Electronic Supplementary Information

Effect of Anion Dimensionality on Optical Properties: ... [B7010(OH)2]

Layer in CsB₇O₁₀(OH)₂ vs _∞[B₇O₁₂] Framework in CsBaB₇O₁₂

Zhaohong Miao,^{a,b#} Yun Yang, ^{a#} Zhonglei Wei,^{a,b} Zhihua Yang^a and Shilie Pan ^{a*}

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang

Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information

Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China;

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China.

E-mail: slpan@ms.xjb.ac.cn

Contents

Reagents

 Table S1 Atomic coordinates (×10⁴), equivalent isotropic displacement parameters

 $(Å^2 \times 10^3)$ and bond valence sums (BVSs) for CsB₇O₁₀(OH)₂ (a) and CsBaB₇O₁₂ (b).

Table S2 Bond lengths [Å] and angles [°] for $CsB_7O_{10}(OH)_2$ (a) and $CsBaB_7O_{12}$ (b). **Table S3** Disorder-free alkali- and/or alkaline-earth metal cations-containing cesium borates.

Figure S1. The crystal photographs of CsB₇O₁₀(OH)₂ (a) and CsBaB₇O₁₂ (b).

Figure S2. (a) $_{\infty}$ [CsBaO₁₂] layers; the $_{\infty}$ [BaO₈] chain is surrounded by blue circle; the [Cs₂O₁₂] dimer is surrounded by green circle. (b) The 3 D $_{\infty}$ [B₇O₁₂] anionic open-framework. (c) The whole 3D framework of CsBaB₇O₁₂.

Figure S3. The fundamental building blocks (FBBs) of the investigated compounds.

Figure S4. The anionic structures of the investigated compounds.

Figure S5. TG-DSC curves of CsB₇O₁₀(OH)₂.

Figure S6. (a) The IR spectrum of $CsB_7O_{10}(OH)_2$. (b) The IR spectrum of $CsBaB_7O_{12}$. **Reference**

Reagents

CsF (Tianjin Baishi Chemical Reagent Co., Ltd, 99.5%), BaF₂ (Aladdin Reagent Co., Ltd., 99.99%), H₃BO₃ (Tianjin Baishi Chemical Reagent Co., Ltd, 99.5%), Na₂CO₃ (Shanghai Aladdin Reagent Co., Ltd., 99.5%), BaCO₃ (Shanghai Aladdin Reagent, Ltd., 99.0%), B₂O₃ (Shanghai Aladdin Reagent Co., Ltd., 98.0%), PbO (Tianjin Baishi Chemical Reagent Co., Ltd, 99.0%) and Cs₂CO₃ (Tianjin Baishi Chemical Reagent Co., Ltd, 99.0%) were of analytical grade and were obtained from commercial sources without further purification.

Atoms	х	У	Z	U(eq)	BVS
Cs(1)	10000	8134(1)	7500	25(1)	1.110
B(1)	5000	2787(4)	2500	18(1)	3.060
B(2)	5777(3)	3381(3)	4482(3)	19(1)	3.050
B(3)	7739(3)	5051(3)	5345(2)	18(1)	3.073
B(4)	8903(3)	6655(3)	4044(3)	19(1)	3.059
O(1)	5773(2)	3664(2)	3388(1)	20(1)	1.996
O(2)	6655(2)	4047(2)	5350(2)	24(1)	2.073
O(3)	7878(2)	5738(2)	4365(2)	24(1)	2.090
O(4)	8627(2)	5347(2)	6313(2)	31(1)	1.926
O(5)	8888(2)	6869(2)	2935(2)	20(1)	1.880
O(6)	9864(2)	7363(2)	4846(2)	26(1)	2.032

Table S1. (a) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters ($Å^2 \times 10^3$) and bond valence sums (BVSs) for CsB₂O₁₀(OH)₂.

Table S1. (b) Atomic coordinates (×10⁴), equivalent isotropic displacement parameters ($Å^2 \times 10^3$) and bond valence sums (BVSs) for CsBaB₇O₁₂.

