## **Electronic supplementary information**

### Stereochemistry of Coordination Polyhedra vs. Single Ion Magnetism in Penta- and Hexacoordinated Co(II) Complexes with Tridentate Rigid Ligand

Barbora Brachňaková<sup>a</sup>, Simona Matejová,<sup>a</sup> Ján Moncol,<sup>a</sup> Radovan Herchel,<sup>b</sup> Ján Pavlik,<sup>a</sup> Eufemio Moreno-Pineda,<sup>c</sup> Mario Ruben,<sup>c,d</sup> Ivan Šalitroš<sup>a,b,e\*</sup>

a) Department of Inorganic Chemistry. Faculty of Chemical and Food Technology. Slovak University of Technology in Bratislava. Bratislava SK-81237, Slovakia. \*e-mail: <u>ivan.salitros@stuba.sk</u> b) Department of Inorganic Chemistry. Faculty of Science. Balacký University. 17. listonedu 12

b) Department of Inorganic Chemistry. Faculty of Science, Palacký University, 17. listopadu 12, 771
 46 Olomouc, Czech Republic

c) Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, Karlsruhe 76021. Germany;

d) Institute de Physique et Chimie de Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43 67034 Strasbourg cedex 2, France

e) Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno Czech Republic

# Contents

| S1 Synthesis and Spectral Characterization of Reported Compounds | 2  |
|------------------------------------------------------------------|----|
| S2 Structural Information                                        | 13 |
| S3 Computational detials                                         | 17 |
| S4 AC Susceptibility Measurements                                | 18 |
| S5 Magneto-Structural Correlations                               | 31 |
| References                                                       | 32 |

## S1 Synthesis and Spectral Characterization of Reported Compounds

### **Experimental section**

#### Materials and methods

3,5-di-*tert*-butylbenzyl bromide, CoCl<sub>2</sub>.6H<sub>2</sub>O, CoBr<sub>2</sub>.6H<sub>2</sub>O, KNCS, ethanol, acetonitrile and diethyl ether were used as received without any further purification. Dimethylsulfoxide (DMSO) solvent has been dried over CaH<sub>2</sub> a distilled prior to use. The starting material 2,6-bis(1*H*-benzimidazol-2-yl)pyridine was prepared by published methods.<sup>18</sup> IR spectra were measured by the ATR technique or in KBr pellets in 4000 – 400 cm<sup>-1</sup> region (Magna FTIR 750. Nicolet). Electronic spectra were recorded in the acetonitrile solutions at the concentration  $\approx 10^{-4}$  mol dm<sup>-3</sup> on Specord 250 plus Analytical Jena in the range of 800 – 200 nm. Elemental analysis of carbon, hydrogen and nitrogen was carried out by an automated analyser (Vario Micro Cube). The microcrystalline solid of complexes 1-4 were measured by Philips PW 1730/1050 (Bragg – Brentano geometry, Co-K $\alpha$  radiation, 40kV/35mA, range of 2 $\Theta$  3-52°, step 0.02°) diffractometer .

#### Synthesis of 2,6-Bis(1-(3,5-di-tert-butylbenzyl)-1H-benzimidazol-2-yl)pyridine (L)

The preparation of ligand is visualised on Scheme 1. 50 mL two-necked round-bottom flask was charged with 2,6-bis(benzimidazol-2-yl)pyridine (1.0 g, 3.21 mmol, 1eq) and dissolved in 10 mL DMSO. The crushed KOH (1.08 g, 19.2 mmol, 6eq) was added into the solution and suspension was stirred for 1 hour at room temperature under nitrogen atmosphere. 3,5-di-*tert*-butyl-benzyl bromide (1.84g, 6.4 mmol, 2eq) was dissolved in 2 mL anhydrous DMSO and added over the stirring of suspension. The reaction mixture was stirred at 60°C for 20 hours and cooled down to room temperature, DMSO solvent was removed by vacuum distillation, the residue was treated with distilled water (50 mL) and extracted with CHCl<sub>3</sub> (3 x 200 mL). The chloroform was removed using a rotary evaporator and the oily residue was column chromatographed on silica gel with CHCl<sub>3</sub>/ethyl acetate (4:1) as an eluent. The main product L was isolated as first fraction ( $R_f = 0.31$ ) in 61% yield (1.40 g, 1.96 mmol) as white powder. The side-product of this reaction, 2-(6-(1*H*-benzimidazol-2-yl)pyridin-2-yl)-1-(3,5-di-*tert*-butylbenzyl)-1*H*-benzimidazole, was collected as the second and more polar fraction ( $R_f = 0.12$ ) in 15% yield (0.25 g, 0.49 mmol) as white powder.

Disubstituted product L: <sup>1</sup>**H NMR** (400 MHz, d<sup>6</sup>-DMSO, 25 °C,  $\delta$ /ppm): 8.37 (d, *J* = 7.64 Hz, 2H), 8.25 (dd, *J* = 8.49, 7.26 Hz, 1H), 7.78 (dd, *J* = 9.29, 4.84 Hz, 4H), 7.67 (dd, *J* = 7.13 Hz, 1.23 Hz, 4H), 7.32 (pd, *J*=7.20, 1.27, 4H), 7.14 (t, *J*=1.60 Hz, 2H), 6.74 (d, *J*= 1.64, 4H), 5.75 (s, 4H), 0.99 (s, 36H). <sup>13</sup>C NMR (125 MHz, d6-DMSO, 25 °C,  $\delta$ /ppm): 150.4 (C14), 149.6 (C3), 149.3 (C4), 142.3 (C5), 138.8 (C1), 136.5 (C10), 136.4 (C12), 125.3 (C2), 123.4 (C8), 122.6 (C7), 120.8 (C15), 120.3 (C13), 119.6 (C6), 111.3 (C9), 47.5 (C11), 34.2 (C16), 30.9 (C17). **Elemental analysis** for C<sub>49</sub>H<sub>57</sub>N<sub>5</sub> (M<sub>w</sub> = 716.01 g mol<sup>-1</sup>) found % (expected %): C 81.56 (82.19); N 8.86 (9.78); H 7.6 (8.02).**FT–IR** (ATR,  $\tilde{v}_{max}/cm^{-1}$ ): 3055 (w, C-H<sub>ar</sub>); 2954, 2904, 2865 (w, C-H<sub>alif</sub>); 1597, 1572 (m, C-C<sub>ar</sub> a C<sub>ar</sub>-N); **UV - VIS** (acetonitrile,  $\lambda$ /nm, 2.10<sup>-5</sup> mol.L<sup>-1</sup>): 218 ( $\pi \rightarrow \pi^*$ ), 327 (n  $\rightarrow \pi^*$ ).

