Supplementary Information

A highly active copper catalyst for the hydrogenation of Carbon Dioxide to formate under ambient conditions

Karan Choudhary,^{*a*} Manoj Trivedi,^{**a,b*} D.T. Masram,^{**a*} Abhinav Kumar,^{*c*} Girijesh Kumar,^{*d*} Ahmad Husain,^{*e*} Nigam P. Rath^{/**}

E-mail address: manojtri@gmail.com (M.T.); rathn@umsl.edu (NPR).

Corresponding author. Tel.: + 91 9811730475 (MT); (314) 516-5333 (NPR).

Entry	solvent		Yield [%] ^[b]	TON	1[c]	
1.	1,4-dioxane		20		92		
2.	THF		18		83		
3.	CH ₃ CN		11		51		
4.	CH ₃ OH		<1		<1		
5.	DMF		30		138		
6.	DME		15		69		
7.	Toluene		10		46		
8.	2-propanol		<1		<1		
[a]Reacti	on conditions:	catalyst	(0.02	mmol),	DBU	(10	mmol),
Dimethylformamide (5.0 mL), CO_2 (1 atm), H_2 (1 atm), $25^{\circ}C$, 12 h.							
^[b] Molar ratio of the product/initial DBU determined by ¹ H MR spectroscopy.							
^[c] TON: turnover number.							

Table 1. Effect of solvent on the hydrogenation

X : parts per Million : 1H

Figure S1. Time-resolved ¹H NMR spectra for a representative CO_2 hydrogenation using DBU. Conditions: 1.0 atm H₂/CO₂, 25°C, [CuI(dtbpf)] (0.02 mmol), DBU (10 mmol) was run in 5mL DMF and 0.25 mL of the reaction mixture was dissolved into 1.0 mL of CDCl₃ for analysis by NMR spectroscopy (Table 1, entry 6). The region from -2.0 to 11 ppm showing formate and catalyst 1,1'-bis(di-*tert*-butylphosphino) ferrocene signals is shown, and diagnostic peaks are labeled. Spectra were acquired at room temperature in CDCl₃ solvent.

Figure S2. Time-resolved ¹H NMR spectra for a representative CO₂ hydrogenation using DBU. Conditions: 1.0 atm H_2/CO_2 , 80°C, [CuI(dtbpf)] (0.02 mmol), DBU (10 mmol), in 5 mL DMF (Table 3, entry 5). The region from -2.0 to 11 ppm showing formate and catalyst 1,1'-bis(di-*tert*-butylphosphino) ferrocene signals is shown, and diagnostic peaks are labeled. Spectra were acquired at room temperature in CDCl₃ solvent.

Figure S3. ¹H NMR spectrum for a representative CO₂ hydrogenation using DBU in CDCl₃ solvent. Conditions: 1.0 atm H_2/CO_2 , 80°C, [CuI(dtbpf)] (0.02 mmol), DBU (10 mmol), in 5 mL DMF. The region from -0.11 to -0.17 ppm showing Cu-H signal.

X : parts per Million : Carbon13

Figure S4. ¹³C NMR spectrum of reaction mixture for a representative CO₂ hydrogenation using DBU in CDCl₃ solvent. Conditions: 1.0 atm H_2/CO_2 , 80°C, [CuI(dtbpf)] (0.02 mmol), DBU (10 mmol), in 5 mL DMF after 4 hour.

Figure S5. ¹³C NMR spectrum of reaction mixture for a representative CO₂ hydrogenation using DBU in CDCl₃ solvent. Conditions: 1.0 atm H_2/CO_2 , 80°C, [CuI(dtbpf)] (0.02 mmol), DBU (10 mmol), in 5 mL DMF after 12 hour.

Figure S6. ${}^{31}P{}^{1}H$ -NMR spectrum of [CuI(dtbpf)] at room temperature (400 MHz, in CDCl₃).

Figure S8. HR-ESI-MS of [CuI(dtbpf)] in MeOH.

Figure S9. HR-ESI-MS measurement of a post-catalytic mixture in MeOH.

Synthesis of [CuH(dtbpf)]: A 100 mL two neck round-bottom (RB) flask was charged with [CuI(dtbpf)] (166 mg, 0.25 mmol) in 5 ML of CH₃OH:CH₃CN (50:50 V/V). This two neck round-bottom was connected to three neck round-bottom (RB) containing granulated tin metal through tube. Concentrated HCl was added to three neck round-bottom (RB) containing granulated tin metal in part wise to generate H₂ gas *in-situ* and this generate H₂ gas was passed to 100 mL two neck round-bottom (RB) flask through tube. The resulting solution was stirred for 12 hour. The solution turned bright yellow and pale and cloudy yellow precipitate appeared. This was separated and washed with small amount of diethyl ether and dried under vacuum. Yield: (67 mg, 50%).

Figure S10. ${}^{1}H{}^{31}P{}$ decoupled NMR spectrum of [CuH(dtbpf)] at room temperature (400 MHz, in CDCl₃).

Figure S11. ${}^{1}H{}^{31}P{}$ coupled NMR spectrum of [CuH(dtbpf)] at room temperature (400 MHz, in CDCl₃).