•	•	/	· · · ·	/ 12	
Atoms	x	У	Z	U(eq)	BVS
Ba(1)	4774(1)	2552(1)	1122(1)	15(1)	1.922
Cs(1)	136(1)	2558(1)	-19(1)	22(1)	1.051
B(1)	-2533(5)	4641(6)	503(4)	12(1)	3.071
B(2)	2992(5)	5573(6)	1648(4)	10(1)	3.049
B(3)	3996(5)	1242(6)	-1713(4)	11(1)	3.065
B(4)	2866(5)	1215(6)	2961(5)	14(1)	3.049
B(5)	1798(5)	4899(6)	2942(5)	12(1)	3.042
B(6)	-3719(5)	2427(6)	-643(4)	10(1)	3.061
B(7)	692(6)	86(6)	2596(5)	12(1)	3.071
O(1)	-629(3)	-70(4)	1806(3)	15(1)	2.057
O(2)	1595(3)	737(4)	2177(3)	16(1)	2.082
O(3)	2898(3)	851(4)	-1290(3)	13(1)	1.743
O(4)	5244(3)	1450(3)	-714(3)	11(1)	2.131
O(5)	3537(3)	2288(3)	2606(3)	12(1)	2.088
O(6)	4185(3)	4906(3)	2549(3)	10(1)	2.043
O(7)	2674(3)	4735(3)	586(3)	13(1)	2.09
O(8)	1804(3)	5583(4)	1991(3)	14(1)	2.055
O(9)	-1084(3)	4656(3)	1312(3)	12(1)	2.102
O(10)	-3367(3)	5620(4)	968(3)	17(1)	1.919
O(11)	-3063(3)	3074(4)	416(2)	12(1)	2.032
O(12)	-3369(3)	2790(3)	-1537(3)	11(1)	2.013

Cs(1)-O(1)#1	3.291(2)	O(4)#5-Cs(1)-O(1)#1	167.23(5)
Cs(1)-O(1)#2	3.291(2)	O(4)-Cs(1)-O(1)#2	167.23(5)
Cs(1)-O(2)#3	3.269(2)	O(4)#5-Cs(1)-O(1)#2	125.74(6)
Cs(1)-O(2)#4	3.269(2)	O(4)-Cs(1)-O(1)#1	125.74(6)
Cs(1)-O(3)#1	3.369(2)	O(4)-Cs(1)-O(2)#3	112.23(6)
Cs(1)-O(3)#2	3.369(2)	O(4)#5-Cs(1)-O(2)#3	93.98(6)
Cs(1)-O(4)	3.195(2)	O(4)#5-Cs(1)-O(2)#4	112.23(6)
Cs(1)-O(4)#5	3.195(2)	O(4)-Cs(1)-O(2)#4	93.98(6)
Cs(1)-O(5)#1	3.498(3)	O(4)#5-Cs(1)-O(3)#1	141.35(5)
Cs(1)-O(5)#2	3.498(3)	O(4)#5-Cs(1)-O(3)#2	75.86(6)
Cs(1)-O(6)	3.239(2)	O(4)-Cs(1)-O(3)#2	141.35(5)
Cs(1)-O(6)#5	3.239(2)	O(4)-Cs(1)-O(3)#1	75.86(6)
B(1)-O(1)	1.455(3)	O(4)#5-Cs(1)-O(4)	66.56(8)
B(1)-O(1)#6	1.455(3)	O(4)#5-Cs(1)-O(5)#1	112.93(5)
B(1)-O(5)#7	1.486(3)	O(4)#5-Cs(1)-O(5)#2	67.00(5)
B(1)-O(5)#8	1.486(3)	O(4)-Cs(1)-O(5)#1	67.00(5)
B(2)-O(1)	1.333(3)	O(4)-Cs(1)-O(5)#2	112.93(5)
B(2)-O(2)	1.374(3)	O(4)-Cs(1)-O(6)#5	101.71(6)
B(2)-O(6)#7	1.389(3)	O(4)#5-Cs(1)-O(6)#5	54.26(5)
B(3)-O(2)	1.377(3)	O(4)#5-Cs(1)-O(6)	101.71(6)
B(3)-O(3)	1.363(3)	O(4)-Cs(1)-O(6)	54.26(5)
B(3)-O(4)	1.346(3)	O(5)#2-Cs(1)-O(5)#1	179.92(6)
B(4)-O(3)	1.373(3)	O(6)-Cs(1)-O(1)#1	85.41(5)
B(4)-O(5)	1.338(4)	O(6)#5-Cs(1)-O(1)#1	120.34(5)
B(4)-O(6)	1.381(3)	O(6)#5-Cs(1)-O(1)#2	85.41(5)
O(1)#2-Cs(1)-O(1)#1	42.31(7)	O(6)-Cs(1)-O(1)#2	120.34(5)
O(1)#1-Cs(1)-O(3)#2	91.43(5)	O(6)-Cs(1)-O(2)#3	150.43(5)
O(1)#1-Cs(1)-O(3)#1	51.41(4)	O(6)-Cs(1)-O(2)#4	41.61(5)
O(1)#2-Cs(1)-O(3)#2	51.41(4)	O(6)#5-Cs(1)-O(2)#4	150.43(5)
O(1)#2-Cs(1)-O(3)#1	91.43(5)	O(6)#5-Cs(1)-O(2)#3	41.61(5)
O(1)#1-Cs(1)-O(5)#2	102.40(4)	O(6)-Cs(1)-O(3)#1	60.36(6)
O(1)#2-Cs(1)-O(5)#2	77.68(4)	O(6)#5-Cs(1)-O(3)#2	60.35(6)
O(1)#2-Cs(1)-O(5)#1	102.40(4)	O(6)#5-Cs(1)-O(3)#1	129.86(5)
O(1)#1-Cs(1)-O(5)#1	77.68(4)	O(6)-Cs(1)-O(3)#2	129.86(5)
O(2)#3-Cs(1)-O(1)#2	66.32(5)	O(6)-Cs(1)-O(5)#1	87.32(4)
O(2)#4-Cs(1)-O(1)#2	84.39(5)	O(6)#5-Cs(1)-O(5)#2	87.32(4)
O(2)#4-Cs(1)-O(1)#1	66.32(5)	O(6)#5-Cs(1)-O(5)#1	92.67(4)
O(2)#3-Cs(1)-O(1)#1	84.39(5)	O(6)-Cs(1)-O(5)#2	92.67(4)
O(2)#3-Cs(1)-O(2)#4	148.94(7)	O(6)-Cs(1)-O(6)#5	153.65(7)
O(2)#4-Cs(1)-O(3)#2	91.95(6)	O(1)-B(1)-O(5)#7	111.75(10)