Monosubstituted side-product L1: <sup>1</sup>**H NMR** (300 MHz, d<sup>6</sup>-DMSO, 25 °C,  $\delta$ /ppm): 12.88 (s, 1H), 8.45 (dd, J = 7.7, 0.8 Hz, 1H), 8.37 – 8.11 (m, 2H), 8.05 (d, J = 8.1 Hz, 1H), 7.81 (dd, J = 12.2, 7.7 Hz, 2H), 7.66 (d, J = 7.4 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.39-7.26 (m, 3H), 7.11 (s, 1H), 6.88 (d, J = 1.6 Hz, 2H), 6.35 (s, 2H), 0.98 (s, 18H). <sup>13</sup>**C NMR** (75 MHz, d<sup>6</sup>-DMSO, 25 °C,  $\delta$ /ppm): 150.30(C<sub>q</sub>), 150.16(C<sub>q</sub>), 150.02(C<sub>q</sub>), 149.25(C<sub>q</sub>), 148.03(C<sub>q</sub>), 143.86(C<sub>q</sub>), 142.17(C<sub>q</sub>), 138.73(CH), 136.95(C<sub>q</sub>), 136.75(C<sub>q</sub>), 134.99(C<sub>q</sub>), 125.20(CH), 123.59(CH), 123.50(CH), 122.66(CH), 122.19(CH), 121.97(CH), 121.25(CH), 120.70(CH), 119.76(CH), 119.49(CH), 112.20(CH), 111.33(CH), 48.24 (CH<sub>2</sub>), 34.14(C<sub>q</sub>), 30.85(CH<sub>3</sub>). **Elemental analysis** for C<sub>34</sub>H<sub>35</sub>N<sub>5</sub> (M<sub>w</sub> = 513.68 g mol<sup>-1</sup>) found % (expected %): C 77.35 (79.50); N 13.63 (17.53); H 3.99 (6.87).**FT-IR** (ATR,  $\tilde{v}_{max}$ /cm<sup>-1</sup>): 3370 (w, N-

H); 3054 (w, C-H<sub>ar</sub>);2953, 2904, 2864 (w, C-H<sub>alif</sub>); 1596, 1572 (m, C-C<sub>ar</sub> a C<sub>ar</sub>-N). UV - VIS (acetonitrile,  $\lambda$ /nm, 2.10<sup>-5</sup> mol·L<sup>-1</sup>): 222 ( $\pi \rightarrow \pi^*$ ), 327 (n  $\rightarrow \pi^*$ ).



Scheme 1 Preparation of ligands L and L1

#### Preparation of Co(II) complexes

Complex 1  $[Co(L)(NCS)_2]$ 

Ligand L (50 mg, 0.069 mmol, 1.0 eq) was dissolved in 20 mL acetonitrile and heated at 82°C for 30 minutes. Solution of cobalt(II) isothiocyanate was prepared *in situ* by mixing of cobalt(II) chloride hexahydrate (18.3 mg, 0.077 mmol, 1.1 eq) and potassium thiocyanate (0.015mg, 0.154 mmol, 2.2 eq) in 4 mL ethanol. Suspension was filtered in order to remove the potassium chloride and mother liquor was added to the ligand solution and refluxed 48 hours. Green precipitation of **1** in the microcrystalline form was filtered off and mother liquor was submitted for the slow evaporation at RT which allowed to obtain the single-crystals within few days. **Elemental analysis** for C<sub>51</sub>H<sub>57</sub>CoN<sub>7</sub>S<sub>2</sub> ( $M_w = 891.10 \text{ g mol}^{-1}$ ) found % (expected %): C 68.01 (68.74); N 10.09 (11.00); H 5.95 (6.45) S 6.99 (7.20). **FT–IR** (ATR,  $\tilde{v}_{max}/cm^{-1}$ ): 3060 (w, C-H<sub>ar</sub>), 2962 (w, C-H<sub>alif</sub>), 2864 (w, C-H<sub>alif</sub>), 2070, 2052 (s, N=C=S), 1600,1504 (m, C-C<sub>ar</sub> a C<sub>ar</sub>-N). **UV - VIS** (acetonitrile,  $\lambda/nm$ , 2.10<sup>-5</sup> mol·L<sup>-1</sup>): 317 ( $\pi \to \pi^*$ ), 345 (n  $\to \pi^*$ ).

Complexes 2  $[Co(L)Cl_2]$  and 3  $[Co(L)Br_2]$ 

Cobalt(II) chloride hexahydrate (33.2 mg, 0.154 mmol, 1.1 eq) or cobalt(II) bromide hexahydrate (49.6 mg, 0.152 mmol, 1.1 eq) was added into the acetonitrile solution (30 mL) of ligand L (100 mg, 0.138 mmol, 1eq). Reaction mixture was refluxed for 48 hours, the green precipitation of microcrystalline form of **2** or **3** was filtered of and mother liquor was submitted for the slow crystallization at RT which allowed to obtain the single-crystals within few days. Complexes **2**: **Elemental analysis** for C<sub>49</sub>H<sub>57</sub>Cl<sub>2</sub>CoN<sub>5</sub> (M<sub>w</sub> = 845.85 g mol<sup>-1</sup>) found % (expected %): C 68.07 (69.79); N 8.07 (8.28); H 6.92 (6.79). **FT–IR** (ATR,  $\tilde{v}_{max}/cm^{-1}$ ): 3062 (w, C-H<sub>ar</sub>), 2955, 2904, 2866 (w, C-H<sub>alif</sub>), 1599, 1568, 1514 (m, C-C<sub>ar</sub> a C<sub>ar</sub>-N). **UV – VIS** (acetonitrile,  $\lambda$ /nm, 1.10<sup>-5</sup> mol·L<sup>-1</sup>): 313 ( $\pi \rightarrow \pi^*$ ), 338 (n  $\rightarrow \pi^*$ ). Complexes **3**: **Elemental analysis** for C<sub>49</sub>H<sub>57</sub>Br<sub>2</sub>CoN<sub>5</sub> (M<sub>w</sub> = 934.75 g mol<sup>-1</sup>) found % (expected %): C 62.17 (62.96); N 7.49 (7.46); H 6.40 (6.15). **FT–IR** (ATR,  $\tilde{v}_{max}/cm^{-1}$ ): 3048 (w, C-H<sub>ar</sub>), 2958, 2900, 2866 (w, C-H<sub>alif</sub>), 1599,1566, 1514 (m, C-C<sub>ar</sub> a C<sub>ar</sub>-N). **UV – VIS** (acetonitrile,  $\lambda$ /nm, 1.10<sup>-5</sup> mol·L<sup>-1</sup>): 313 ( $\pi \rightarrow \pi^*$ ), 348 (n  $\rightarrow \pi^*$ ).

Complex 4  $[Co(L)_2]Br_2.2CH_3OH.H_2O$ 

Cobalt(II) bromide hexahydrate (15.5 mg, 0.065 mmol, 1 eq) was added into the methanol solution (30 mL) of ligand L (100 mg, 0.138 mmol, 2.12 eq). Reaction mixture was refluxed for 48 hours, the yellow solution was filtered and retained for the slow crystallization at room temperature. The yellowish single-crystals suitable for the X-ray diffraction analysis were collected after several days. **Elemental analysis** for C<sub>100</sub>H<sub>124</sub>Br<sub>2</sub>CoN<sub>10</sub>O<sub>3</sub> (M<sub>w</sub> = 1732.83 g mol<sup>-1</sup>) found % (expected %): C 69.02 (69.31); N 7.96 (8.08); H 7.11 (7.21). **FT–IR** (ATR,  $\tilde{v}_{max}/cm^{-1}$ ): 3066 (w, C-H<sub>ar</sub>), 2952, 2899, 2864 (w, C-H<sub>alif</sub>), 1598,1567 (m, C-C<sub>ar</sub> a C<sub>ar</sub>-N). **UV – VIS** (acetonitrile,  $\lambda$ /nm, 1.10<sup>-5</sup> mol·L<sup>-1</sup>): 315 ( $\pi \rightarrow \pi^*$ ), 338 (n  $\rightarrow \pi^*$ ).

