Electronic Supplementary Information (ESI)

# A bioinspired thiolate-bridged dinickel complex with a pendant amine: synthesis, structure and electrocatalytic properties

Puhua Sun,<sup>a</sup> Dawei Yang,<sup>\*a</sup> Ying Li,<sup>a</sup> Baomin Wang<sup>a</sup> and Jingping Qu<sup>\*ab</sup>

<sup>a</sup>State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024,
P. R. China.
<sup>b</sup>Key Laboratory for Advanced Materials, East China University of Science and Technology,
Shanghai, 200237, P. R. China.

E-mail: qujp@dlut.edu.cn yangdw@dlut.edu.cn

# **Contents:**

| X-ray crystallographic information     |  |
|----------------------------------------|--|
| ESI-HRMS                               |  |
| NMR spectra                            |  |
| IR spectra                             |  |
| Electrochemistry                       |  |
| Determine the amount of H <sub>2</sub> |  |
| Overpotential determinations           |  |
| References                             |  |

# X-ray crystallographic information

|                                               | $1[BPh_4]_2$                   | $2[PF_6]_2 \cdot 2CH_2Cl_2$         |
|-----------------------------------------------|--------------------------------|-------------------------------------|
| Formula                                       | $C_{104}H_{96}B_2Ni_2P_4S_3$   | $C_{64}H_{65}Cl_4F_{12}NNi_2P_6S_2$ |
| Formula weight                                | 1704.90                        | 1585.33                             |
| Crystal dimensions (mm <sup>3</sup> )         | $0.28 \times 0.25 \times 0.23$ | $0.30\times0.28\times0.25$          |
| Crystal system                                | Monoclinic                     | Monoclinic                          |
| Space group                                   | P 21/c                         | P2(1)/n                             |
| a (Å)                                         | 28.1408(18)                    | 13.2896(7)                          |
| b (Å)                                         | 13.9434(9)                     | 35.8764(18)                         |
| c (Å)                                         | 25.5790(17)                    | 14.5814(7)                          |
| α (°)                                         | 90.00                          | 90.00                               |
| β (°)                                         | 106.097(2)                     | 97.5201(11)                         |
| γ (°)                                         | 90.00                          | 90.00                               |
| Volume (Å <sup>3</sup> )                      | 9643.1(11)                     | 6892.4(6)                           |
| Ζ                                             | 4                              | 4                                   |
| <i>T</i> (K)                                  | 220(2)                         | 173(2)                              |
| $D_{\text{ calcd}}$ (g cm <sup>-3</sup> )     | 1.174                          | 1.528                               |
| $\mu (\mathrm{mm}^{-1})$                      | 0.566                          | 0.974                               |
| F (000)                                       | 3576                           | 3240                                |
| No. of rflns. collected                       | 178329                         | 96297                               |
| No. of indep. rflns. $/R_{int}$               | 16979 / 0.0393                 | 12126 / 0.0554                      |
| No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$    | 13776                          | 10037                               |
| Data / restraints / parameters                | 16979 / 0 / 916                | 12126 / 132 / 929                   |
| $R_1 / wR_2 [I_0 > 2\sigma(I_0)]^a$           | 0.0500 / 0.1158                | 0.0461 / 0.1065                     |
| $R_1/wR_2$ (all data) <sup>a</sup>            | 0.0662 / 0.1227                | 0.0604 / 0.1118                     |
| $\operatorname{GOF}(\operatorname{on} F^2)^a$ | 1.042                          | 1.030                               |
| Largest diff. peak and hole (e $Å^{-3}$ )     | 1.125 / -0.599                 | 0.953 / -0.618                      |