Table S2. (a) Bond lengths [Å] and angles [°] for CsB₇O₁₀(OH)₂.

O(2)#4-Cs(1)-O(3)#1	78.12(6)	O(1)-B(1)-O(5)#8	108.27(11)
O(2)#3-Cs(1)-O(3)#2	78.12(6)	O(1)#6-B(1)-O(5)#7	108.27(11)
O(2)#3-Cs(1)-O(3)#1	91.95(6)	O(5)#7-B(1)-O(5)#8	107.4(3)
O(2)#4-Cs(1)-O(5)#1	116.62(5)	O(1)-B(2)-O(2)	124.5(2)
O(2)#3-Cs(1)-O(5)#1	63.40(5)	O(1)-B(2)-O(6)#7	121.9(2)
O(2)#4-Cs(1)-O(5)#2	63.40(5)	O(2)-B(2)-O(6)#7	113.5(2)
O(2)#3-Cs(1)-O(5)#2	116.62(5)	O(3)-B(3)-O(2)	119.5(2)
O(3)#2-Cs(1)-O(3)#1	142.55(7)	O(4)-B(3)-O(2)	119.1(2)
O(3)#2-Cs(1)-O(5)#1	140.68(4)	O(4)-B(3)-O(3)	121.4(2)
O(3)#1-Cs(1)-O(5)#2	140.68(4)	O(3)-B(4)-O(6)	120.6(2)
O(3)#1-Cs(1)-O(5)#1	39.36(4)	O(5)-B(4)-O(3)	117.3(2)
O(3)#2-Cs(1)-O(5)#2	39.36(4)	O(5)-B(4)-O(6)	122.0(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,-y+3/2,-z+1 #2 x+1/2,-y+3/2,z+1/2

#3 -x+3/2,y+1/2,-z+3	/2	#4 x+1/2,y+1/2,z
#5 -x+2,y,-z+3/2	#6 -x+3	1,y,-z+1/2

#7 x-1/2,y-1/2,z #8 -x+3/2,y-1/2,-z+1/2

Table S2. (b) Bond lengths [Å] and angles [°] for CsBaB₇O₁₂.