#### Crystallography

Data collection and cell refinement of 1–4 were made by Stoe StadiVari diffractometer at 100 K using Pilatus3R 300K HPAD detector and microfocused source Xenocs Genix3D Cu HF (Cu K $\alpha$  radiation  $\lambda$  = 1.54186 Å). The diffraction intensities were corrected for Lorentz and polarization factors. The structures were solved using SUPERFLIP<sup>1</sup> or SHELXT<sup>2</sup> program and refined by full-matrix least-squares procedure with SHELXL (version 2018/3).<sup>3</sup> The multi-scan absorption corrections were applied using Stoe LANA software.<sup>4</sup> Geometrical analyses were performed with SHELXL. The structures were drawn with MERCURY.<sup>5</sup>

#### **Magnetic measurements**

Herein reported magnetic investigation have been carried out on MPMS XL-7 SQUID or MPMS XL-5 SQUID magnetometer (Quantum design Inc., San Diego, CA, USA). The gelatine capsules were used as sample holders and their small diamagnetic contribution is negligible in the overall magnetization, which was dominated by the sample. In the case of magnetic experiments at static magnetic field (DC), the temperature-dependency was recorded in the thermal range 1.9 - 300 K at B = 0.1 T using the 1 K/min sweeping rate, and field-dependency was measured at isothermal conditions in the range B = 0 - 7 T. Collected data were corrected for the diamagnetism using the Pascal constants<sup>6</sup> and transformed into the  $\mu_{eff}$  vs T and  $M_{mol}$  vs B dependencies. The experimental details about the magnetic experiments at AC magnetic field are given in the S4 section (*vide infra*).







**Figure S1.1** <sup>1</sup>H NMR spectrum of ligand L (a) and L1 (b) and zoomed aromatic region of ligand L (c) and ligand L1(d)







Figure S1.2 <sup>13</sup>C NMR (*a*) and APT (*b*) spectra of ligand L. <sup>13</sup>C NMR (*c*) and APT (*d*) spectra of ligand L1.







Figure S1.3 FT-IR (ATR) spectra of ligands L (a) and L1(b) and compounds 1 (c), 2 (d), 3 (e) and 4(f).



Figure S1.4 UV–VIS acetonitrile solution spectra of ligands L and L1 (*left*) and compounds 1 - 4 (*right*).





Figure S1.5 X-ray powder diffractograms of 1(a), 2(b) and 3(c). The red and blue lines present experimental and simulated diffractions, respectively. The black lines present subtracted differences between the measured and simulated spectra. Diffractions of 4 (*d*, red line) are compared with Zn(II) hexacoordinated analogue ([Zn(L)<sub>2</sub>](Br)<sub>2</sub>) and subtraction of both spectra (black line in the bottom part of graph) indicates different symmetries of both complexes.

### **S2 Structural Information**

**Table S2.1** Results of the SHAPE calculations for coordination polyhedra 1-3. PP  $(D_{5h})$  – pentagon; vOC  $(C_{4v})$  vacant octahedron; TBPY  $(D_{3h})$  trigonal bipyramid; SPY  $(C_{4v})$  spherical square pyramid; JTBPY  $(D_{3h})$  Johnson trigonal bipyramid

|                          | 1      | 2      | 3      |
|--------------------------|--------|--------|--------|
| $PP(D_{5h})$             | 31.714 | 33.859 | 36.077 |
| vOC (C <sub>4v</sub> )   | 2.134  | 8.040  | 8.289  |
| TBPY (D <sub>3h</sub> )  | 5.502  | 1.988  | 2.520  |
| SPY $(C_{4v})$           | 1.366  | 4.869  | 4.871  |
| JTBPY (D <sub>3h</sub> ) | 7.864  | 6.195  | 7.401  |
| τ <sub>5</sub>           | 0.30   | 0.5    | 0.41   |



**Figure S2.1** Shape map of coordination polyhedra in **1-3**. Solid line represents Berry pseudorotation from between square pyramidal (SPY-5) and trigonal bipyramidal (TBPY-5) geometry.





Equatorial angles: Br1-Co1-Br2=127.47(3)°; Br2-Co1-N3=110.77(8)°; N3-Co1-Br1=121.71(8)°. **Figure S2.2** Visualization of the Co(II) central atom position with respect to the plane of aromatic chelating ligand L (left) and with respect to equatorial or square planar planes in the complex 1 (*a*), 2 (*b*) and 3 (*c*).



**Figure S2.3** Schematic representation of the angular metric parameter. *a*)  $\alpha$  – bite angle (average value of four N<sub>im</sub>-Co-N<sub>py</sub>);  $\phi$  – *trans* angle N<sub>py</sub>-Co-N<sub>py</sub>;  $\varphi$ - clamp angle (average value of two N<sub>pz</sub>-Fe-N<sub>pz</sub>) *b*)  $\theta$  - dihedral angle between the least squares planes of the two *bpp* moieties coordinating the same metal center<sup>7</sup> *c*) Distortion parameters  $\Sigma$ ;  $\varphi_i$  is one of 12 octahedron *cis* angles utilized in calculation of  $\Sigma$  parameter.<sup>8</sup>



Figure S2.4 Visualization of non-covalent supramolecular interactions in the crystal structure of 1(a), 2(b) and 3(c).



### **S3** Computational detials

**Figure S3.1** The graphical output of the CASSCF/NEVPT2 calculations with CAS(7,5) for the model compound  $[CoCl_5]^{3-}$  with ideal geometries defined by program SHAPE, where SPY is square pyramid, TBPY is trigonal bipyramid and vOC is vacant octahedron. Plot of the d-orbitals splitting calculated by *ab initio* ligand field theory (AILFT) (*left*), low-lying ligand-field terms (*middle*), and ligand-field multiplets – Kramers doublets (*right*). The doublet and quartet spin states are shown in red and green, respectively.

![](_page_16_Figure_3.jpeg)

**Figure S3.2** Representation of the molecular fragments of **1-4** derived from the experimental X-ray geometry used for CASSCF/NEVPT2's calculation with CAS(7,5), also showing the principal axes of the *D*-tensor with the arrows (x-axis is red, y-axis is green, and z-axis is blue).

