{-3} g/L, blue = 1.24×10^{-3} g/L) used to obtain the linear fit in Figure S7.

Figure S11. Absorption spectra of naphthalene in cyclohexane (black = 1.72×10^{-5} M, red = 1.17×10 M, grey = 1.01×10^{-5} M, blue 6.24×10^{-6} M) used to obtain the linear fit in Figure S7.

Figure S12. Emission spectra of naphthalene excited at 280 nm in cyclohexane (black = 1.72×10^{-5} M, red = 1.17×10 M, grey = 1.01×10^{-5} M, blue 6.24×10^{-6} M) used to obtain the linear fit in Figure S7.

Compound	Boat symmetry elements ^a	Twist-boat symmetry elements ^a
trans-Si5N	None	C ₂
cis- Si5N	σ	none

^a Identity not included.

Compound	Si-N resonance (ppm)	Solventref
$R \xrightarrow{Me}_{Si-Si}^{Me} Me \xrightarrow{Ne}_{Ne}^{Me} R$	-5.0 to -6.8	CDCl ₃ ¹
$Me_{2}Si - SiMe_{2}Si - SiMe_{2}Si - SiMe_{2}Si - Si - Si - Si - Si - Me_{2}Si - Si - Si - Me_{2}Si - Si -$	-9.5	$C_6 D_6^2$
$Me_{NH_{2}} Me_{2}Si \xrightarrow{Si} SiMe_{2} I I Me_{2}Si \xrightarrow{Si} SiMe_{2} SiMe_{2} Si \xrightarrow{Si} Me_{2} Me_{2}$	-15.3	$C_6 D_6^2$
NEt ₂ TMS-Si-TMS Me	-13.4	CDCl ₃ ³

Table S2. ²⁹Si NMR *Si*-N resonances of relevant compounds from the literature. Selected *Si* resonance is highlighted in blue.

S-14

¹H NMR spectrum of **Si5N** (400 MHz, CDCl₃)

Cropped ¹H NMR of **Si5N** alkyl region

S-17

Cropped ¹H NMR of **Si5N** allyl region

 $\begin{array}{c} 5.5 \\$

¹H NMR spectrum of **P1** (Table 1, entry 5, 400 MHz, CDCl₃)

S-21

²⁹Si{¹H} NMR spectrum of **P2** (Table 2, entry 8, 79 MHz, THF-*d*₈)

Time (min)

Mn	Mw	Ð
441	523	1.19

Peak No.	Mn	Mw	Ð
1	2710	6230	2.30
2	588	627	1.07
ALL	1740	5370	3.09

Table 2, Entry 2

1	2990	7340	2.46
2	583	626	1.07
ALL	1760	6210	3.52

Time (min)

Mn	Mw	Ð
1350	3150	2.33

4. References

- 1 C. P. Folster, P. N. Nguyen, M. A. Siegler and R. S. Klausen, *Organometallics*, 2019, **38**, 2902–2909.
- 2 H. Stueger, G. Fuerpass, T. Mitterfellner and J. Baumgartner, *Organometallics*, 2010, **29**, 618–623.
- U. Herzog, K. Trommer and G. Roewer, *J. Organomet. Chem.*, 1998, **552**, 99–108.