Table S1. Crystallographic data for 1[BPh4]2, 2[PF6]2·2CH2Cl2

|                                            | 3[PF <sub>6</sub> ]·MeCN       | 4[PF <sub>6</sub> ]·CH <sub>2</sub> Cl <sub>2</sub> |
|--------------------------------------------|--------------------------------|-----------------------------------------------------|
| Formula                                    | C58H59ClF6Ni2NP5S3             | C57H58Cl3F6Ni2OP5S2                                 |
| Formula weight                             | 1287.96                        | 1315.77                                             |
| Crystal dimensions (mm <sup>3</sup> )      | $0.30 \times 0.20 \times 0.18$ | $0.28 \times 0.27 \times 0.25$                      |
| Crystal system                             | Monoclinic                     | Monoclinic                                          |
| Space group                                | C2/c                           | C2/c                                                |
| a (Å)                                      | 35.436(4)                      | 35.7408(15)                                         |
| b (Å)                                      | 13.4228(15)                    | 13.3259(5)                                          |
| c (Å)                                      | 24.186(3)                      | 24.6081(10)                                         |
| α (°)                                      | 90.00                          | 90.00                                               |
| β (°)                                      | 91.00                          | 91.220(3)                                           |
| γ (°)                                      | 90.00                          | 90.00                                               |
| Volume (Å <sup>3</sup> )                   | 11502(2)                       | 11717.6(8)                                          |
| Ζ                                          | 8                              | 8                                                   |
| <i>T</i> (K)                               | 173(2)                         | 230(2)                                              |
| $D_{\text{calcd}}$ (g cm <sup>-3</sup> )   | 1.488                          | 1.492                                               |
| $\mu (\mathrm{mm}^{-1})$                   | 1.008                          | 1.046                                               |
| F (000)                                    | 5312                           | 5408                                                |
| No. of rflns. collected                    | 77349                          | 138914                                              |
| No. of indep. rflns. $/R_{int}$            | 10108 / 0.0843                 | 13465 / 0.0602                                      |
| No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$ | 8707                           | 10745                                               |
| Data / restraints / parameters             | 10108 / 1 / 685                | 13465 / 0 / 685                                     |
| $R_1 / wR_2 [I_0 > 2\sigma(I_0)]^a$        | 0.0552 / 0.1575                | 0.0461 / 0.0976                                     |
| $R_1 / wR_2$ (all data) <sup>a</sup>       | 0.0658 / 0.1653                | 0.0664 / 0.1069                                     |
| GOF (on $F^2$ ) <sup>a</sup>               | 1.010                          | 1.034                                               |
| Largest diff. peak and hole (e $Å^{-3}$ )  | 1.525 / -1.039                 | 1.339 / -0.816                                      |

*Table S2.* Crystallographic data for **3**[**PF**<sub>6</sub>]·MeCN, **4**[**PF**<sub>6</sub>]·CH<sub>2</sub>Cl<sub>2</sub>

## Figure S1. ORTEP diagram of 1[BPh4]2

Thermal ellipsoids are shown at 50% probability level. Two BPh<sub>4</sub><sup>-</sup> counter anions and all hydrogen atoms on carbons are omitted for clarity.



Table S3. Selected bond distances (Å) and bond angles (°) for 1[BPh4]2

| Distances (Å)      |           |                 |          |
|--------------------|-----------|-----------------|----------|
| Ni1····Ni2         | 3.1093(8) | Ni1–P2          | 2.174(2) |
| Ni1–S1             | 2.238(2)  | Ni2–S1          | 2.217(2) |
| Ni1–S2             | 2.247(2)  | Ni2–S2          | 2.237(2) |
| Ni1–S3             | 2.391(2)  | Ni2–P3          | 2.178(2) |
| Ni1–P1             | 2.183(1)  | Ni2–P4          | 2.168(2) |
| Angles (°)         |           |                 |          |
| S1-Ni1-S2          | 87.86(6)  | P1-Ni1-P2       | 83.90(6) |
| S1-Ni1-S3          | 90.28(6)  | S1-Ni2-S2       | 88.64(5) |
| S2-Ni1-S3          | 91.79(6)  | P3-Ni2-P4       | 86.68(6) |
| Torsion angles (°) |           |                 |          |
| S1-Ni1Ni2-S2       | 151.45(8) | Ni1S1S2/Ni1P1P2 | 25.55(6) |
| Ni2S1S2/Ni2P3P4    | 3.65(6)   | Ni1S1S2/Ni2S1S2 | 28.57(5) |

#### Figure S2. ORTEP diagram of 2[PF6]2·2CH2Cl2

Thermal ellipsoids are shown at 50% probability level. Two  $PF_6^-$  counter anions, the two co-crystallized  $CH_2Cl_2$  molecules and all hydrogen atoms on carbons are omitted for clarity.