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ] |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 0       4       7       0.003       -0.003       0       4       7       0.002       -0.001       0       4       7       0.002       0.000       0       4       7       0.106       -0.082         0       4       8       -0.065       0.020       0       4       8       0.112       -0.121       0       4       8       0.119       -0.124       0       4       8       0.009       0.009         0       4       9       0.139       -0.038       0       4       9       0.122       0.121       0       4       9       0.111       0       4       9       0.084       0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 0         4         8         -0.065         0.020         0         4         8         0.122         -0.121         0         4         8         0.119         -0.124         0         4         8         0.009         0.009           0         4         9         0.039         -0.038         0         4         9         0.122         0.121         0         4         9         0.112         0.111         0         4         9         0.084         0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 0 4 9 0.039 -0.038 0 4 9 0.122 0.121 0 4 9 0.112 0.111 0 4 9 0.084 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 1 2 0 -0.511 -1.555 1 2 0 0.036 0.013 1 2 0 -0.172 0.079 1 2 0 -0.550 -0.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 1 2 1 -0.206 0.190 1 2 1 -0.003 -0.004 1 2 1 0.000 -0.023 1 2 1 6.123 1.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 1 2 2 -0.236 -0.895 1 2 2 4.459 -0.004 1 2 2 4.574 0.255 1 2 2 -0.013 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 1 2 3 -0.399 -0.449 1 2 3 -0.174 -0.174 1 2 3 -1.273 -1.242 1 2 3 -0.018 -0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 1 2 4 -0.030 0.030 1 2 4 -1.243 -1.245 1 2 4 -1.074 1.067 1 2 4 -0.986 -0.964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 1 2 5 -0.004 0.006 1 2 5 -0.537 0.548 1 2 5 -0.190 0.021 1 2 5 -1.042 0.921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 1 2 6 -1.259 -1.450 1 2 6 -0.440 -0.237 1 2 6 -0.359 0.435 1 2 6 -0.447 -0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 1 2 7 -1.843 1.840 1 2 7 -1.137 1.073 1 2 7 -0.520 -0.470 1 2 7 -0.065 -0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 1         2         8         2.445         -0.374         1         2         8         7.671         0.000         1         2         8         5.586         0.008         1         2         8         3.634         -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 1 2 9 0.069 0.005 1 2 9 -0.005 0.006 1 2 9 0.024 -0.002 1 2 9 -0.021 -0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 1 2 10 -0.312 0.300 1 2 10 0.002 -0.003 1 2 10 -0.006 -0.011 1 2 10 -0.013 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 1     2     11     -0.012     0.012     1     2     11     -0.000     0.000     1     2     11     -0.037     -0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| 1     2     12     -0.051     0.052     1     2     12     -0.010     0.009     1     2     12     -0.045     0.038     1     2     12     -0.049     0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 1 2 13 -0.229 -0.230 1 2 13 -0.059 -0.058 1 2 13 -0.062 -0.062 1 2 13 -0.346 -0.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 1     2     14     -0.361     0.362     1     2     14     -0.002     1     2     14     0.003     -0.004     1     2     14     -0.119     0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 1     2     15     -0.045     0.045     1     2     15     0.050     0.001     1     2     15     0.050     0.020     1     2     15     -0.103     0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 1 2 16 -0.041 -0.040 1 2 16 -0.132 -0.139 1 2 16 -0.094 -0.013 1 2 16 -0.074 -0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 1 2 17 -0.051 -0.224 1 2 17 -0.082 0.081 1 2 17 -0.025 -0.010 1 2 17 -0.050 -0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 1 2 18 -0.167 0.162 1 2 18 -0.040 0.040 1 2 18 -0.060 -0.016 1 2 18 0.855 0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| $\begin{bmatrix} 1 & 2 & 23 & -0.088 & -0.116 \\ 1 & 2 & 23 & 1.284 & -0.001 \\ 1 & 2 & 23 & -0.108 & -0.115 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.161 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 23 & 0.016 & 0.075 \\ 1 & 2 & 0.016 & 0.075 \\ 1 & 2 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.016 & 0.075 \\ 1 & 0 & 0.00$                  |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 1 2 28 -0.176 0.171 1 2 28 -0.297 -0.149 1 2 28 -0.258 0.040 1 2 28 0.019 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| $\begin{bmatrix} 1 & 2 & 29 & -0.005 & 0.002 \\ 1 & 2 & 29 & -0.299 & 0.147 \\ 1 & 2 & 29 & -0.289 & -0.085 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 29 & -0.005 \\ 1 & 2 & 2 & -0.005 \\ 1 & 2 & 2 & -0.005 \\ 1 & 2 & 2 & -0.005 \\ 1 & 2 & 2 & -0.005 \\ 1 & 2 & 2 & -0.005 \\ 1 & 2 & 2 & -0.005 \\ 1 & 2 & 2 & -0.005 \\ 1 & 2 & 2 & -0.005 \\ 1$ |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 1 2 33 -0.000 0.006 1 2 33 -0.001 0.001 1 2 33 -0.000 0.001 1 2 33 -0.000 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 1 2 35 0.017 0.010 1 2 35 0.135 0.002 1 2 35 0.125 0.000 1 2 35 0.008 0.013<br>1 2 36 0.000 0.000 1 2 36 0.002 1 2 36 0.002 0.004 1 2 36 0.000 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 1 2 39 -0.007 -0.020 $1 2 39 0.007 -0.000$ $1 2 39 -0.000 0.002$ $1 2 39 -0.000 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |

**Table S3.1** Individual contributions to *D*-tensor obtained from the calculation based on CASSCF/NEVPT2 with CAS(7,5) for the mononuclear molecular fragments of **1-4**.

### **S4 AC Susceptibility Measurements**

The mapping of the magnetic susceptibility components as functions of the applied external DC field for a set of four frequencies of the AC field at T = 2.0 K is shown in Figure S4.1.

| Compound 1 | Compound 2 | Compound <b>3</b> |
|------------|------------|-------------------|
|            |            |                   |

![](_page_18_Figure_0.jpeg)

**Figure S4.1** DC field dependence for a set of fixed frequencies at 2 K. Solid lines are only guides for the eyes.

Parameters of AC susceptibility magnetic measurements of 1-4 are listed inTable S4.1. In-phase ( $\chi$ ') and out-of-phase ( $\chi$ ') components of AC susceptibility have been recorded at the given temperatures upon the oscillating magnetic field of different frequency.

|   | $B_{\rm DC}/{\rm T}$ | $B_{\rm AC}$ / mT | Temperature range    | Frequency range          |
|---|----------------------|-------------------|----------------------|--------------------------|
| 1 | 0.150                | 3.8               | 1.8-4.9 K (33 steps) | 1 Hz -1488.1 Hz (20      |
|   |                      |                   |                      | steps)                   |
| 2 | 0.150                | 3.5               | 2.0-3.6 K (9 steps)  | 1 Hz -1512 Hz (32 steps) |
| 3 | 0.050                | 3.8               | 1.9-2.7 K (9 steps)  | 1 Hz -1488.1 Hz (20      |
|   |                      |                   |                      | steps)                   |
| 3 | 0.125                | 3.8               | 1.9-2.8 K (10 steps) | 1 Hz -1488.1 Hz (20      |
|   |                      |                   |                      | steps)                   |
| 3 | 0.200                | 3.8               | 1.9-2.7 K (9 steps)  | 1 Hz -1488.1 Hz (20      |
|   |                      |                   |                      | steps)                   |
| 3 | 0.300                | 3.8               | 1.9-2.5 K (7 steps)  | 1 Hz -1488.1 Hz (20      |
|   |                      |                   |                      | steps)                   |
| 4 | 0.100                | 3.5               | 2.0-5.2 (17 steps)   | 1 Hz -1512 Hz (32 steps) |

Table S4.1 Conditions of AC magnetic experiments for compounds 1-4.

Collected sets of  $\chi'$  and  $\chi''$  susceptibilities (20  $\chi'$  and 20  $\chi''$  for 1 and 3 or 32  $\chi'$  and 32  $\chi''$  for 2;) at each temperature were fitted using the formulas for one-set (1, 2; eq. S1 and S2) or two-set (3; eq. S3 and S4) Debye model.

$$\chi'(\omega) = \chi_s + \left(\chi_T - \chi_s\right) \frac{1 + (\omega\tau)^{(1-\alpha)} \sin(\pi\alpha/2)}{1 + 2(\omega\tau)^{(1-\alpha)} \sin(\pi\alpha/2) + (\omega\tau)^{(2-2\alpha)}}$$
(S1)

$$\chi''(\omega) = \left(\chi_T - \chi_S\right) \frac{(\omega\tau)^{(1-\alpha)} \cos(\pi\alpha/2)}{1 + 2(\omega\tau)^{(1-\alpha)} \sin(\pi\alpha/2) + (\omega\tau)^{(2-2\alpha)}}$$
(S2)

$$\chi'(\omega) = \chi_{S} + (\chi_{T1} - \chi_{S}) \frac{1 + (\omega\tau_{1})^{(1-\alpha_{1})} \sin(\pi\alpha_{1}/2)}{1 + 2(\omega\tau_{1})^{(1-\alpha_{1})} \sin(\pi\alpha_{1}/2) + (\omega\tau_{1})^{(2-2\alpha_{1})}} + (\chi_{T2} - \chi_{T1}) \frac{1 + (\omega\tau_{2})^{(1-\alpha_{2})} \sin(\pi\alpha_{2}/2)}{1 + 2(\omega\tau_{2})^{(1-\alpha_{2})} \sin(\pi\alpha_{2}/2) + (\omega\tau_{2})^{(2-2\alpha_{2})}}$$
(83)

$$\chi''(\omega) = (\chi_{T_1} - \chi_s) \frac{(\omega\tau_1)^{(1-\alpha_1)} \cos(\pi\alpha_1/2)}{1 + 2(\omega\tau_1)^{(1-\alpha_1)} \sin(\pi\alpha_1/2) + (\omega\tau_1)^{(2-2\alpha_1)}} + (\chi_{T_2} - \chi_{T_1}) \frac{(\omega\tau_2)^{(1-\alpha_2)} \cos(\pi\alpha_2/2)}{1 + 2(\omega\tau_2)^{(1-\alpha_2)} \sin(\pi\alpha_2/2) + (\omega\tau_2)^{(2-2\alpha_2)}}$$
(84)