Ba(1)-O(3)	3.286(3)	O(11)#3-Ba(1)-O(6)	118.33(8)
Ba(1)-O(4)	2.727(3)	O(11)#3-Ba(1)-O(6)#1	98.12(9)
Ba(1)-O(5)	2.680(3)	O(11)#3-Ba(1)-O(7)	119.06(9)
Ba(1)-O(6)	2.948(3)	O(11)#3-Ba(1)-O(10)#4	79.78(8)
Ba(1)-O(6)#1	2.811(3)	O(12)#5-Ba(1)-O(3)	147.38(8)
Ba(1)-O(7)	2.802(3)	O(12)#5-Ba(1)-O(4)	124.37(8)
Ba(1)-O(10)#4	2.951(3)	O(12)#5-Ba(1)-O(5)	66.15(9)
Ba(1)-O(11)#3	2.797(3)	O(12)#5-Ba(1)-O(6)	70.30(8)
Ba(1)-O(12)#5	2.875(3)	O(12)#5-Ba(1)-O(6)#1	48.90(8)
Cs(1)-O(1)#6	3.309(3)	O(12)#5-Ba(1)-O(7)	119.07(8)
Cs(1)-O(2)	3.052(3)	O(12)#5-Ba(1)-O(10)#4	152.83(9)
Cs(1)-O(7)	3.134(3)	O(12)#5-Ba(1)-O(11)#3	91.35(8)
Cs(1)-O(8)#4	3.022(3)	O(2)-Cs(1)-O(1)#6	97.21(8)
Cs(1)-O(9)	3.080(3)	O(7)-Cs(1)-O(1)#6	102.42(8)
Cs(1)-O(9)#4	3.285(3)	O(7)-Cs(1)-O(2)	90.09(8)
Cs(1)-O(12)	3.475(3)	O(8)#4-Cs(1)-O(1)#6	91.16(8)
B(1)-O(7)#4	1.433(6)	O(8)#4-Cs(1)-O(2)	167.31(8)
B(1)-O(9)	1.484(6)	O(8)#4-Cs(1)-O(7)	97.42(8)
B(1)-O(10)	1.499(6)	O(9)#4-Cs(1)-O(1)#6	88.99(8)
B(1)-O(11)	1.461(6)	O(9)-Cs(1)-O(1)#6	165.49(7)
B(2)-O(6)	1.460(6)	O(9)-Cs(1)-O(2)	88.96(8)
B(2)-O(7)	1.449(6)	O(9)#4-Cs(1)-O(2)	133.57(8)
B(2)-O(8)	1.481(6)	O(9)-Cs(1)-O(7)	90.64(8)
B(2)-O(12)#4	1.498(6)	O(9)#4-Cs(1)-O(7)	43.93(8)

B(3)-O(3)	1.493(6)	O(9)#4-Cs(1)-O(8)#4	55.75(7)
B(3)-O(4)	1.449(6)	O(9)-Cs(1)-O(8)#4	80.78(8)
B(3)-O(5)#7	1.512(6)	O(12)-Cs(1)-O(1)#6	94.32(7)
B(3)-O(6)#7	1.431(6)	O(12)-Cs(1)-O(2)	126.51(7)
B(4)-O(2)	1.396(6)	O(12)-Cs(1)-O(7)	137.46(7)
B(4)-O(5)	1.349(6)	O(12)-Cs(1)-O(8)#4	42.84(7)
B(4)-O(10)#8	1.354(6)	O(12)-Cs(1)-O(9)#4	98.55(7)
B(5)-O(1)#9	1.392(6)	O(12)-Cs(1)-O(9)	71.56(7)
B(5)-O(3)#2	1.364(6)	O(9)-B(1)-O(7)#4	111.1(4)
B(5)-O(8)	1.343(6)	O(10)-B(1)-O(7)#4	107.6(4)
B(6)-O(4)#10	1.364(6)	O(10)-B(1)-O(9)	109.6(4)
B(6)-O(11)	1.372(6)	O(11)-B(1)-O(7)#4	112.6(4)
B(6)-O(12)	1.354(5)	O(11)-B(1)-O(9)	109.0(4)
B(7)-O(1)	1.381(6)	O(11)-B(1)-O(10)	106.9(4)
B(7)-O(2)	1.381(6)	O(7)-B(2)-O(6)	110.4(4)
B(7)-O(9)#8	1.334(6)	O(8)-B(2)-O(6)	110.7(4)
O(4)-Ba(1)-O(3)	45.17(8)	O(8)-B(2)-O(7)	110.7(4)
O(5)-Ba(1)-O(3)	109.09(8)	O(12)#4-B(2)-O(6)	105.5(4)
O(5)-Ba(1)-O(4)	149.78(9)	O(12)#4-B(2)-O(7)	111.5(4)
O(6)#1-Ba(1)-O(3)	98.49(8)	O(12)#4-B(2)-O(8)	108.0(4)
O(6)-Ba(1)-O(3)	133.24(8)	O(4)-B(3)-O(3)	107.0(4)
O(6)-Ba(1)-O(4)	156.20(8)	O(5)#7-B(3)-O(3)	105.7(3)
O(6)#1-Ba(1)-O(4)	93.72(9)	O(5)#7-B(3)-O(4)	112.2(4)
O(6)-Ba(1)-O(5)	49.84(8)	O(6)#7-B(3)-O(3)	113.5(4)
O(6)#1-Ba(1)-O(5)	72.33(9)	O(6)#7-B(3)-O(4)	110.2(4)
O(7)-Ba(1)-O(3)	86.38(8)	O(6)#7-B(3)-O(5)#7	108.1(4)
O(7)-Ba(1)-O(4)	114.73(9)	O(5)-B(4)-O(2)	117.3(4)
O(7)-Ba(1)-O(5)	70.75(9)	O(10)#8-B(4)-O(2)	119.9(4)
O(7)-Ba(1)-O(6)#1	142.26(8)	O(10)#8-B(4)-O(5)	122.8(4)
O(7)-Ba(1)-O(6)	49.01(8)	O(3)#2-B(5)-O(1)#9	116.1(4)
O(10)#4-Ba(1)-O(3)	59.43(8)	O(8)-B(5)-O(1)#9	120.4(4)
O(10)#4-Ba(1)-O(4)	67.72(9)	O(8)-B(5)-O(3)#2	123.5(4)
O(10)#4-Ba(1)-O(5)	117.23(8)	O(11)-B(6)-O(4)#10	114.4(4)
O(10)#4-Ba(1)-O(6)	91.27(8)	O(12)-B(6)-O(4)#10	124.1(4)
O(10)#4-Ba(1)-O(6)#1	157.41(9)	O(12)-B(6)-O(11)	121.4(4)
O(10)#4-Ba(1)-O(7)	48.49(8)	O(2)-B(7)-O(1)	115.0(4)
O(11)#3-Ba(1)-O(3)	93.18(8)	O(9)#8-B(7)-O(1)	123.4(4)
O(11)#3-Ba(1)-O(4)	49.18(9)	O(9)#8-B(7)-O(2)	121.7(4)
O(11)#3-Ba(1)-O(5)	156.64(9)		

