Supporting information

Using Frustrated Lewis pairs to explore C-F bond activation

Alvaro I. Briceno-Strocchia, Timothy C. Johnstone, and Douglas W. Stephan

Contents

Supporting information	.1
[PhC(O)CF ₂ C(OSiMe ₂ tBu)CF ₃ Ph] 1	.3
Figure S1: ¹ H NMR (500 MHz, CDCl ₃) spectrum of 1	.3
Figure S2: ¹³ C NMR (100 MHz, CDCl ₃) spectrum of 1	.3
Figure S3: 19F{H} NMR (377 MHz. CDCl3) spectrum for 1	.4
[PhC(CF ₂)OP(MeNCH ₂ CH ₂) ₃ N][BFPh ₃] 2	.4
Figure S4: 1H NMR (500 MHz, CDCl3) spectrum of 2	.4
Figure S5 : 13C NMR (100 MHz, CDCl3) spectrum of 2	.5
Figure S6: 19F NMR (377 MHz, CDCl3) spectrum of 2.	.5
Figure S7: 31P{1H} NMR (162 MHz, CDCl3) spectrum of 2. (Peak at -10.9 ppm corresponds to HP[(MeNCH2CH2)3N]+)	.6
Figure S8: 11B NMR (128 MHz, CDCl3) spectrum of 2	.6
[PhC(CF ₂)OP(MeNCH ₂ CH ₂) ₃ N][O ₃ SCF ₃] 3	.6
Figure S9: 19F{1H} NMR (377 MHz, CDCl3) spectrum of 3.	.7
Figure S10: 31P{1H} NMR (162 MHz, CDCl3) spectrum of 3	.7
[PhC(CF(H))OP(MeNCH ₂ CH ₂) ₃ N][O ₃ SCF ₃] 3	.8
Figure S11: 1H NMR (400 MHz, CDCl3) spectrum of 4	.8
Figure S12 13C NMR (100 MHz, CDCl3) spectrum of 4	.8
Figure S13: 19F NMR (377 MHz, CDCl3) spectrum of 4.	.9
Figure S14: 31P NMR (162 MHz, CDCl3) spectrum of 4	.9

[PhC(CH ₂)OP(MeNCH ₂ CH ₂) ₃ N][O ₃ SCF ₃] 510
Figure S15: 1H NMR (500 MHz, CDCl3) spectrum of 510
Figure S16: 13C NMR (500 MHz, CDCl3) spectrum of 510
Figure S17: 19F NMR (377 MHz, CDCl3) spectrum of 511
Figure S18: 31P{1H} NMR (162 MHz, CDCl3) spectrum of 511
$[HP(MeNCH_2CH_2)_3N][PhC(CH_2)OB(C_6F_5)_3] \ 6 \ \dots \ 12$
Figure S19: 1H NMR (500 MHz, CD2Cl2) spectrum of 612
Figure S21: 19F NMR (377 MHz, CD2Cl2) spectrum of 613
Figure S22: 31P NMR (162 MHz, CDCl3) spectrum of 613
Figure S23: 11B NMR (128 MHz, CD2Cl2) spectrum of 614
Computations14
Scheme S1: Proposed mechanism for DFEP[FB(C ₆ H ₅) ₃]16
Figure S24: Thermodynamic and kinetic prediction using DFT for generation of DFEP[FBPh₃]. Energy's for stationary points, italicized, in kcal/mol16
Figure S25: Approximated structures (SMD(DCM)/PBE0-GD3BJ/def2-TZVPP//SMD(DCM)/PBE0- GD3BJ/def2-SVPP) used for calculation thermodynamic profile for DFEP[FBPH ₃] formation17
References

[PhC(O)CF2C(OSiMe2tBu)CF3Ph] 1

Figure S1: ¹H NMR (500 MHz, CDCl₃) spectrum of **1**.

Figure S2: ¹³C NMR (100 MHz, CDCl₃) spectrum of **1**.

Figure S3: 19F{H} NMR (377 MHz. CDCl3) spectrum for 1.

[PhC(CF₂)OP(MeNCH₂CH₂)₃N][BFPh₃] 2

Figure S4: 1H NMR (500 MHz, CDCl3) spectrum of 2

Figure S5 : 13C NMR (100 MHz, CDCl3) spectrum of 2

Figure S6: 19F NMR (377 MHz, CDCl3) spectrum of 2.