Four (for one relaxation channel) or seven (for two relaxation channels) free parameters can be retrieved reliably by using 40(1, 3) or 64(2, 4) experimental data points for each temperature

| <i>T</i> /K | χ <sub>S</sub> /10 <sup>-6</sup><br>m <sup>3</sup> mol <sup>-1</sup> | χ <sub>T</sub> /10 <sup>-6</sup><br>m <sup>3</sup> mol <sup>-1</sup> | α/10 <sup>-2</sup> | τ/10 <sup>-4</sup> s | <i>T</i> /K | $\chi_{\rm S}/10^{-6}$<br>m <sup>3</sup> mol <sup>-</sup> | $\chi_{\rm T}/10^{-6}$<br>m <sup>3</sup> mol <sup>-</sup> | α/10 <sup>-2</sup> | τ/10 <sup>-4</sup> s |
|-------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|----------------------|-------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------|----------------------|
| 1.8         | 0.70                                                                 | 13.79                                                                | 23.87              | 20.87                | 3.4         | 0.88                                                      | 7.94                                                      | 12.68              | 4.35                 |
| 1.9         | 0.66                                                                 | 13.15                                                                | 23.75              | 19.03                | 3.5         | 0.90                                                      | 7.73                                                      | 12.04              | 3.85                 |
| 2.0         | 0.64                                                                 | 12.64                                                                | 23.77              | 17.02                | 3.6         | 0.98                                                      | 7.53                                                      | 10.13              | 3.53                 |
| 2.1         | 0.63                                                                 | 12.11                                                                | 23.32              | 15.46                | 3.7         | 0.82                                                      | 7.34                                                      | 9.63               | 3.02                 |
| 2.2         | 0.61                                                                 | 11.79                                                                | 23.66              | 14.45                | 3.8         | 0.86                                                      | 7.17                                                      | 8.91               | 2.68                 |
| 2.3         | 0.55                                                                 | 11.30                                                                | 24.05              | 12.93                | 3.9         | 0.93                                                      | 7.00                                                      | 7.27               | 2.44                 |
| 2.4         | 0.59                                                                 | 10.86                                                                | 22.63              | 11.70                | 4.0         | 0.94                                                      | 6.84                                                      | 6.24               | 2.17                 |
| 2.5         | 0.58                                                                 | 10.50                                                                | 22.86              | 10.69                | 4.1         | 1.01                                                      | 6.68                                                      | 4.41               | 1.96                 |
| 2.6         | 0.63                                                                 | 10.11                                                                | 21.60              | 9.76                 | 4.2         | 1.00                                                      | 6.53                                                      | 4.49               | 1.73                 |
| 2.7         | 0.61                                                                 | 9.79                                                                 | 21.73              | 8.84                 | 4.3         | 0.99                                                      | 6.40                                                      | 4.21               | 1.53                 |
| 2.8         | 0.72                                                                 | 9.46                                                                 | 19.64              | 8.06                 | 4.4         | 0.88                                                      | 6.26                                                      | 4.12               | 1.33                 |
| 2.9         | 0.65                                                                 | 9.20                                                                 | 19.80              | 7.27                 | 4.5         | 0.88                                                      | 6.15                                                      | 3.69               | 1.17                 |
| 3.0         | 0.78                                                                 | 8.91                                                                 | 16.95              | 6.66                 | 4.6         | 0.88                                                      | 6.01                                                      | 3.44               | 1.03                 |
| 3.1         | 0.76                                                                 | 8.63                                                                 | 16.75              | 5.99                 | 4.7         | 0.79                                                      | 5.90                                                      | 3.58               | 0.89                 |
| 3.2         | 0.81                                                                 | 8.39                                                                 | 14.99              | 5.32                 | 4.8         | 0.76                                                      | 5.78                                                      | 3.37               | 0.79                 |
| 3.3         | 0.87                                                                 | 8.15                                                                 | 13.37              | 4.84                 | 4.9         | 0.90                                                      | 5.67                                                      | 2.07               | 0.72                 |

**Table S4.2** Parameters of the extended Debye model for 1 (two relaxation processes) at  $B_{DC} = 0.15$  T.

Compound 1 @ 0.15 T

![](_page_20_Figure_0.jpeg)

**Figure S4.2** AC susceptibility data for 1 recorded at  $B_{DC}=0.15$  T: Frequency dependent in-phase  $\chi'$  component of AC susceptibility (*a*), Cole-cole diagram (*b*), temperature dependence of in-phase  $\chi'(c)$  and out-of-phase  $\chi''$  (*d*) components of AC susceptibility (solid lines are only guides for the eyes), temperature evolution of  $\chi_{T}$ ,  $\chi_{S}$ ,  $\alpha$  (*e*) and  $\tau$  (*f*) parameters obtained from two-component Debye model (eq. S1 and S2).

**Table S4.3** Result of the fitting procedure for AC susceptibility components of **2** at  $B_{DC}$ =0.15 T.

| <i>T</i> /K | χ <sub>S</sub> /10 <sup>-6</sup> m <sup>3</sup><br>mol <sup>-1</sup> | χ <sub>T</sub> /10 <sup>-6</sup><br>m <sup>3</sup> mol <sup>-1</sup> | α/10 <sup>-2</sup> | τ/10 <sup>-4</sup> s |  |
|-------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|----------------------|--|
| 2.0         | 1.93                                                                 | 11.23                                                                | 15.33              | 4.80                 |  |
| 2.2         | 1.68                                                                 | 10.58                                                                | 16.53              | 3.63                 |  |

| 2.4 | 1.56 | 9.75 | 15.84 | 2.53 |
|-----|------|------|-------|------|
| 2.6 | 1.48 | 9.13 | 14.40 | 1.81 |
| 2.8 | 1.53 | 8.54 | 11.67 | 1.30 |
| 3.0 | 1.60 | 8.05 | 9.43  | 0.95 |
| 3.2 | 1.83 | 7.60 | 6.75  | 0.73 |
| 3.4 | 1.91 | 7.20 | 4.33  | 0.55 |
| 3.6 | 1.22 | 6.85 | 4.98  | 0.34 |

![](_page_21_Figure_1.jpeg)

**Figure S4.3** AC susceptibility data for **2** recorded at  $B_{DC}=0.15$  T: Frequency dependent in-phase  $\chi'$  component of AC susceptibility (*a*), Cole-cole diagram (*b*), temperature dependence of in-phase  $\chi'(c)$  and out-of-phase  $\chi''$  (*d*) components of AC susceptibility (solid lines are only guides for the eyes), temperature evolution of  $\chi_{T}$ ,  $\chi_{S}$ ,  $\alpha$  (*e*) and  $\tau$  (*f*) parameters obtained from two-component Debye model (eq. S1 and S2).