*Table S4.* Selected bond distances (Å) and bond angles (°) for  $2[PF_6]_2 \cdot 2CH_2Cl_2$ 

| Distances (Å)      |            |                 |            |
|--------------------|------------|-----------------|------------|
| Ni1····Ni2         | 3.2048(6)  | Ni1–P2          | 2.1731(10) |
| Ni1–S1             | 2.2574(9)  | Ni2–S1          | 2.2378(9)  |
| Ni1–S2             | 2.2185(9)  | Ni2–S2          | 2.2283(8)  |
| Ni1–N1             | 2.475(3)   | Ni2–P3          | 2.1754(9)  |
| Ni1–P1             | 2.1757(10) | Ni2–P4          | 2.1872(10) |
| Angles (°)         |            |                 |            |
| S1-Ni1-S2          | 87.86(3)   | P1-Ni1-P2       | 85.51(4)   |
| S1-Ni1-N1          | 80.84(7)   | S1-Ni2-S2       | 88.11(3)   |
| S2-Ni1-N1          | 84.97(7)   | P3-Ni2-P4       | 85.57(4)   |
| Torsion angles (°) |            |                 |            |
| S1–Ni1Ni2–S2       | 169.98(4)  | Ni1S1S2/Ni1P1P2 | 21.52(3)   |
| Ni2S1S2/Ni2P3P4    | 8.45(4)    | Ni1S1S2/Ni2S1S2 | 9.71(3)    |

## Figure S3. ORTEP diagram of 3[PF6] MeCN

Thermal ellipsoids are shown at 50% probability level. One  $PF_6^-$  counter anion, one co-crystallized MeCN molecule and all hydrogen atoms on carbons are omitted for clarity.



Table S5. Selected bond distances (Å) and bond angles (°) for  $3[PF_6]$ ·MeCN

| Distances (Å)      |            |                 |           |
|--------------------|------------|-----------------|-----------|
| Ni1····Ni2         | 3.2528(10) | Ni2–S1          | 2.239(2)  |
| Ni1–S1             | 2.250(1)   | Ni2–S2          | 2.244(1)  |
| Ni1–S2             | 2.242(1)   | Ni2–P3          | 2.170(1)  |
| Ni1–S3             | 2.392(2)   | Ni2–P4          | 2.188(2)  |
| Ni1–P1             | 2.158(2)   | Ni2–Cl1         | 2.614(2)  |
| Ni1–P2             | 2.180(2)   |                 |           |
| Angles (°)         |            |                 |           |
| S1-Ni1-S2          | 86.55(5)   | S1-Ni2-S2       | 86.77(5)  |
| S1-Ni1-S3          | 91.87(6)   | S1-Ni2-Cl1      | 104.38(5) |
| S2-Ni1-S3          | 90.05(5)   | S2-Ni2-Cl1      | 105.62(5) |
| P1-Ni1-P2          | 84.80(6)   | P3-Ni2-P4       | 84.63(5)  |
| Torsion angles (°) |            |                 |           |
| S1-Ni1Ni2-S2       | 169.76(7)  | Ni1S1S2/Ni1P1P2 | 22.07(6)  |
| Ni2S1S2/Ni2P3P4    | 21.54(4)   | Ni1S1S2/Ni2S1S2 | 9.70(4)   |

## Figure S4. ORTEP diagram of 4[PF6]·CH2Cl2

Thermal ellipsoids are shown at 50% probability level. One  $PF_6^-$  counter anion, one co-crystallized  $CH_2Cl_2$  molecule and all hydrogen atoms on carbons are omitted for clarity.