$[PhC(CF_2)OP(MeNCH_2CH_2)_3N][O_3SCF_3] 3$

Figure S9: 19F{1H} NMR (377 MHz, CDCl3) spectrum of 3.

Figure S10: 31P{1H} NMR (162 MHz, CDCl3) spectrum of 3

[PhC(CF(H))OP(MeNCH₂CH₂)₃N][O₃SCF₃] 3

Figure S11: 1H NMR (400 MHz, CDCl3) spectrum of 4.

Figure S12 13C NMR (100 MHz, CDCl3) spectrum of 4.

Figure S13: 19F NMR (377 MHz, CDCl3) spectrum of 4.

Figure S14: 31P NMR (162 MHz, CDCl3) spectrum of 4.

Figure S15: 1H NMR (500 MHz, CDCl3) spectrum of 5.

Figure S16: 13C NMR (500 MHz, CDCl3) spectrum of 5.

Figure S17: 19F NMR (377 MHz, CDCl3) spectrum of 5.

Figure S18: 31P{1H} NMR (162 MHz, CDCl3) spectrum of 5.

Figure S19: 1H NMR (500 MHz, CD2Cl2) spectrum of 6

Figure S20: 13C NMR (100 MHz, CD2Cl2) spectrum of 6

Figure S21: 19F NMR (377 MHz, CD2Cl2) spectrum of 6.

Figure S22: 31P NMR (162 MHz, CDCl3) spectrum of 6.

Figure S23: 11B NMR (128 MHz, CD2Cl2) spectrum of 6.

Computations

Calculations were carried out with the Gaussian 09 package,⁷ All geometry optimizations were performed with the PBE1PBE functional. The optimizations also implemented Grimme's D3 empirical dispersion with Beck-Johnson damping (GD3BJ)⁸ alongside SMD solvent correction. Def2-SVPP basis set was used for all the atoms. Frequency calculations at the same level of theory, with the same corrections, were performed to identify the number of imaginary frequencies and provide the thermal corrections of Gibbs free energy. Intrinsic Reaction Coordinates (IRC) were performed for transition state structures to determine corresponding two minima.

Single-point energy calculations were performed at the PBE1PBE/Def2-TZVPP level of theory alongside the SMD solvent correction and Grimme's GD3BJ. The Gibbs energy corrections from frequency calculations were added to the single-point energies to obtain the Gibbs free energies in solution. All the solution-phase free energies reported in the paper correspond to the reference state of 1 mol/L, 298K.

All geometry optimization and frequency calculations were performed using Gaussian 09. The PBE0 functional with def2-SVPP basis set was used. Stefan Grimme's D3 dispersion with added Becke-Johnson damping function for the empirical dispersion correction was implemented alongside the SMD model for solvent correction. The single-point energy calculations were performed with the same functional, empirical dispersion correction, and solvent corrections as

the geometry and frequency calculations, but the basis set used was def2-TZVPP. Minimum stationary states were identified by the absence of imaginary frequencies, whilst the transition states resulted in a single imaginary frequency.

Compound	Single point energy	Thermal correction to	Sum of Electronic
	(Hartree)	Gibbs Free Energy	and Thermal
		(Hartree)	Enthalpy (Hartree)
1	-682.194021429	0.079532	-682.1144894
2	-915.410104705	0.272955	-915.1371497
3	-719.260113261	0.235419	-719.0246943
TS1	-1597.61033494	0.380213	-1597.230122
4	-1597.61298337	0.381474	-1597.231509
5	-1597.62420599	0.379641	-1597.244565
TS2	-2316.88643402	0.635210	-2316.251224
6	-1497.69719234	0.382257	-1497.314935
7	-819.229559691	0.233689	-818.9958707

T 11 C	4	T 1 1		•	1	1			1 1	
Table S	1.	Thermod	vnamie	interme	diates :	and 1	transition	state	calculation	energies
I dole D	1.	Thermou	ynanne	mormo	uluius	unu	uansition	State	culculation	chergies

Scheme S1: Proposed mechanism for DFEP[FB(C_6H_5)₃]

Figure S24: Thermodynamic and kinetic prediction using DFT for generation of DFEP[FBPh₃]. Energy's for stationary points, italicized, in kcal/mol.

