Supporting information

Substituent group-tunable hydrogen evolution activity observed in isostructural Cu(II)-based coordination polymer photocatalysts

Xue-Jiao Dai,[†] Jia-Jun Wang,[†] Lei Li,[†] Bo Ding,[†] Zheng-Yu Liu,[†] Xiao-Jun Zhao^{*, †, ‡} and En-Cui Yang^{*†}

[†] Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China

[‡] College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry,

Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules,

Tianjin Normal University, Tianjin 300387, People's Republic of China

Table S1 Crystal and structure refinement data for Cu-CP-R.^a

	Cu-CP-NH ₂	Cu-CP-NO ₂	Cu-CP-H	Cu-CP-OH	Cu-CP-Br
Temperature	293	127	118.6	293	296
empirical formula	C50H35CuN7O6	C50H33CuN7O8	$C_{50}H_{34}CuN_6O_6$	$C_{50}H_{34}CuN_6O_7$	$C_{50}H_{32}CuN_6O_6Br$
$F_{ m w}$	893.39	923.37	878.37	894.37	956.26
cryst size (mm)	$0.25\times0.22\times0.20$	$0.22 \times 0.21 \times 0.20$	$0.25 \times 0.22 \times 0.20$	$0.25 \times 0.22 \times 0.20$	$0.22\times0.21\times0.18$
cryst syst	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
space group	<i>P</i> –1	<i>P</i> –1	<i>P</i> –1	<i>P</i> –1	<i>P</i> –1
<i>a</i> (Å)	7.1100(5)	7.1161(8)	7.0631(4)	7.1213(3)	7.2467(13)
<i>b</i> (Å)	10.9172(8)	10.8134(14)	10.9098(7)	10.9493(5)	10.935(2)
<i>c</i> (Å)	13.7599(10)	13.898(2)	13.8073(8)	13.8046(6)	13.919(3)
α (°)	82.193(6)	81.988(12)	82.556(5)	81.707(4)	82.290(4)
β (°)	87.050(6)	86.064(10)	89.225(5)	88.055(4)	87.182(4)
γ (°)	72.875(6)	74.160(10)	73.069(6)	72.596(4)	72.275(4)
$V(Å^3)$	1011.16(13)	1018.3(2)	1008.93(11)	1016.33(8)	1041.1(3)
$Z, D_{\rm c} ({\rm g}~{\rm cm}^{-3})$	1, 1.467	1, 1.506	1, 1.446	1, 1.461	1,1.525
$h \mid k \mid l$	- 8, 8 / - 12, 13 / - 16, 16	- 8, 8 / - 12, 12 / - 16, 16	- 8, 8 / - 8, 12 / - 16, 16	- 8, 8 / - 13, 11 / - 16, 16	- 8, 8 / - 12, 12 / - 16, 13
<i>F</i> (000)	461	475	453	461	486
$\mu(\mathrm{mm}^{-1})$	1.288	0.606	0.603	1.294	1.545
reflections collected / unique	7041 / 3601	6857 / 3584	6646 / 3554	6457 / 3633	6040 / 3663
$R_{ m int}$	0.2331	0.0582	0.0505	0.0345	0.0451
data / restraints / params	3601 / 54 / 297	3585 / 54 / 314	3554 / 0 / 287	3633 / 7 / 296	3663 / 12 / 304
$R_1^{a}, wR_2^{b} (I > 2\sigma(I))$	0.1637, 0.3632	0.0998, 0.1954	0.0481, 0.0989	0.0430, 0.1074	0.0911, 0.2312
R_1 , wR_2 (all data)	0.2252, 0.4191	0.1388, 0.2115	0.0635, 0.1064	0.0508, 0.1144	0.1339, 0.2565

GOF on F^2	1.029	1.183	1.045	1.059	1.073
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \cdot {\rm \AA}^{-3})$	1.84, -2.02	0.97, -0.56	0.45, -0.70	0.73, -0.47	0.58, -1.45

 ${}^{a}R_{1} = \Sigma(||F_{o}| - |F_{c}||)/\Sigma|F_{o}|; {}^{b}wR_{2} = [\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}$

Fig. S1 3D stacking structure of Cu-CP-NO₂.

D	R					
Parameters	NH ₂	NO ₂	Н	ОН	Br	Average value
Cu(1)–O(1)	1.948(6)	1.977(5)	1.954(2)	1.9584(14)	1.953(4)	1.958±0.019
Cu(1)–N(2)	2.014(7)	1.992(5)	1.993(2)	1.9917(17)	1.998(6)	1.998±0.019
Cu(1)–O(3) ^{#2}	2.6159(76)	2.6246(56)	2.6234(56)	2.6198(22)	2.6799(70)	2.633 ± 0.047
O(1)-Cu(1)-N(2)	89.7(3)	89.9(2)	89.54(8)	89.07(7)	90.0(2)	89.64±0.57
O(1) ^{#1} -Cu(1)-N(2)	90.3(3)	90.1(2)	90.46(8)	90.93(7)	90.0(2)	90.36±0.57

Table S2. Selected bond lengths (Å) and angles (deg) for Cu-CP-R a

^{*a*} Symmetry codes: ^{#1} 1 - x, 2 - y, -z; ^{#2} x, y, -1 + z.

Fig. S2 PXRD patterns for the as-synthesized photocatalysts before and after photocatalysis.

Fig. S3 TG curves of the five Cu-CP-R photocatalysts.

Fig. S4 Band gaps for the five Cu-CP-R photocatalysts.

Fig. S5 Cycling tests of the photocatalytic hydrogen evolution for Cu-CP-NO₂.

Fig. S6 Emission spectra of EY by **Cu-CP-R** samples and TEOA in an aqueous solution (Inset: Stern-Volmer plot for the photoluminescence quenching of EY by **Cu-CP-R** or TEOA).