Table S6. Selected bond distances (Å) and bond angles (°) for 4[PF6]·CH2Cl2

| Distances (Å)      |           |                 |           |
|--------------------|-----------|-----------------|-----------|
| Ni1····Ni2         | 3.2276(4) | Ni2–S1          | 2.2533(8) |
| Ni1–S1             | 2.2462(7) | Ni2–S2          | 2.2390(7) |
| Ni1–S2             | 2.2365(8) | Ni2–P3          | 2.1934(7) |
| Ni1-O1             | 2.377(2)  | Ni2-P4          | 2.1750(8) |
| Ni1–P1             | 2.1790(8) | Ni2-Cl1         | 2.5955(8) |
| Ni1–P2             | 2.1701(8) |                 |           |
| Angles (°)         |           |                 |           |
| S1-Ni1-S2          | 87.34(3)  | S1-Ni2-S2       | 87.10(3)  |
| S1-Ni1-O1          | 83.20(5)  | S1-Ni2-Cl1      | 105.14(3) |
| S2-Ni1-O1          | 82.49(6)  | S2-Ni2-Cl1      | 105.34(3) |
| P1-Ni1-P2          | 85.44(3)  | P3-Ni2-P4       | 84.96(3)  |
| Torsion angles (°) |           |                 |           |
| S1-Ni1Ni2-S2       | 166.26(4) | Ni1S1S2/Ni1P1P2 | 15.26(2)  |
| Ni2S1S2/Ni2P3P4    | 21.65(2)  | Ni1S1S2/Ni2S1S2 | 13.18(1)  |

# **ESI-HRMS**

#### Figure S5. ESI-HRMS of 1[PF6]2 in MeCN

(a) The signal at an m/z = 532.0626 corresponds to  $[1]^{2+}$ . (b) Calculated isotopic distribution for  $[1]^{2+}$  (upper) and the amplifying experimental diagram for  $[1]^{2+}$  (bottom). (a)



#### Figure S6. ESI-HRMS of 1[BPh4]2 in MeCN

(a) The signal at an m/z = 532.0604 corresponds to  $[1]^{2+}$ . (b) Calculated isotopic distribution for  $[1]^{2+}$  (upper) and the amplifying experimental diagram for  $[1]^{2+}$  (bottom). (a)



#### Figure S7. ESI-HRMS of 2[PF6]2 in MeCN

(a) The signal at an m/z = 561.5931 corresponds to  $[2]^{2+}$ . (b) Calculated isotopic distribution for  $[2]^{2+}$  (upper) and the amplifying experimental diagram for  $[2]^{2+}$  (bottom).



#### Figure S8. ESI-HRMS of 3[PF6] in MeCN

(a) The signal at an m/z = 1099.0873 corresponds to [3]<sup>+</sup>. (b) Calculated isotopic distribution for [3]<sup>+</sup> (upper) and the amplifying experimental diagram for [3]<sup>+</sup> (bottom).
(a)



#### Figure S9. ESI-HRMS of 4[PF6] in MeCN

(a) The signal at an m/z = 1083.1136 corresponds to [4]<sup>+</sup>. (b) Calculated isotopic distribution for [4]<sup>+</sup> (upper) and the amplifying experimental diagram for [4]<sup>+</sup> (bottom).
(a)



# NMR spectra

## *Figure S10.* The <sup>1</sup>H NMR spectrum of **1[PF6]2** in CD<sub>2</sub>Cl<sub>2</sub>



Figure S11. The <sup>1</sup>H, <sup>1</sup>H-COSY spectrum of **1[PF<sub>6</sub>]**<sup>2</sup> in CD<sub>2</sub>Cl<sub>2</sub>





*Figure S12.* The  ${}^{13}C{}^{1}H$  NMR spectrum of **1[PF6]**<sup>2</sup> in CD<sub>2</sub>Cl<sub>2</sub>

*Figure S13.* The  ${}^{31}P{}^{1}H$  NMR spectrum of **1**[**PF**<sub>6</sub>]<sub>2</sub> in CD<sub>2</sub>Cl<sub>2</sub>