TS1

5

TS2

Figure S25: Approximated structures (SMD(DCM)/PBEO-GD3BJ/def2-TZVPP//SMD(DCM)/PBEO-GD3BJ/def2-SVPP) used for calculation thermodynamic profile for DFEP[FBPH₃] formation. The computational approximations' coordinates for all the atoms are listed in the X, Y, Z Cartesian. The elemental symbols (i.e. P, N, O, C, B, F, H) are all for ground state electronic configurations. Therefore, the elemental symbols P, N, O, C, B, F, and H correspond to 15, 9, 8, 7, 6, 5, and 1 atomic numbers, respectively, in the singlet electronic configuration.

Optimized (SMD(DCM)/PBE0-GD3BJ/def2-TZVPP//SMD(DCM)/PBE0-GD3BJ/def2-svpp) Cartesian coordinates for 1

С	-4.22270200	0.06235800	1.49168600	Н	-4.66903700	3.44600900	1.50427300
С	-2.83106200	0.01396100	1.48988400	Н	-5.97694700	1.32271000	1.49894300
С	-2.09001200	1.20702900	1.49262500	С	-0.61238200	1.25552400	1.49055100
С	-2.76325200	2.43981700	1.49717900	0	0.02904300	2.27755400	1.47940800
С	-4.15136900	2.48246500	1.49985000	С	0.17470700	-0.07883900	1.50552600
С	-4.88308600	1.29160700	1.49698700	F	1.47721500	0.15053700	1.51330700
Н	-4.79613500	-0.86890500	1.48899300	F	-0.12579500	-0.80059200	2.58839100
Н	-2.33859100	-0.96023200	1.48547800	F	-0.11019300	-0.81557500	0.42839800
Н	-2.17303100	3.35977600	1.49922900				

Optimized (SMD(DCM)/PBE0-GD3BJ/def2-TZVPP//SMD(DCM)/PBE0-GD3BJ/def2-svpp) Cartesian coordinates for 2

Р	2.93932600	1.30957700	5.88622200	Н	0.54844300	-1.00342000	5.23424000
Ν	2.64177000	1.43144000	2.51661700	Н	2.49254400	-0.90517300	4.00593200
Ν	1.37344000	0.97237100	5.26380300	Н	4.17026200	-1.39054900	3.72176600
Ν	3.30830700	2.82309800	5.15959200	Н	-0.32712100	1.55010700	4.22662000
Ν	3.93670300	0.22014400	5.00716800	Н	0.96286200	2.76171100	4.27263800
С	4.02982900	2.97557200	3.91805700	Н	2.48719100	3.74411600	6.84109400
С	0.63156300	-0.09901100	5.87366200	Н	2.01398700	4.52224500	5.30926000
С	3.51067000	-0.50966500	3.83640300	Н	3.66890100	4.74883600	5.95406900
С	0.76967100	1.67940300	4.15893700	Н	0.97674400	0.20854100	2.57830200
С	2.85058300	4.01051300	5.83081500	Н	0.64367500	1.86098600	2.02842500
С	1.23477200	1.26680500	2.76040800	Н	4.51980600	0.60540200	2.27316900
С	3.49568200	0.27552900	2.52242400	Н	3.19335400	-0.43261400	1.71915600
С	3.22642400	2.73909200	2.63666200	Н	2.41423500	3.48405200	2.56295500
С	5.28939600	0.04232000	5.46397600	Н	3.90840200	2.93748700	1.78016500
Н	4.45415000	3.99706800	3.89157000	Н	5.40713300	0.51562800	6.45685000
Н	4.89152400	2.28296900	3.91122600	Н	5.54350600	-1.03163500	5.57344000
Н	1.13568800	-0.40840800	6.80845800	Н	6.04852500	0.49931500	4.79432700
Н	-0.39734900	0.21894400	6.13829400				

В	-0.49401600	0.22117600	0.00302600	С	3.89936300	0.22027700	-0.00370100
С	1.07302200	0.22096300	0.00080300	Н	3.74622000	-1.36872400	1.45604900
С	1.80642000	-0.67811300	0.80061300	Н	3.74233400	1.80937600	-1.46294100
С	1.80430100	1.11973100	-0.80128700	Н	4.99418600	0.21999200	-0.00546500
С	3.20033600	-0.67127600	0.81269300	С	-1.27720900	1.56596900	-0.17964800
Н	1.27128000	-1.38869900	1.43888300	С	-2.51589300	1.60697600	-0.85054600
С	3.19817200	1.11219800	-0.81783700	С	-0.77037900	2.78219800	0.32023100
Н	1.26745400	1.83056800	-1.43784200	С	-3.20824700	2.80377200	-1.02809800