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 -x+1,y-1/2,-z+1/2 #3 x+1,-y+1/2,z+1/2

#4 -x,-y+1,-z #5 x,-y+1/2,z+1/2 #6 -x,-y,-z #7 -x,y-1/2,-z+1/2 #8 -x,y+1/2,-z+1/2 #9 x-1,y,z #10 x,-y+1/2,z-1/2

NO	Compound	Space	M/B	FBBs	Anionic Groups
		group			
1	$Cs_4Mg_4(BO_3)_4^1$	P21/c	2	BO ₃	0D Isolated BO ₃ Unit
2	CsNa ₂ (BO ₃) ²	Pmmn	3	BO ₃	0D Isolated BO ₃ Unit
3	$Na_2CsBe_6B_5O_{15}^3$	C2/c	1.8	BO ₃	0D Isolated BO ₃ Unit
4	Cs ₃ (BO ₃) ⁴	Pbam	3	BO ₃	0D Isolated BO ₃ Unit
5	$CsBe_4(BO_3)_3^5$	Pnma	1.667	BO ₃	0D Isolated BO ₃ Unit
6	CsCaBO ₃ ⁶	P2 ₁ 3	2	BO ₃	0D Isolated BO ₃ Unit
7	$Cs[B(OH)_4] \cdot 2H_2O^7$	ī4	1	B(OH) ₄	0D Isolated B(OH) ₄
8	CsLi ₅ (BO ₃) ₂ ⁸	C2/c	3	BO ₃	0D Isolated BO ₃ Unit
9	$Cs_3Na[Li_2(BO_3)_2]^9$	<i>p</i> 1	3	BO ₃	0D Isolated BO ₃ Unit
10	CsBO ₂ ¹⁰	R ³ c	1	B ₃ O ₆	0D Isolated B ₃ O ₆ Ring
11	CsBaB ₃ O ₆ ¹¹	<i>P</i> 321	0.667	B ₃ O ₆	0D Isolated B ₃ O ₆ Ring
12	$Cs_2(B_3O_5)_2^{12}$	P2 ₁ 2 ₁ 2 ₁	0.333	B ₃ O ₇	$3D B_3O_5$ Framework
13	CsLiB ₆ O ₁₀ ¹³⁻¹⁵	l ⁴ 2d	0.333	B ₃ O ₇	3D B ₃ O ₅ Framework
14	$Cs_2(B_3O_5)_2^{16}$	P212121	0.333	B ₃ O ₇	$3D B_3O_5$ Framework
15	$NaCs[B_4O_5(OH)_4]\cdot 4H_2O^{17}$	P2₁/c	0.5	B ₄ O ₅ (OH) ₄	0D Isolated B ₄ O ₅ (OH) ₄ Unit
16	$Cs_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O^{18}$	P212121	0.375	B ₄ O ₅ (OH) ₄	0D Isolated B ₄ O ₅ (OH) ₄ Unit
17	Cs ₂ [B ₄ O ₅ (OH) ₄]·3H ₂ O ¹⁹	P21/c	0.5	B ₄ O ₅ (OH) ₄	0D Isolated $B_4O_5(OH)_4$ Unit
18	$Li_3Cs_2B_5O_{10}^{20}$	C2221	1	B ₅ O ₁₀	0D Isolated B ₅ O ₁₀ Unit
19	$Na_2Cs_2B_{20}O_{32}^{21}$	C2/c	0.2	B ₅ O ₁₀	3D B ₅ O ₈ Framework
20	Cs[B ₅ O ₆ (OH) ₄]·2H ₂ O ^{22, 23}	C2/c	0.2	B ₅ O ₆ (OH) ₄	0D Isolated B ₅ O ₆ (OH) ₄ Unit
21	K ₃ CsB ₂₀ O ₃₂ ²⁴	Pbca	0.2	B ₅ O ₁₀	3D B ₂₀ O ₃₂ Framework
22	α-CsB ₅ O ₈ ^{25, 26}	P2₁/c	0.2	B ₅ O ₁₀	3D B ₅ O ₈ Framework
23	<i>B</i>-CsB₅O₈^{26, 27}	Pbca	0.2	B ₅ O ₁₀	3D B ₅ O ₈ Framework
24	γ-CsB ₅ O ₈ ²⁶	Pbca	0.2	B ₅ O ₁₀	3D B ₅ O ₈ Framework
25	<i>HP</i> - CsB ₅ O ₈ ²⁸	Pnma	0.2	B ₅ O ₁₁	3D B ₅ O ₈ Framework
26	$Cs_2Na_2B_{10}O_{17}^{29}$	C2/c	0.4	B ₅ O ₁₁	2D B ₁₀ O ₁₇ Layer
27	$Cs_2K_2B_{10}O_{17}^{29}$	C2/c	0.4	B ₅ O ₁₁	2D B ₁₀ O ₁₇ Layer
28	Li ₅ Cs ₂ B ₇ O ₁₄ ³⁰	Ama2	1	B_5O_{12} and BO_3	1D B_5O_{10} Chain and BO_2 Chain
29	Li ₄ Cs ₃ B ₇ O ₁₄ ³¹	P3121	1	B ₇ O ₁₄	0D Isolated B ₇ O ₁₄ Unit
30	α -CsB ₉ O ₁₄ ³²	P222 ₁	0.111	B ₉ O ₁₇	3D B ₉ O ₁₄ Framework
31	β-CsB ₉ O ₁₄ ³³	P21/c	0.111	B ₉ O ₁₈	2D B ₉ O ₁₄ Layer