*Figure S15.* The  ${}^{13}C{}^{1}H$  NMR spectrum of **1[BPh**<sub>4</sub>]<sub>2</sub> in CD<sub>2</sub>Cl<sub>2</sub>



*Figure S16.* The  ${}^{31}P{}^{1}H$  NMR spectrum of **1[BPh4]**<sup>2</sup> in CD<sub>2</sub>Cl<sub>2</sub>



*Figure S17.* The <sup>1</sup>H NMR spectrum of **2[PF6]**<sup>2</sup> in CD<sub>2</sub>Cl<sub>2</sub>

| 0.0 |
|-----|
|     |







*Figure S19.* The  ${}^{31}P{}^{1}H$  NMR spectrum of **2[PF6]**<sub>2</sub> in CD<sub>2</sub>Cl<sub>2</sub>



Figure S20. The <sup>1</sup>H NMR spectrum of 3[PF<sub>6</sub>] in CD<sub>2</sub>Cl<sub>2</sub>



*Figure S21.* The  ${}^{13}C{}^{1}H$  NMR spectrum of **3[PF**<sub>6</sub>] in CD<sub>2</sub>Cl<sub>2</sub>



*Figure S22.* The  ${}^{31}P{}^{1}H$  NMR spectrum of **3**[**PF**<sub>6</sub>] in CD<sub>2</sub>Cl<sub>2</sub>





*Figure S24.* The  ${}^{13}C{}^{1}H$  NMR spectrum of **4[PF**<sub>6</sub>] in CD<sub>2</sub>Cl<sub>2</sub>

*Figure S25.* The  ${}^{31}P{}^{1}H$  NMR spectrum of **4**[**PF**<sub>6</sub>] in CD<sub>2</sub>Cl<sub>2</sub>



# IR spectra





Figure S27. The IR (film) spectrum of 1[BPh4]2



Figure S28. The IR (film) spectrum of 2[PF6]2



Figure S29. The IR (film) spectrum of 3[PF6]



Figure S30. The IR (film) spectrum of 4[PF6]



## Electrochemistry

*Figure S31*. The cyclic voltammogram of  $1[PF_6]_2$  (1 mM) in 0.1 M "Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at 25 °C with a scan rate of 100 mV s<sup>-1</sup>



*Figure S32.* The cyclic voltammogram of  $1[PF_6]_2$  (1 mM) in 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> at 25 °C with a scan rate of 100 mV s<sup>-1</sup>



*Figure S33.* The cyclic voltammograms of  $1[PF_6]_2$  (1 mM) in 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at 25 °C at different scan rates (0.1~0.7 V s<sup>-1</sup>)



*Figure S34.* Plot of  $i_p$  versus  $v^{1/2}$  for the second reduction peak of **1**[**PF**<sub>6</sub>]<sub>2</sub>



*Figure S35.* The cyclic voltammogram of  $2[PF_6]_2$  (1 mM) in 0.1 M "Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at 25 °C with a scan rate of 100 mV s<sup>-1</sup>



*Figure S36.* The cyclic voltammogram of  $2[PF_6]_2$  (1 mM) in 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> at 25 °C with a scan rate of 100 mV s<sup>-1</sup>



*Figure S37.* The cyclic voltammograms of  $2[PF_6]_2$  (1 mM) in 0.1 M "Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at 25 °C at different scan rates (0.1~1.0 V s<sup>-1</sup>)



*Figure S38.* Plot of  $i_p$  versus  $v^{1/2}$  for the third reduction peak of **2**[**PF**<sub>6</sub>]<sub>2</sub>



*Figure S39.* The cyclic voltammogram of  $3[PF_6]$  (1 mM) in 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at 25 °C with a scan rate of 100 mV s<sup>-1</sup>



*Figure S40.* The cyclic voltammogram of **3**[**PF**<sub>6</sub>] (1 mM) in 0.1 M  $^{n}$ Bu<sub>4</sub>NPF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> at 25 °C with a scan rate of 100 mV s<sup>-1</sup>



*Figure S41.* The cyclic voltammograms of **3**[**PF**<sub>6</sub>] (1 mM) in 0.1 M  $^{n}$ Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at 25 °C at different scan rates (0.1~1.0 V s<sup>-1</sup>)