Н	-2.93815500	0.68159000	-1.25542400	С	-2.51419700	-1.16411500	0.86153700
С	-1.47043800	3.97853100	0.17201100	С	-1.47150200	-3.53601800	-0.16305200
Н	0.18748400	2.78671700	0.85034300	Н	0.18501600	-2.34458100	-0.84544800
С	-2.68905300	3.99194400	-0.50977300	С	-3.20635800	-2.36076100	1.04084400
Н	-4.16055900	2.81131100	-1.56781600	Н	-2.93536900	-0.23859400	1.26724700
Н	-1.06254800	4.90702600	0.58405900	С	-2.68855200	-3.54910800	0.52152600
Н	-3.23584500	4.93173700	-0.63793800	Н	-1.06472400	-4.46464800	-0.57589300
С	-1.27704500	-1.12343000	0.18778900	Н	-4.15743400	-2.36805000	1.58274000
С	-0.77159700	-2.33982600	-0.31308900	Н	-3.23521100	-4.48878500	0.65110300

Optimized (SMD(DCM)/PBE0-GD3BJ/def2-TZVPP//SMD(DCM)/PBE0-GD3BJ/def2-svpp) Cartesian coordinates for TS1

Р	-0.13318700	-0.37481800	0.10527800	Н	2.13290300	0.01646300	3.25140000
Ν	0.06959800	-0.05112600	3.30176800	Н	1.37933800	1.52052900	3.80829900
Ν	1.31294700	0.34512200	0.58452600	Н	-0.87584000	-1.85516900	3.65136900
Ν	-1.34929900	0.61004300	0.74599000	Н	0.81071600	-1.81025400	4.19650600
Ν	-0.24920000	-1.84237200	0.94345300	Н	-1.01443600	1.70454200	3.30570300
С	-2.02441500	0.30862200	1.99311100	Н	-1.82323100	0.36095500	4.13063700
С	2.57617900	-0.10248300	0.03936400	Н	-2.06389000	-2.31485900	-0.01348500
С	0.58961000	-2.15186400	2.08526800	Н	-0.98695900	-3.71380900	0.26674300
С	1.38397500	1.30052400	1.67600100	Н	-1.89573700	-2.97661300	1.62304200
С	-1.55304900	1.93082800	0.18976300	С	-3.79450600	0.39284600	-2.58061600
С	1.27743000	0.69120500	3.07486200	С	-2.58756700	-0.22631600	-2.25988500
С	0.12831200	-1.48338900	3.38200800	С	-1.36851600	0.37760400	-2.59445200
С	-1.19959000	0.61756300	3.24708600	С	-1.38901600	1.60621200	-3.26487600
С	-1.34217800	-2.75493300	0.69083600	С	-2.59384500	2.22636600	-3.58801900
Н	-2.96875600	0.88238600	2.01543300	С	-3.80367500	1.62280800	-3.24175300
Н	-2.31166800	-0.75525200	2.00894300	Н	-4.73787200	-0.08879300	-2.30490600
Н	2.40527700	-0.78040300	-0.80649600	Н	-2.60770000	-1.18097000	-1.73210500
Н	3.16108600	0.75579600	-0.33895400	Н	-0.42965000	2.06674800	-3.51468100
Н	3.18904900	-0.63362800	0.79529500	Н	-2.58924400	3.18777800	-4.11152000
Н	1.62764700	-1.84806400	1.87308200	Н	-4.75339300	2.10840400	-3.48734200
Н	0.60769700	-3.25003800	2.20904800	С	0.00829500	-0.17811900	-2.27683900
Н	2.34162500	1.84276700	1.58089600	0	1.01085900	0.52861400	-2.47524000
Н	0.59199900	2.05810900	1.56065700	С	0.19381300	-1.66638000	-2.64925500
Н	-0.79929500	2.13765000	-0.58600300	F	1.35184100	-2.15312200	-2.19629500
Н	-1.44588300	2.71033700	0.96825600	F	-0.76595500	-2.49720600	-2.22382700
Н	-2.55520600	2.03599100	-0.26828600	F	0.22385900	-1.77145300	-3.98693700