| <i>B</i> /T | <i>T</i> /K | $\chi_{\rm S}/10^{-6}$           | $\chi_{T1}/10^{-6}$              | $\chi_{T2}/10^{-6}$              | $\alpha_1/10^{-2}$ | $\alpha_2/10^{-2}$ | $\tau_{01}/10^{-2}$ s | $\tau_{02}/10^{-4}$ s |
|-------------|-------------|----------------------------------|----------------------------------|----------------------------------|--------------------|--------------------|-----------------------|-----------------------|
|             |             | m <sup>3</sup> mol <sup>-1</sup> | m <sup>3</sup> mol <sup>-1</sup> | m <sup>3</sup> mol <sup>-1</sup> |                    |                    |                       |                       |
| 0.05        | 1.9         | 8.69                             | -                                | 14.32                            | -                  | 7.49               | -                     | 5.14                  |
|             | 2.0         | 8.24                             | -                                | 13.64                            | -                  | 6.81               | -                     | 4.17                  |
|             | 2.1         | 7.81                             | -                                | 13.05                            | -                  | 7.20               | -                     | 3.33                  |
|             | 2.2         | 7.64                             | -                                | 12.65                            | -                  | 5.00               | -                     | 2.88                  |
|             | 2.3         | 7.28                             | -                                | 12.07                            | -                  | 4.39               | -                     | 2.23                  |
|             | 2.4         | 6.94                             | -                                | 11.62                            | -                  | 4.60               | -                     | 1.74                  |
|             | 2.5         | 6.76                             | -                                | 11.18                            | -                  | 3.57               | -                     | 1.40                  |
|             | 2.6         | 6.52                             | -                                | 10.79                            | -                  | 3.77               | -                     | 1.10                  |
|             | 2.7         | 6.33                             | -                                | 10.41                            |                    | 2.94               | -                     | 0.88                  |
| 0.125       | 1.9         | 3.09                             | -                                | 13.77                            | -                  | 18.23              | -                     | 6.00                  |
|             | 2.0         | 2.99                             | -                                | 13.13                            | -                  | 15.90              | -                     | 4.81                  |
|             | 2.1         | 2.84                             | -                                | 12.55                            | -                  | 14.69              | -                     | 3.82                  |
|             | 2.2         | 2.85                             | -                                | 12.20                            | -                  | 13.15              | -                     | 3.30                  |
|             | 2.3         | 2.69                             | -                                | 11.66                            | -                  | 12.14              | -                     | 2.53                  |
|             | 2.4         | 2.61                             | -                                | 11.23                            | -                  | 10.79              | -                     | 2.00                  |
|             | 2.5         | 2.49                             | -                                | 10.87                            | -                  | 10.00              | -                     | 1.58                  |
|             | 2.6         | 2.43                             | -                                | 10.48                            | -                  | 8.94               | -                     | 1.25                  |
|             | 2.7         | 2.46                             | -                                | 10.15                            | -                  | 7.73               | -                     | 1.01                  |
|             | 2.8         | 2.06                             | -                                | 9.84                             | -                  | 8.63               | -                     | 0.75                  |
| 0.2         | 1.9         | 1.22                             | 3.89                             | 13.94                            | 24.61              | 19.37              | 2.75                  | 3.97                  |
|             | 2.0         | 1.75                             | 3.89                             | 13.18                            | 21.05              | 15.00              | 2.27                  | 3.72                  |
|             | 2.1         | 1.83                             | 3.72                             | 12.66                            | 22.42              | 12.55              | 2.12                  | 3.18                  |
|             | 2.2         | 1.88                             | 3.59                             | 12.30                            | 23.61              | 10.74              | 1.94                  | 2.83                  |
|             | 2.3         | 1.88                             | 3.36                             | 11.80                            | 25.84              | 9.64               | 1.99                  | 2.30                  |
|             | 2.4         | 1.85                             | 3.09                             | 11.33                            | 25.43              | 8.65               | 2.09                  | 1.88                  |
|             | 2.5         | 1.55                             | 2.60                             | 10.96                            | 27.99              | 10.01              | 2.59                  | 1.45                  |
|             | 2.6         | 1.63                             | 2.56                             | 10.58                            | 30.08              | 8.32               | 2.30                  | 1.19                  |
|             | 2.7         | 1.77                             | 2.55                             | 10.26                            | 30.36              | 8.72               | 2.74                  | 0.97                  |
| 0.3         | 1.9         | 0.81                             | 5.46                             | 13.13                            | 22.80              | 20.12              | 2.92                  | 2.36                  |
|             | 2.0         | 0.89                             | 4.93                             | 12.56                            | 23.24              | 18.21              | 2.49                  | 2.17                  |
|             | 2.1         | 0.67                             | 4.02                             | 12.08                            | 22.06              | 19.13              | 2.50                  | 1.88                  |
|             | 2.2         | 0.70                             | 3.72                             | 11.77                            | 23.11              | 18.10              | 2.32                  | 1.73                  |
|             | 2.3         | 0.75                             | 3.38                             | 11.30                            | 23.60              | 16.41              | 2.37                  | 1.46                  |
|             | 2.4         | 0.81                             | 3.16                             | 10.94                            | 25.93              | 14.64              | 2.37                  | 1.24                  |
|             | 2.5         | 0.85                             | 2.96                             | 10.61                            | 27.56              | 12.88              | 2.42                  | 1.06                  |

 Table S4.4 Result of the fitting procedure for AC susceptibility components of 3.

Compound **3** @ 0.05 T

![](_page_23_Figure_0.jpeg)

**Figure S4.4** AC susceptibility data for **3** recorded at  $B_{DC}=0.05$  T: Frequency dependence of in-phase  $\chi''(a)$  and out-of-phase  $\chi''(b)$  AC susceptibility components (solid lines present fits using the two-

component Debye's model, eq. S3 and S4), Cole-Cole diagram (*c*), temperature dependence of inphase  $\chi'(d)$  and out-of-phase  $\chi''(e)$  AC susceptibility components (solid lines are only guides for the eyes) and temperature evolution of  $\chi_{T1}$ ,  $\chi_{T2}$ ,  $\chi_S$ ,  $\alpha_1$ ,  $\alpha_2(f)$  and  $\tau_1$ ,  $\tau_2(g)$  parameters obtained from twocomponent Debye model (eq. S1 and S2).

![](_page_24_Figure_1.jpeg)

**Figure S4.5** AC susceptibility data for **3** recorded at  $B_{DC}=0.125$  T: Frequency dependent in-phase  $\chi'$  component of AC susceptibility (*a*), temperature dependence of in-phase  $\chi'(b)$  and out-of-phase  $\chi''(c)$  components of AC susceptibility (solid lines are only guides for the eyes), Cole-Cole diagram (*d*), temperature evolution of  $\chi_T$ ,  $\chi_S$ ,  $\alpha$ , (*e*) and  $\tau$  (*f*) parameters obtained from two-component Debye model (eq. S1 and S2).

| Compound <b>3</b> @ 0.2 T |  |
|---------------------------|--|
|---------------------------|--|

![](_page_25_Figure_0.jpeg)

**g**)

**Figure S4.6** AC susceptibility data for **3** recorded at  $B_{DC}=0.2$  T: Frequency dependence of in-phase  $\chi''(a)$  and out-of-phase  $\chi''(b)$  AC susceptibility components (solid lines present fits using the twocomponent Debye's model, eq.S3 and S4). Temperature dependence of in-phase  $\chi'(c)$  and out-ofphase  $\chi''(d)$  AC susceptibility components (solid lines are only guides for the eyes), Cole-Cole diagram (e) and temperature evolution of  $\chi_{T1}, \chi_{T2}, \chi_S, \alpha_1, \alpha_2$  (f) and  $\tau_1, \tau_2$  (g) parameters obtained from two-component Debye model (eq. S3 and S4).