Table S3. Disorder-free alkali- and/or alkaline-earth metal cations-containing caesium borates.

32	$Cs_2(B_9O_{14})_2^{34}$	P222 ₁	0.111	B ₉ O ₁₇	3D B ₉ O ₁₄ Framework
33	$Na_2Cs_2Sr(B_9O_{15})_2^{35}$	P2₁/c	0.278	B ₉ O ₁₉	3D B ₉ O ₁₅ Framework
34	$Na_2Cs_2BaB_{18}O_{30}^{24}$	Pmn2 ₁	0.278	B ₉ O ₁₉	3D B ₁₈ O ₃₀ Framework
35	δ-CsB5O8 ³⁶	Pccn	0.2	B ₁₀ O ₁₉	3D B ₅ O ₈ Framework
36	NaCs[B ₁₀ O ₁₄ (OH) ₄] ³⁷	P2/c	0.2	B ₁₀ O ₁₅ (OH) ₄	1D B ₁₀ O ₁₄ (OH) ₄ Chain
37	$Na_2Cs_4Ba_2[B_{12}O_{18}(OH)_6]\cdot 4(OH)^{38}$	Pmn2 ₁	0.667	B ₁₂ O ₁₈ (OH) ₆	0D Isolated
					B ₁₂ O ₁₈ (OH) ₆ Unit
38	Cs ₃ B ₁₃ O ₂₁ ³⁹	C2/c	0.230	B ₂₆ O ₅₁	B ₁₂ O ₁₈ (OH) ₆ Unit 3D B ₁₃ O ₂₁ Layer
38 39	$Cs_3B_{13}O_{21}^{39}$ Na_8CsB_{21}O_{36}^{40}	C2/c /4	0.230 0.429	B ₂₆ O ₅₁ B ₂₁ O ₄₄	B ₁₂ O ₁₈ (OH) ₆ Unit 3D B ₁₃ O ₂₁ Layer 3D B ₂₁ O ₃₆ Framework
38 39 40	$Cs_{3}B_{13}O_{21}^{39}$ $Na_{8}CsB_{21}O_{36}^{40}$ $Li_{4}Cs_{4}B_{40}O_{64}^{21}$	C2/c /Ā p1	0.230 0.429 0.2	B ₂₆ O ₅₁ B ₂₁ O ₄₄ B ₄₀ O ₇₇	B ₁₂ O ₁₈ (OH) ₆ Unit 3D B ₁₃ O ₂₁ Layer 3D B ₂₁ O ₃₆ Framework 3D B ₄₀ O ₆₄ Framework
38 39 40 41	$\begin{array}{c} \\ Cs_{3}B_{13}O_{21}{}^{39} \\ \\ Na_{8}CsB_{21}O_{36}{}^{40} \\ \\ Li_{4}Cs_{4}B_{40}O_{64}{}^{21} \\ \\ Cs_{3}B_{7}O_{12}{}^{41} \end{array}$	C2/c /Ā p1 C2/c	0.230 0.429 0.2 0.429	B ₂₆ O ₅₁ B ₂₁ O ₄₄ B ₄₀ O ₇₇ B ₆₃ O ₁₃₃	B12O18(OH)6 Unit 3D B13O21 Layer 3D B21O36 Framework 3D B40O64 Framework 3D B63O108