01				С	0.15000800	-1.32787200	2.87501000
Р	-0.14309500	-0.78338100	-0.48696100	С	-0.96384800	0.85091500	2.40511400
Ν	0.22883800	0.06072100	2.52020400	С	-1.58048800	-2.88034800	0.55377800
Ν	1.38952700	-0.17895400	-0.21114000	Н	-2.74688700	1.10651500	1.18573900
Ν	-1.22263300	0.42126400	-0.04448300	Н	-2.28471000	-0.57363800	1.46271000
Ν	-0.37180500	-2.08153600	0.55935100	Н	2.31377300	-1.70955500	-1.31559200
С	-1.87770400	0.42804100	1.25096900	Н	3.19039100	-0.16862100	-1.30253900
С	2.58012200	-0.85252600	-0.68674400	Н	3.19907600	-1.21396400	0.15827600
С	0.48920100	-2.26877700	1.71722400	Н	1.54047300	-2.12334200	1.42237300
С	1.61157500	0.95709100	0.66876700	Н	0.39868500	-3.32173300	2.03852800
С	-1.29233400	1.63747200	-0.83123500	Н	2.61727100	1.35495500	0.44695000
С	1.49744600	0.62547300	2.15681200	Н	0.90349300	1.76518600	0.42660400

Н	-0.55324500	1.60286700	-1.64691300	С	-1.45621300	0.48433200	-4.07950400
Н	-1.06280900	2.52325900	-0.20902400	С	-2.61313200	1.07221700	-4.58750300
Н	-2.29477900	1.77466600	-1.27730100	С	-3.86247300	0.69362200	-4.09358300
Н	2.28597800	-0.09431700	2.43663700	Н	-4.91407500	-0.59079300	-2.70614600
Н	1.70439700	1.55473700	2.72987900	Н	-2.87150500	-1.63411900	-1.82281700
Н	-0.87502600	-1.53613500	3.22838600	Н	-0.46172700	0.77067300	-4.43214700
Н	0.82803200	-1.56740200	3.72230200	Н	-2.54031100	1.83313900	-5.37156000
Н	-0.66281000	1.90400400	2.26736400	Н	-4.77472700	1.15684900	-4.48289100
Н	-1.56158700	0.81769100	3.34105000	С	-0.16068700	-1.03609500	-2.60406000
Н	-2.30108600	-2.50387900	-0.18508200	0	0.87443100	-0.44034500	-3.03692500
Н	-1.36220200	-3.93779600	0.31589700	С	-0.10493800	-2.56879100	-2.83459000
Н	-2.07743000	-2.84246100	1.54114400	F	1.00492300	-3.11908200	-2.32348100
С	-3.93974500	-0.28358700	-3.09944500	F	-1.13628500	-3.26501300	-2.32879000
С	-2.77833900	-0.87268900	-2.59906600	F	-0.08614000	-2.81628200	-4.15024400
С	-1.52084000	-0.48875200	-3.07793100				

Optimized (SMD(DCM)/PBE0-GD3BJ/def2-TZVPP//SMD(DCM)/PBE0-GD3BJ/def2-svpp) Cartesian coordinates for 5