![](_page_26_Figure_2.jpeg)

**Figure S4.7** AC susceptibility data for **3** recorded at  $B_{DC}=0.3$  T: Frequency dependent in-phase  $\chi'$  component of AC susceptibility (*a*), Cole-cole diagram (*b*), temperature dependence of in-phase  $\chi'(c)$  and out-of-phase  $\chi''$  (*d*) components of AC susceptibility (solid lines are only guides for the eyes), temperature evolution of  $\chi_{T1}, \chi_{T2}, \chi_S, \alpha_1, \alpha_2$  (*e*) and  $\tau_1, \tau_2$  (*f*) parameters obtained from two-component Debye model (eq. S3 and S4).

| <i>T</i> /K | χ <sub>s</sub> /10 <sup>-6</sup> | χ <sub>T</sub> /10 <sup>-6</sup> | $\alpha/10^{-2}$ | $\tau/10^{-4}$ s |  |
|-------------|----------------------------------|----------------------------------|------------------|------------------|--|
|             | m <sup>3</sup> mol <sup>-1</sup> | m <sup>3</sup> mol <sup>-1</sup> |                  |                  |  |
| 2.0         | 1.14                             | 11.57                            | 19.04            | 6.53             |  |
| 2.2         | 1.04                             | 10.74                            | 19.18            | 5.06             |  |
| 2.4         | 1.04                             | 9.81                             | 18.77            | 3.77             |  |
| 2.6         | 0.89                             | 9.11                             | 18.77            | 2.83             |  |
| 2.8         | 0.88                             | 8.49                             | 18.16            | 2.17             |  |
| 3.0         | 0.99                             | 7.98                             | 17.40            | 1.77             |  |
| 3.2         | 1.18                             | 7.54                             | 15.44            | 1.50             |  |
| 3.4         | 0.92                             | 7.13                             | 16.76            | 1.12             |  |
| 3.6         | 0.88                             | 6.76                             | 16.28            | 0.92             |  |
| 3.8         | 1.39                             | 6.43                             | 13.23            | 0.87             |  |
| 4.0         | 1.61                             | 6.14                             | 10.75            | 0.82             |  |
| 4.2         | 1.69                             | 5.87                             | 9.48             | 0.70             |  |
| 4.4         | 1.66                             | 5.62                             | 7.78             | 0.59             |  |
| 4.6         | 1.82                             | 5.40                             | 6.46             | 0.54             |  |
| 4.8         | 1.87                             | 5.19                             | 6.69             | 0.48             |  |
| 5.0         | 1.68                             | 5.00                             | 4.11             | 0.40             |  |
| 5.2         | 1.60                             | 4.83                             | 3.75             | 0.33             |  |

**Table S4.5** Result of the fitting procedure for AC susceptibility components of 4 at  $B_{DC}=0.15$  T.

![](_page_27_Figure_3.jpeg)

![](_page_28_Figure_0.jpeg)

**Figure S4.8** AC susceptibility data for 4 recorded at  $B_{DC}=0.1$  T: Frequency dependent in-phase  $\chi'$  component of AC susceptibility (*a*), Cole-cole diagram (*b*), temperature dependence of in-phase  $\chi'(c)$  and out-of-phase  $\chi''$  (*d*) components of AC susceptibility (solid lines are only guides for the eyes), temperature evolution of  $\chi_{T}$ ,  $\chi_{S}$ ,  $\alpha$  (*e*) and  $\tau$  (*f*) parameters obtained from two-component Debye model (equations S1 and S2).

**Table S4.6** Relaxation parameters for compounds 1 and 2 using the single Orbach, single Raman model and their combinations.

|   | Model               | B <sub>DC</sub> / T | <i>U/k</i> <sub>B</sub> / K | $\tau_0/s$                  | $C / K^{-n} s^{-1};$ | AB <sup>m</sup> / T <sup>-m</sup> K <sup>-1</sup> s <sup>-1</sup> | <b>R</b> <sup>2</sup> |
|---|---------------------|---------------------|-----------------------------|-----------------------------|----------------------|-------------------------------------------------------------------|-----------------------|
|   |                     |                     |                             |                             | n                    |                                                                   |                       |
| 1 | Orbach <sup>a</sup> | 0.15                | 25.75±0.71                  | (3.71±0.61)10 <sup>-7</sup> | -                    | -                                                                 | 0.9924                |
| 1 | Raman <sup>a</sup>  | 0.15                | -                           | -                           | 1.20±0.20;           | -                                                                 | 0.9966                |
|   |                     |                     |                             |                             | 5.91±0.11            |                                                                   |                       |
| 1 | Orbach+Direct       | 0.15                | 24.61±0.88                  | (5.87±1.22)10 <sup>-7</sup> | -                    | 307.75±9.39                                                       | 0.9941                |
| 1 | Raman+Direct        | 0.15                | -                           | -                           | 0.79±0.14;           | 271.81±6.73                                                       | 0.9982                |
|   |                     |                     |                             |                             | 6.07±0.12            |                                                                   |                       |
| 2 | Orbach <sup>b</sup> | 0.15                | 12.79±0.77                  | (1.23±0.34)10 <sup>-6</sup> | -                    |                                                                   | 0.9753                |
| 2 | Raman <sup>b</sup>  | 0.15                | -                           | -                           | 68.76±12.01;         | -                                                                 | 0.9913                |
|   |                     |                     |                             |                             | 4.61±0.16            |                                                                   |                       |
| 2 | Orbach+Direct       | 0.15                | 18.92±1.35                  | (2.28±0.92)10-7             | -                    | 893.83±93.51                                                      | 0.9945                |
| 2 | Raman+Direct        | -                   | -                           | -                           | 14.93±7.06;          | 632.85±121.05                                                     | 0.9964                |
|   |                     |                     |                             |                             | 5.78±0.38            |                                                                   |                       |

<sup>a</sup> for the temperature range 3.9 K -4.9 K; <sup>b</sup> for the temperature range 2.2 K -3.6 K;