Figure S1. The crystal photographs of CsB₇O₁₀(OH)₂ (a) and CsBaB₇O₁₂ (b).

Figure S2. (a) $_{\infty}$ [CsBaO₁₂] layer; the $_{\infty}$ [BaO₈] chain is surrounded by blue circle; the [Cs₂O₁₂] dimer is surrounded by green circle. (b) The 3D $_{\infty}$ [B₇O₁₂] anionic open-framework. (c) The whole 3D framework of CsBaB₇O₁₂.

Figure S3. The fundamental building blocks (FBBs) of the investigated compounds.

Figure S4. The anionic structures of the investigated compounds.

Figure S5. TG-DSC curves of CsBaB₇O₁₂.

Figure S6. (a) The IR spectrum of $CsB_7O_{10}(OH)_2$. (b) The IR spectrum of $CsBaB_7O_{12}$.

Mode description	IR (cm ⁻¹) for CsB ₇ O ₁₀ (OH) ₂	IR (cm ⁻¹) for CsBaB ₇ O ₁₂
stretching vibrations of OH	3382	/
groups		
asymmetric stretching vibration	1377, 1314, and 1224	1317, 1243, 1227
of BO3 groups		
asymmetric stretching vibration	1086 and 989	1066, 1000 and 914
of BO ₄ groups		
symmetric extension of BO_3	886 to 803	856
groups		
symmetric stretching vibration	775	737 and 778
of BO ₄ groups		
out-of-plane bending of BO_3	671	620 to 720
groups		
bending of in-plane bending of	595 and 512	551
BO ₃ groups		
bending of BO ₄ groups	400 to 500	400 to 500