Р	0.03720300	0.00220800	-0.03754600	Н	-2.88944600	1.39225400	-1.12290100
0	0.06492300	0.01485600	1.57019400	Н	-2.25708000	-0.77881700	-1.66388600
Ν	0.15830200	-0.02088300	-2.82171800	Н	-1.89685500	-2.50625200	-1.75624200
Ν	-0.85592000	1.28044300	-0.56668000	Н	-0.97179100	2.98959400	-1.74641600
Ν	1.64681600	0.03415600	-0.39910800	Н	0.66627200	2.35146200	-1.53482000
Ν	-0.63879800	-1.43473200	-0.49573500	Н	2.20738200	1.14723600	1.29636200
С	-0.72309200	0.84540900	2.42092500	Н	2.73940300	1.86474700	-0.25644100
С	2.13975600	-0.66400500	-1.58167500	Н	3.54426700	0.40064600	0.39719900
С	-1.83523600	0.24838100	3.06128300	Н	-1.57052000	1.05767100	-3.20477000
С	-2.25973100	1.42250800	-0.21354400	Н	-0.09916700	1.82381600	-3.84415300
С	-1.43151700	-1.50794300	-1.71522500	Н	0.12977000	-2.07279600	-3.10146300
С	-3.72417600	0.21928500	4.64521800	Н	-1.24217500	-1.23591100	-3.85614900
С	-0.38433400	2.05786000	-1.70027400	Н	1.97499800	0.96176600	-2.99382800
С	2.57570700	0.91658000	0.28933600	Н	1.96957900	-0.65243700	-3.73861500
С	-2.62217400	0.85691400	4.09152900	Н	0.48851700	-2.48016400	0.93965700
С	-2.27607100	-1.05092800	2.65748600	Н	-1.01768000	-3.28886500	0.43253200
С	-4.13377500	-1.05430500	4.22914200	Н	0.40481900	-3.27765000	-0.65993800
С	-0.50478400	1.24490300	-2.99010700	Н	-2.35627300	1.84595100	4.46497900
С	-0.58549700	-1.24476400	-2.96289100	Н	-4.28207400	0.73841700	5.43371500
С	1.59521900	-0.06652700	-2.87402400	Н	-5.00467500	-1.54492400	4.67349700
С	-0.16565200	-2.68253300	0.07789200	Н	-3.66277000	-2.67084400	2.86883300
С	-3.38311100	-1.67190000	3.22466900	Н	-1.71885000	-1.57471000	1.87971800
Н	3.23999500	-0.62359200	-1.56077700	С	0.00787200	2.04263000	2.78329500
Н	1.86127000	-1.73061100	-1.52445200	F	0.44054700	2.76922400	1.70531400
Н	-2.58344000	0.60806400	0.45237100	F	1.19023600	1.83550100	3.47486400
Н	-2.43126700	2.37831900	0.31082000	F	-0.69336200	2.89486900	3.5444090

Р	2.47280500	1.80858200	5.77815200	Ν	2.64660600	3.38315000	5.27311600
0	2.00638300	2.07913100	7.30384100	Ν	3.90101300	0.96954200	5.98983200
Ν	3.22491800	1.51448000	3.39389500	С	0.83460400	1.62995900	7.94490400
Ν	1.27621800	0.86746000	5.12354700	С	3.60067300	3.72689800	4.22497400

