The effect of an organic cation on electronic, optical and luminescent properties of 1D piperidinium, pyridinium, and 3-hydroxypyridinium lead trihalides.

N.I. Selivanov^{1*}, Iu.A. Rozhkova¹, R. Kevorkyants^{1*}, A.V. Emeline¹, and D.W. Bahnemann^{1,2}

¹Laboratory of Photoactive Nanocomposite Materials, St. Petersburg State University, Ulyanovskaya 1, St.Petersburg, 198504 Russia

²Leibniz University of Hannover, Callinstrasse 3, Hannover 30167, Germany

*Corresponding author's e-mail: selivanov chem@mail.ru; ruslan.kevorkyants@gmail.com

Supplementary information

Figure S1. Experimental diffractograms of powdered PipPbBr₃ (a; curve 1), PipPbI₃ (b; curve 1), 2PipPbI₃·C₃H₇NO (b; curve 2), and 3-OH-PyPbBr₃ (c; curve 1) samples and their simulated counterparts (based on XRD analysis of single crystals) for PipPbBr₃ (a; curve 2), PipPbI₃ (b; curve 3), 3-OH-PyPbBr₃ (c; curve 2).

Figure S2. XRD data on PipPbI₃ (a) and PyPbI₃ (b) obtained at various temperatures.

Figure S3. Tauc plots of diffuse reflectance spectra for PipPbBr₃ and PipPbI₃ in the case of direct (a, b) electronic transitions.

Figure S4. The dependence of lnF(E)E on E (eV) for PipPbBr₃ (left) and PipPbI₃ (right).

Figure S5. The dependence of a first derivative of absorption spectra on E (eV). Left: PipPbBr₃ (1), PyPbBr₃ (2), and 3-OH-PyPbBr₃ (3); right: PipPbI₃ (1) and PyPbI₃ (2).

Figure S6. Absorption spectra of the salts: PyHBr (1), 3-OH-PyHBr (2), PyHI (3).

Figure S7. Luminescence spectra of 3-OH-PyPbBr₃ at $\lambda_{exc.}$: 390 nm (1), 450 nm (2), 470 nm (3), 490 nm (4).