*Figure S42.* Plot of  $i_p$  versus  $v^{1/2}$  for the second reduction peak of **3[PF6]** 



*Figure S43.* The cyclic voltammogram of  $4[PF_6]$  (1 mM) in 0.1 M "Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at 25 °C with a scan rate of 100 mV s<sup>-1</sup>



*Figure S44.* The cyclic voltammogram of  $4[PF_6]$  (1 mM) in 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> at 25 °C with a scan rate of 100 mV s<sup>-1</sup>



*Figure S45.* The cyclic voltammograms of  $4[PF_6]$  (1 mM) in 0.1 M "Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at 25 °C at different scan rates (0.1~0.7 V s<sup>-1</sup>)



*Figure S46.* Plot of  $i_p$  versus  $v^{1/2}$  for the second reduction peak of **4[PF6]** 



*Figure S47.* Cyclic voltammograms of  $1[PF_6]_2$  (1 mM in 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub> in MeCN under Ar, scan rate = 100 mV s<sup>-1</sup>) with increments of TFA (0, 1, 2, 4, 6, 8 and 10 mM)



*Figure S48.* Corresponding plot of  $i_c/i_p$  for 1 mM **1[PF6]**<sup>2</sup> on the concentration of TFA near to cathodic process at -1.3 V in MeCN



*Figure S49.* Cyclic voltammograms of  $2[PF_6]_2$  (1 mM in 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub> in MeCN under Ar, scan rate = 100 mV s<sup>-1</sup>) with increments of TFA (0, 1, 2, 4, 8, 10, 20, 40 and 60 mM)



*Figure S50.* Corresponding plot of  $i_c/i_p$  for 1 mM 2[PF<sub>6</sub>]<sub>2</sub> on the concentration of TFA near to cathodic process at -1.3 V in MeCN



*Figure S51*. Cyclic voltammograms of **2**[**PF**<sub>6</sub>]<sub>2</sub> (1 mM in 0.1 M  $^{n}$ Bu<sub>4</sub>NPF<sub>6</sub> in MeCN under Ar, scan rate = 100 mV s<sup>-1</sup>) with increments of TFA (0 and 2 mM)



*Figure S52.* Cyclic voltammograms of **3**[**PF**<sub>6</sub>] (1 mM in 0.1 M  $^{n}$ Bu<sub>4</sub>NPF<sub>6</sub> in MeCN under Ar, scan rate = 100 mV s<sup>-1</sup>) with increments of TFA (0, 1, 2, 4, 6, 8 and 10 mM)



*Figure S53.* Corresponding plot of  $i_c/i_p$  for 1 mM **3[PF<sub>6</sub>]** on the concentration of TFA near to cathodic process at -1.3 V in MeCN



*Figure S54.* Cyclic voltammograms of **4**[**PF**<sub>6</sub>] (1 mM in 0.1 M  $^{n}$ Bu<sub>4</sub>NPF<sub>6</sub> in MeCN under Ar, scan rate = 100 mV s<sup>-1</sup>) with increments of TFA (0, 1, 2, 4, 6, 8, 10, 20, 30 and 40 mM)



*Figure S55.* Corresponding plot of  $i_o/i_p$  for 1 mM **4[PF<sub>6</sub>]** on the concentration of TFA near to cathodic process at -1.5 V in MeCN



*Figure S56.* The cyclic voltammograms in 0.1 M  $^{n}Bu_{4}NPF_{6}/MeCN$  with a scan rate of 100 mV s<sup>-1</sup>



*Figure S57.* The i-t curve for bulk electrolysis of TFA (10 mM) in the presence of **1[PF<sub>6</sub>]**<sub>2</sub> (1 mM) at -1.3 V



*Figure S58.* The i-t curve for bulk electrolysis of TFA (60 mM) in the presence of  $2[PF_6]_2$  (1 mM) at -1.2 V



*Figure S59.* The i-t curve for bulk electrolysis of TFA (10 mM) in the presence of  $3[PF_6](1 \text{ mM})$  at -1.3 V



*Figure S60.* The i-t curve for bulk electrolysis of TFA (40 mM) in the presence of  $4[PF_6](1 \text{ mM})$  at -1.3 V



Figure S61. Cyclic voltammograms recorded for the rinse test experiments.