С	1.03298100	0.73093800	9.04126600	Н	3.09157700	0.32463700	8.49030900
С	0.98089400	-0.43810800	5.69264600	С	-0.30221200	2.41976900	7.68530800
С	4.33247100	0.05378900	4.94938000	F	-1.47386900	1.92486200	8.07336800
С	0.30614300	-0.48563700	11.04228400	F	-0.42728800	2.88357200	6.43149800
С	0.90224200	1.07876800	3.73972800	F	-0.35785700	3.81267600	8.40058700
С	2.17460200	4.53065200	6.04029900	С	-0.41769000	3.93760000	11.18281100
С	0.04395500	0.40687900	10.00982800	С	1.73738500	4.99619000	9.87552600
С	2.29624800	0.09962900	9.20423900	С	-0.71348400	6.17057700	9.66759400
С	1.55459600	-1.10282000	11.17918800	В	0.17132500	4.92809200	10.09849300
С	2.10455200	0.77099500	2.85298600	С	-1.52299500	2.22921700	13.15179400
С	4.45759700	0.78756500	3.61705300	С	-0.20708800	2.67532500	13.26793900
С	3.33663800	2.89712300	2.98539800	С	0.33495500	3.51307500	12.29063200
С	4.93565500	1.57020500	6.81597100	С	-1.74739500	3.48293900	11.09814300
С	2.54381900	-0.79236400	10.24381500	С	-2.29389500	2.63457600	12.05875000
Н	3.48291000	4.79696600	3.99422300	С	2.39067900	6.21807500	9.63306800
Н	4.64085700	3.58677800	4.57892400	С	3.77653300	6.29309600	9.47797700
Н	1.53979000	-0.59546000	6.62718100	С	4.54969800	5.13414300	9.55894200
Н	-0.09489000	-0.52244200	5.92466600	С	-2.35713100	7.89147200	10.23980300
Н	1.26073100	-1.24405500	4.98768700	С	-2.24318000	8.44865000	8.96654400
Н	3.60901900	-0.77479200	4.85819200	С	-1.36878500	7.87434300	8.03961600
Н	5.29226200	-0.39371500	5.25252200	С	-0.61140300	6.75910900	8.39268300
Н	0.03923400	0.43601900	3.50507000	С	-1.60705700	6.76213200	10.57674500
Н	0.57686900	2.12392800	3.59811400	С	2.54314700	3.84498500	9.95535000
Н	1.55834400	4.21892100	6.88744300	С	3.92641500	3.90687700	9.79854600
Н	1.57945000	5.19657000	5.39013200	Н	4.52205900	2.99099600	9.86734000
Н	3.03431900	5.09916800	6.43926800	Н	5.63701700	5.18677900	9.43939100
Н	2.33360100	-0.30593100	2.90378500	Н	4.25557900	7.26112000	9.29729100
Н	1.90927900	1.02089500	1.79326700	Н	1.80148800	7.13890500	9.57459200
Н	5.28847700	1.50946300	3.67231600	Н	2.07362700	2.87334300	10.13090400
Н	4.68286300	0.08381300	2.79332100	Н	-1.71563200	6.33258300	11.57831400
Н	2.37701700	3.20906000	2.54366800	Н	0.06820400	6.32161300	7.65419100
Н	4.12497900	3.05319200	2.22410700	Н	-3.03872000	8.33406300	10.97376200
Н	4.49385900	2.32601800	7.48216400	Н	-2.83498200	9.32872700	8.69412800
Н	5.41109500	0.79933000	7.44746200	Н	-1.27688600	8.30294100	7.03605300
Н	5.72015100	2.05958300	6.20704200	Н	1.37067000	3.85049000	12.39911500
Н	-0.94061900	0.87263800	9.96281200	Н	0.40487800	2.36362100	14.12066900
Н	-0.48831400	-0.69421800	11.76731900	Н	-1.94936000	1.56533200	13.91106600
Н	1.75078800	-1.80140200	11.99801600	Н	-3.32757000	2.28727900	11.95856800
Н	3.53574600	-1.25184600	10.32236900	Н	-2.36304300	3.79177800	10.24762300

Р	2.79629500	1.51008800	5.18447400	С	0.80643100	-0.19488500	5.82752000
F	0.93787900	3.49377800	6.74113100	С	3.88203100	-0.43246100	3.69395600
0	2.97386100	1.53294800	6.85482200	С	1.24892100	-0.49845800	10.81181400
F	0.21743300	2.91780300	8.69132500	С	0.40983500	1.40977800	4.01019900
Ν	2.59070300	1.47973700	3.07953100	С	3.76680400	3.98611400	5.98097000
Ν	1.16808100	1.06583800	5.19317700	С	1.07031900	0.35839200	9.72784800
Ν	3.24439500	3.10890600	4.94397100	С	1.10265800	2.67292700	7.75206000
Ν	3.93162000	0.29858700	4.94527400	С	3.45810800	0.38091300	9.36225100
С	2.03461200	1.71100600	7.82797000	С	2.52848700	-0.91892900	11.17690200
С	3.66646800	3.52656900	3.61962400	С	1.23731800	0.96223900	2.82038300
С	2.17564500	0.81611400	8.99352700	С	3.65888900	0.58891100	2.60312700

С	2.74954000	2.86694100	2.62537100	Н	1.28022600	-0.13740300	2.79023100
С	4.78463200	-0.23174900	5.99461500	Н	0.86727800	1.32867700	1.84927900
С	3.63184200	-0.47778000	10.44518100	Н	4.57231500	1.18820600	2.47151700
Н	3.58014000	4.62211600	3.54117300	Н	3.38287600	0.14140100	1.63426000
Н	4.72891300	3.26557200	3.44042400	Н	1.76434000	3.35422600	2.65211300
Н	1.56501900	-0.49642300	6.56453400	Н	3.13262300	2.89789700	1.59290400
Н	-0.15610100	-0.08776400	6.35694300	Н	5.14142000	0.57186800	6.65217800
Н	0.71505200	-1.01167800	5.08600700	Н	4.27957400	-0.99668200	6.61329200
Н	3.09120500	-1.20846800	3.69489300	Н	5.66489700	-0.69534100	5.51937200
Н	4.84270900	-0.94542500	3.53225300	Н	0.05950700	0.65941800	9.44378200
Н	-0.56676500	0.90450100	4.03602500	Н	0.37547300	-0.84866200	11.37031100
Н	0.21772900	2.49651500	3.97945800	Н	2.66468900	-1.59411500	12.02709200
Н	3.48339400	3.65935000	6.98579300	Н	4.63989800	-0.80170300	10.72172600
Н	3.37192100	5.00463900	5.82274300	Н	4.32542400	0.72736900	8.79630100
Н	4.87179200	4.02928100	5.93247600				