Notes and References

- 1 Z. Wang, M. Zhang, S. L. Pan, Z. H. Yang, H. Zhang, B. B. Zhang, Y. Wang, J. Kang and X. X. Lin, *New J. Chem.*, 2014, **38**, 3035.
- 2 M. Schlager and R. Hoppe, *Aust. J. Chem.*, 1992, **45**, 1427-1439.
- 3 S. Wang and N. Ye, J. Am. Chem. Soc., 2011, **133**, 11458-11461.
- 4 C. Hoch, Z. Naturforsch. B, 2011, 66b, 1248-1254.
- 5 H. W. Huang, W. J. Yao, R. He, C. T. Chen, X. Y. Wang and Y. H. Zhang, *Solid State Sci.*, 2013, **18**, 105-109.
- 6 M. Wen, H. P. Wu, X. Su, J. J. Lu, Z. H. Yang, X. H. Wu and S. L.Pan, *Dalton T.*, 2017, 46, 4968-4974.
- 7 I. I. Zviedre and A. levins, *Latv. PSR Zinat. Akad. Vestis, Kim. Ser*, 1974, **1974**, 401-405.
- 8 M. Miessen and R. Hoppe, Z. Anorg. Allg. Chem., 1986, **536**, 92-100.
- 9 M. Schlager and R. Hoppe, Z. Anorg. Allg. Chem., 1991, 605, 25-34.
- 10 M. Schliiger and H. Hoppe, Z. Anorg. Allg. Chem., 1994, 620, 1867-1871.
- 11 G. J. Chen, Y. C. Wu and P. Z. Fu, J. Solid State Chem., 2007, 180, 2194-2201.
- 12 J. K. MOE, Acta Crystallogr. B, 1974, **30**, 1178-1180.
- 13 J.M. Tu and D. A. Keszler, *Mater. Res. Bull.*, 1995, **30**, 209-215.
- 14 A. Sasaki, Y. Mori, I. Kuroda, S. Nakajima, K. Yamaguchi and S. Watanabe, *Acta Crystallogr. C*, 1995, **51**, 2222-2224.
- 15 N. A. Sennova, G. Cordier, B. Albert, S. K. Filatov, R. S. Bubnova, L. I. Isaenko, L. I. Gubenko, J. P. Klöckner and M. H. Prosenc, *Z. Kristallogr. Cryst. Mater.*, 2014, **229**, 741-751.
- 16 J. Krogh-Moe, Acta Crystallogr. B, 1974, **30**, 1178-1180.
- 17 J. G. Zhou, F. Y. Zhao, S. P. Xia and S. Y. Gao, J. Mol. Struct., 2004, 688, 143-148.
- 18 L. X. Zhu, T. Yue, S. P. Xia and K. B. Yu, J. Alloy. Compd., 2004, 372, 97-102.
- 19 M. Touboul, N. Penin and G. Nowogrocki, J. Solid State Chem., 1999, 143, 260-265.
- 20 Y. Yang, S. L. Pan, X. L. Hou, C. Y. Wang, K. R. Poeppelmeier, Z. H. Chen, H. P. Wu and Z. X. Zhou, J. Mater. Chem., 2011, 21, 2890-2894.
- 21 M. Abudoureheman, S. J. Han, Y. Wang, Q. Liu, Z. H. Yang and S. L. Pan, *Inorg. Chem.*, 2017, **56**, 13456-13463.
- 22 N. Penin, L. Seguin, B. Gerand, M. Touboul and G. Nowogrocki, *J. Alloy. Compd.*, 2002, **334**, 97-109.
- 23 H. Behm, Acta Crystallogr. C , 1984, **40**, 1114-1116.
- 24 M. Mutailipu, M. Zhang, X. Su, Z. Yang, Y. Chen and S. Pan, *Chem. Eur. J.*, 2017, **23**, 13910-13918.
- 25 S. Filatov, R. Bubnova, Y. Shepelev, J. Anderson and Y. Smolin, *Cryst. Res. Technol.*, 2005, **40**, 65-72.
- 26 N. Penin, L. Seguin, M. Touboul and G. Nowogrocki, J. Solid State Chem., 2001, 161, 205-213.
- 27 R. Bubnova, R. E. Dinnebier, S. Filatov and J. Anderson, Cryst. Res. Technol., 2007, 42, 143-150.
- 28 G. Sohr, D. M. Többens, J. Schmedt auf der Günne and H. Huppertz, *Chem. Eur. J.*, 2014, **20**, 17059-17067.
- 29 J. M. Tu and D. A. Keszler, *Inorg. Chem.*, 1996, **35**, 463-466.
- 30 L. Li, S. J. Han, B. H. Lei, X. Y. Dong, H. P. Wu, Z. X. Zhou, Z. H. Yang and S. L. Pan, *Inorg. Chem.*, 2015, **54**, 7381-7387.
- 31 Y. Yang, S. L. Pan, H. Y. Li, J. Han, Z. Chen, W. W. Zhao and Z. X. Zhou, *Inorg. Chem.*, 2011, **50**, 2415-2419.
- 32 N. Penin, M. Touboul and G. Nowogrocki, J. Solid State Chem., 2003, 175, 348-352.

- 33 S. J. Han, C. M. Huang, A. Tudi, S. S. Hu, Z. H. Yang and S. L. Pan, *Chem. Eur. J.*, 2019, **25**, 11614-11619.
- 34 J. Krogh-Moe, Acta Crystallogr., 1967, 23, 427-430.
- 35 X. Chen, L. Wu, K. Wang, X. Chang and W. Xiao, J. Alloy. Compd., 2015, 623, 157-163.
- 36 A. Q. Jiao, H. W. Yu, H. P. Wu, S. L. Pan and X. W. Zhang, *Inorg. Chem.*, 2014, **53**, 2358-2360.
- 37 L. Q. Li, Q. Song, P. Li, H. S. Huang and Z. H. Liu, J. Therm. Anal. Calorim., 2014, 116, 1019-1025.
- 38 T. J. Zhang, R. Pan, H. He, B. F. Yang and G. Y. Yang, J. Clust. Sci., 2015, 27, 625-633.
- 39 N. Penin, L. Seguin, M. Touboul and G. Nowogrocki, *Solid State Sci.*, 2002, **4**, 67-76.
- 40 M. Mutailipu, M. Zhang, X. Su, Z. H. Yang and S. L.Pan, *Inorg. Chem.*, 2017, **56**, 5506-5509.
- 41 G. Nowogrocki, N. Penin and M. Touboul, *Solid State Sci.*, 2003, **5**, 795-803.