|   | Model               | B <sub>DC</sub> / T | $U_{eff}/k_{B}/K$ | $\tau_0/s$                  | C / K <sup>-n</sup> s <sup>-1</sup> ; | AB <sup>m</sup> / T <sup>-m</sup> K <sup>-1</sup> s <sup>-1</sup> | <b>R</b> <sup>2</sup> |
|---|---------------------|---------------------|-------------------|-----------------------------|---------------------------------------|-------------------------------------------------------------------|-----------------------|
|   |                     |                     |                   |                             | n                                     |                                                                   |                       |
| 3 | Orbach <sup>a</sup> | 0.05                | 14.03±0.29        | $(4.98\pm0.60)10^{-7}$      | -                                     | -                                                                 | 0.9978                |
| 3 | Ramanª              | 0.05                | -                 | -                           | 36.58±1.65;<br>5.77±0.05              | -                                                                 | 0.9996                |
| 3 | Orbach+Direc<br>t   | 0.05                | 19.10±0.92        | (9.22±3.16)10 <sup>-8</sup> | -                                     | 797.38±49.03                                                      | 0.9984                |
| 3 | Raman+Direct        | 0.05                | -                 | -                           | 7.67±2.77;<br>7.19±0.36               | 626.32±67.30                                                      | 0.9987                |
| 2 | Ortho alb 3         | 0.125               | 14.97+0.52        | $(2.07 \pm 0.96) 10.7$      |                                       |                                                                   | 0.0024                |
| 3 | Raman <sup>a</sup>  | 0.125               | 14.07±0.55        | (3.97±0.80)10               | 26.02±3.25;<br>6.01±0.14              | -                                                                 | 0.9924                |
| 3 | Orbach+Direc<br>t   | 0.125               | 20.06±0.93        | (7.13±2.47)10 <sup>-8</sup> | -                                     | 713.01±45.49                                                      | 0.9980                |
| 3 | Raman+Direct        | 0.125               | -                 | -                           | 5.37±1.76;<br>7.44±0.31               | 558.97±54.79                                                      | 0.9986                |
|   |                     |                     |                   |                             |                                       |                                                                   |                       |
| 3 | Orbach <sup>c</sup> | 0.2                 | 12.83±0.43        | (8.57±1.54)10-7             | -                                     | -                                                                 | 0.9943                |
| 3 | Raman <sup>c</sup>  | 0.2                 | -                 | -                           | 53.90±5.78;<br>5.28±0.12              | -                                                                 | 0.9975                |
| 3 | Orbach+Direc<br>t   | 0.2                 | 23.46±1.44        | (2.31±1.24)10 <sup>-8</sup> | -                                     | 1196.11±65.56                                                     | 0.9974                |
| 3 | Raman+Direct        | 0.2                 | -                 | -                           | 1.04±0.71;<br>8.96±0.68               | 1115.23±65.56                                                     | 0.9963                |
|   |                     |                     |                   |                             |                                       |                                                                   |                       |
| 3 | Orbach <sup>d</sup> | 0.3                 | 7.11±0.53         | (6.43±1.55)10 <sup>-6</sup> | -                                     | -                                                                 | 0.9727                |
| 3 | Raman <sup>d</sup>  | 0.3                 | -                 | -                           | 488.28±76.0<br>9;<br>3.20±0.19        | -                                                                 | 0.9824                |
| 3 | Orbach+Direc<br>t   | 0.3                 | 21.22±2.39        | (4.77±4.44)10 <sup>-6</sup> | -                                     | 2067.28±72.40                                                     | 0.9967                |
| 3 | Raman+Direct        | 0.3                 | -                 | -                           | $2.02\pm1.96;$<br>8.43±1.01           | 1982(99)                                                          | 0.9966                |

**Table S4.7** Relaxation parameters for compound **3** using the single Orbach, single Raman model and their combinations.

<sup>a</sup>for the temperature range 2.2 K-2.7 K; <sup>b</sup>for the temperature range 2.2 K-2.8 K; <sup>c</sup>for the temperature range 2.2 K-2.8 K; <sup>d</sup>for the temperature range 2.0 K-2.5 K;

**Table S4.8** Relaxation parameters for compounds **4** using the single Orbach, single Raman model and their combinations.

|   | Model  | B <sub>DC</sub> / | $U_{eff}/k_{B}/K$ | $\tau_0/s$                  | C / K <sup>-n</sup> s <sup>-1</sup> ; | <b>R</b> <sup>2</sup> |
|---|--------|-------------------|-------------------|-----------------------------|---------------------------------------|-----------------------|
|   |        | Т                 |                   |                             | n                                     |                       |
| 4 | Orbach | 0.1               | 9.54±0.29         | (6.70±0.61)10 <sup>-6</sup> | -                                     | 0.9856                |
| 4 | Raman  | 0.1               | -                 | -                           | 201.44±21.96;                         | 0.9872                |
|   |        |                   |                   |                             | 3.00±0.09                             |                       |

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

![](_page_31_Figure_0.jpeg)

**Figure S5.1** Magneto-structural correlations for 37 pentacoordinated Co(II) SIMs. a) correlation between Addison  $\tau_5$  parameter and axial zero-field splitting *D* parameter; b) Shape map for trigonal bipyramid (TBPY) and square pyramid (SPY). The red and blue color indicate the positive and negative values of *D*, respectively, found in the corresponding compounds. **1-3** – this work; **5-7**,<sup>9</sup> **8-9**,<sup>10</sup> **10-11**,<sup>11</sup> **12-16**,<sup>12,13</sup> **17**,<sup>14</sup> **18**,<sup>15</sup> **19-20**,<sup>16</sup> **21-22**,<sup>17</sup> **23**,<sup>18</sup> **24**,<sup>19</sup> **25-27**,<sup>20</sup> **8**,<sup>21</sup> **29-34**,<sup>22</sup> **35-38**,<sup>23</sup>

### References

- 1. L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786
- 2. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3.
- 3. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3.
- 4. J. Koziskova, F. Hahn, J. Richter and J. Kozisek, Acta Chim. Slovaca, 2016, 9, 136.
- C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van der Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466.
- 6. R. Boča, Theoretical Foundations of Molecular Magnetism, Elsevier, Amsterdam, 1999.
- 7. M. A. Halcrow, Coord. Chem. Rev., 2009, 253, 2493.
- 8. (a) P. Guionneau, M. Marchivie, G. Bravic, J.-F. Létard and D. Chasseau, *Top. Curr. Chem.*, 2004, 234, 97; (b) M. A. Halcrow, *Chem. Soc. Rev.*, 2011, 40, 4119.
- 9. A. K: Mondal, T. Goswami, A. Misra and S. Konar, Inorg. Chem., 2017, 56, 6870
- 10. C. Rajnák, F. Varga, J. Titiš, J. Moncol' and R. Boča, Eur. J. Inorg. Chem., 2017, 13, 1915
- A. Switlicka, B. Machura, M. Penkala, A. Bienko, D. C. Bienko, J. Titis, C. Rajnak, R. Boca, A. Ozarowski and M. Ozerov, Inorg. Chem., 2018, 57, 12740
- C. Rajnák, J. Titiš, J. Miklovic, G. E. Kostakis, O. Fuhr, M. Ruben, R. Boca Polyhedron 2017 126 174-183.
- 13. C. Rajnák, J. Titiš, O. Fuhr, M. Ruben and R. Boča, Inorg. Chem., 2014, 53, 8200.
- 14. D. Schweinfurth, M. G. Sommer, M. Atanasov, S. Demeshko, S. Hohloch, F. Meyer, F. Neese and B. Sarkar J. Am. Chem. Soc. 2015, 137, 1993–2005
- 15. C. Rajnák, J. Titiš, I. Šalitroš, R. Boča, O. Fuhr, M. Ruben Polyhedron 2013, 65, 122–128.

- T. Jurca, A. Farghal, P.-H. Lin, I. Korobkov, M. Murugesu, D. S. Richeson J. Am. Chem. Soc. 2011, 133, 15814 —15817
- 17. R. Ruamps, L. J. Batchelor, R. Guillot, G. Zakhia, A.-L. Barra, W. Wernsdorfer, N. Guihéry and T. Mallah, Chem. Sci., 2014,5, 3418-3424
- I. Nemec, R. Marx, R. Herchel, P. Neugebauer, J. van Slageren, Z. Trávníček, Dalton Trans., 2015, 44, 15014
- 19. F. Shao, B. Cahier, N. Guihéry, E. Rivière, R. Guillot, A.-L. Barra, Y. Lan, W. Wernsdorfer, V. E. Campbell and T. Mallah, Chem. Commun., 2015,51, 16475-16478
- 20. F. Shao, B. Cahier, E. Rivière, R. Guillot, N. Guihéry, V. E. Campbell and T. Mallah Inorg. Chem. 2017, 56, 1104-1111
- B. Cahier, M. Perfetti, G. Zakhia, D. Naoufal, F. El-Khatib, R. Guillot, E Riviere, Roberta Sessoli, A.-L. Barra, N. Guihery and T. Mallah, Chem. Eur. J. 2017, 23, 3648 – 3657.
- 22. T. J. Woods, M. F. Ballesteros-Rivas, S. Gómez-Coca, E. Ruiz and K. R. Dunbar J. Am. Chem. Soc. 2016, 138, 16407–16416
- I. Nemec, H.Liu, R. Herchel, X. Zhang, and Z. Travnicek Synthetic Metals 215 (2016) 158– 163.