F	-1.61222600	-6.74007800	13.13567000
С	-3.06782100	-6.37161400	15.13794200
С	-1.10417800	-8.21295000	15.09602500
С	-0.48752900	-5.59501800	15.05705100
В	-1.56941700	-6.72942300	14.59043400
С	-5.66460400	-5.64003900	16.04588100
С	-4.79351000	-6.34179000	16.88170900
С	-3.52241300	-6.70168800	16.42628700
С	-3.96931200	-5.66964400	14.31853300
С	-5.24543800	-5.30745200	14.75592700
С	-0.52294600	-8.45561900	16.35260100
С	-0.17519900	-9.74100700	16.77631100
С	-0.39206700	-10.83701400	15.93877800
С	0.44694600	-4.02800900	16.69778100
С	1.48599700	-3.69322100	15.82736700
С	1.54046700	-4.30169500	14.57125700
С	0.56904900	-5.23491200	14.20198700
С	-0.52044300	-4.95903700	16.31001100
С	-1.30562600	-9.33550800	14.27392600
С	-0.95796900	-10.62629000	14.67946700
Н	-1.12890400	-11.47593000	14.00841100
Н	-0.11758200	-11.84662000	16.26276000
Н	0.27589900	-9.88814400	17.76420600
Н	-0.32239200	-7.61014200	17.02150700
Н	-1.74680300	-9.18997700	13.28142100
Н	-1.33640500	-5.18847200	17.00562100
Н	0.62793100	-5.70056000	13.21162000
Н	0.38540500	-3.55394200	17.68396800
Н	2.24459400	-2.96076900	16.12347900
Н	2.34712500	-4.04605900	13.87460700
Н	-2.86645900	-7.27054300	17.09619400
Н	-5.11036200	-6.61795300	17.89383200
Н	-6.66386400	-5.35913300	16.39541700
Н	-5.91993800	-4.76226400	14.08567500
Н	-3.65910800	-5.40305900	13.30201500

References

1. Tang, J.-s.; Verkade, J. G., An improved synthesis of the strong base P(MeNCH2CH2)3N. Tetrahedron Letters **1993**, 34 (18), 2903-2904.

2. Brown, H. C.; Racherla, U. S., Organoboranes. 44. A convenient, highly efficient synthesis of triorganylboranes via a modified organometallic route. The Journal of Organic Chemistry **1986**, 51 (4), 427-432.

3. Johnstone, T. C.; Briceno-Strocchia, A. I.; Stephan, D. W., Frustrated Lewis Pair Oxidation Permits Synthesis of a Fluoroazaphosphatrane, [FP(MeNCH2CH2)3N](). Inorganic chemistry **2018**.

4. Spyros, A.; Dais, P., 31P NMR spectroscopy in food analysis. Progress in Nuclear Magnetic Resonance Spectroscopy **2009**, 54 (3-4), 195-207.

5. 19F NMR and UV studies of xenon difluoride solution-vessel stability and its relevance to the fluorination of organic substrates. Arkivoc **2011**, 2011 (10), 221.

6. Peng, P.; Wu, J.-j.; Liang, J.-q.; Zhang, T.-y.; Huang, J.-w.; Wu, F.-h., Lithium triethylborohydride-promoted generation of α,α -difluoroenolates from 2-iodo-2,2-difluoroacetophenones: an unprecedented utilization of lithium triethylborohydride. RSC Advances **2017**, 7 (88), 56034-56037.

7. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; X. Li, M. C.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision E.01., Gaussian Inc., : Wallingford CT, 2016.

8. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry **2011**, 32 (7), 1456-1465.