Detailed procedure: 1) Conduct the CV scan of 1 mM of complex  $2[PF_6]_2$  in a MeCN solution containing 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub> and 10 mM TFA; 2) The solution was then discarded and the electrodes were rinsed several times with pure MeCN. The electrodes were then dipped into a fresh MeCN solution containing 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub> and 10 mM TFA in the absence of complex  $2[PF_6]_2$ ; 3) Another 10 mM of TFA was added into this solution to make up 20 mM of acid while retaining the same concentrations for 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub>; 4) 1 mM of complex  $2[PF_6]_2$  was added into the solution.



**Curve** (a): CV scan of 1 mM of complex  $2[PF_6]_2$  in a MeCN solution containing 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub> and 10 mM TFA. **Curve** (b): CV scan of a fresh MeCN solution containing 0.1 M <sup>*n*</sup>Bu<sub>4</sub>NPF<sub>6</sub> and 10 mM TFA in the absence of complex  $2[PF_6]_2$ . **Curve** (c): CV scan of the solution containing 20 mM of TFA in the absence of complex  $2[PF_6]_2$ . **Curve** (d): CV scan of the solution containing  $2[PF_6]_2$  and 20 mM of TFA.

#### Determine the amount of H<sub>2</sub>

Choose catalyst **2**[**PF**<sub>6</sub>]<sub>2</sub> as an example. Firstly, we constructed a standard curve based on the relationship between peak area and amount of hydrogen by gas chromatography (GC), as shown **Figure 62a**. After bulk electrolysis, 1 mL of gas sample was extracted from headspace (30 mL) of H-type electrolysis cell using gas-tight syringe and then injected into GC instrument. An obvious signal peak for hydrogen appeared at the retention time of 0.597 min (**Figure 62b**), which can be integrated to give the value of the peak area. Finally, this value was brought into the above standard curve of hydrogen to obtain the amount of hydrogen.



Figure S62. (a) Standard curve of hydrogen (b) GC plot of gas analysis of headspace

#### **Overpotential determinations**

For many acids, homoconjugation of acid/base pairs is a known problem, which significantly lowers the accuracy of calculating  $E^{0}_{HA}$ . TFA has a relatively large homoconjugation constant in MeCN.<sup>1</sup>  $E^{0}_{HA}$  has been accurately measured by Artero and coworkers by taking into account homoconjugation of the acid at various concentrations.<sup>2</sup> For 10 mM TFA,  $E^{0}_{HA} = -0.68$  V versus Fc<sup>+/0</sup>. Now that we can have determined a value for  $E^{0}_{HA}$ , we can calculate the overpotential for the reduction of H<sup>+</sup> to H<sub>2</sub> via eq. S1.

$$Overpotential = |E^{0}_{HA} - E_{cat/2}|$$
eq. S1

In the eq. S1, the catalytic potential is defined as the potential at half of the catalytic current  $(E_{\text{cat/2}})$ , as recommended by Appel and Helm.<sup>3</sup>

*Figure S63.* Determinations of the overpotential of complexes 1[PF<sub>6</sub>]<sub>2</sub>, 2[PF<sub>6</sub>]<sub>2</sub>, 3[PF<sub>6</sub>] and 4[PF<sub>6</sub>] for hydrogen evolution from TFA (10 mM) in MeCN.



# References

- 1 K. Izutsu, *Acid-Base Dissocation Constants in Dipolar Aprotic Solvents*; Blackwell Scientific Publications: Oxford, Boston, 1990.
- 2 V. Fourmond, P.-A. Jacques, M. Fontecave and V. Artero, *Inorg. Chem.*, 2010, **49**, 10338-10347.
- 3 A. M. Appel and M. L. Helm, ACS Catal., 2014, 4, 630-633.