A Zwitterionic Ligand-Based Water Stable Metal-Organic
 Framework Showing Photochromic and Cr(VI) Removal Properties

Chenghui Zhang, ${ }^{\text {a,b }}$ Huaizhong Shi, ${ }^{a}$ Yan Yan, ${ }^{a}$ Libo Sun, ${ }^{\text {c }}$ Yu Ye, ${ }^{\text {a }}$ Yizhong Lu, ${ }^{\text {b }}$ Zhiqiang Lianga* and Jiyang Lia*
${ }^{a}$ State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China. E-mail: lijiyang@jlu.edu.cn, liangzq@jlu.edu.cn.
${ }^{b}$ School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
${ }^{c}$ School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.

Table S1. Crystal Data and Structure Refinement for 1.

Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{In}_{3} \mathrm{~N}_{4} \mathrm{O}_{12}$
Formula weight	1048.04
Temperature	193(2) K
Wavelength	0.71073 A
Crystal system	Trigonal
Space group	R-3m
Unit cell dimensions	$\mathrm{a}=15.2848(7) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=15.2848(7) \AA \quad \beta=90^{\circ}$
	$\mathrm{c}=56.084(3) \AA \quad \gamma=120^{\circ}$
Volume	11347.2(12) \AA^{3}
Z	9
Density (calculated)	$1.380 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.411 \mathrm{~mm}^{-1}$
F(000)	4590
Crystal size	$0.120 \times 0.110 \times 0.080 \mathrm{~mm}^{3}$
Theta range for data collection	2.179 to 28.298°.
Index ranges	$-20 \leq \mathrm{h} \leq 20,-20 \leq \mathrm{k} \leq 14,-74 \leq 1 \leq 74$
Reflections collected	37905
Independent reflections	$3459\left[\mathrm{R}_{(\text {(int) }}=0.0347\right]$
Completeness to theta $=25.242^{\circ}$	98.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.0962 and 0.0682
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3459 / 198/186
Goodness-of-fit on F^{2}	1.136
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$R_{1}=0.0275, w R_{2}=0.0793$
R indices (all data)	$R_{1}=0.0285, w R_{2}=0.0801$
Extinction coefficient	n / a
Largest diff. peak and hole	0.533 and -0.717 e. \AA^{-3}

Note for the final formula of compound 1: Because bromine atoms couldn't be located by single crystal X-ray data and the framework is neutral, while EDX mapping image and XPS analysis show that there exit bromine atoms in this material, we speculate that bromine is not in the structure of $\mathbf{1}$, but might be simply adsorbed on crystal surface of the material containing positively charged pyridinium nitrogen from linkers by electrostatic interaction. Besides, the solvents are insignificant for our research works. So the final formula of compound $\mathbf{1}$ is identified as $\left[\operatorname{In}_{3}(\mathrm{ipbp})_{2}\left(\mu_{2}-\mathrm{OH}\right)\left(\mu_{2}-\mathrm{O}\right)_{3}\right]$ based on crystallographic data like previously reports (Chem. Sci., 2019, 10, 1186; J. Am. Chem. Soc., 2019, 141, 2900).

Table S2. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1}$.

$\mathrm{In}(1)-\mathrm{O}(3)$	2.092(2)	$\operatorname{In}(2)-\mathrm{O}(3)$	2.084(3)
$\operatorname{In}(1)-\mathrm{O}(4) \# 2$	$2.1007(9)$	$\operatorname{In}(2)-\mathrm{O}(1) \# 3$	2.156(2)
$\operatorname{In}(1)-\mathrm{O}(4)$	$2.1007(9)$	$\operatorname{In}(2)-\mathrm{O}(1) \# 5$	2.156(2)
$\operatorname{In}(1)-\mathrm{O}(2) \# 3$	$2.180(2)$	$\mathrm{In}(2)-\mathrm{O}(1)$	$2.156(2)$
$\mathrm{In}(1)-\mathrm{O}(2)$	2.180(2)	$\operatorname{In}(2)-\mathrm{O}(1) \# 4$	2.156(2)
$\operatorname{In}(1)-\mathrm{N}(1)$	2.266(2)	$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{M})$	0.9356
$\operatorname{In}(2)-\mathrm{O}(3) \# 4$	2.084(3)		
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	126.9(2)	$\mathrm{O}(4)-\mathrm{In}(1)-\mathrm{O}(2)$	88.43(10)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	116.5(2)	$\mathrm{O}(2) \# 3-\mathrm{In}(1)-\mathrm{O}(2)$	84.69(14)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	116.5(2)	$\mathrm{O}(3)-\mathrm{In}(1)-\mathrm{N}(1)$	168.18(11)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	120.0(3)	$\mathrm{O}(4) \# 2-\mathrm{In}(1)-\mathrm{N}(1)$	90.56(19)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.2(2)	$\mathrm{O}(4)-\operatorname{In}(1)-\mathrm{N}(1)$	90.95(18)
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	119.7(2)	$\mathrm{O}(2) \# 3-\mathrm{In}(1)-\mathrm{N}(1)$	81.23(16)
$\mathrm{C}(2) \# 6-\mathrm{C}(3)-\mathrm{C}(2)$	120.1(3)	$\mathrm{O}(2)-\mathrm{In}(1)-\mathrm{N}(1)$	81.58(18)
$\mathrm{C}(2) \# 6-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.9	$\mathrm{O}(3) \# 4-\mathrm{In}(2)-\mathrm{O}(3)$	180.00(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.0	$\mathrm{O}(3) \# 4-\mathrm{In}(2)-\mathrm{O}(1) \# 3$	88.51(7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(2)$	119.2(3)	$\mathrm{O}(3)-\mathrm{In}(2)-\mathrm{O}(1) \# 3$	91.48(7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.5	$\mathrm{O}(3) \# 4-\mathrm{In}(2)-\mathrm{O}(1) \# 5$	91.49(7)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.4	$\mathrm{O}(3)-\mathrm{In}(2)-\mathrm{O}(1) \# 5$	88.52(7)
$\mathrm{C}(4) \# 6-\mathrm{C}(5)-\mathrm{C}(4)$	121.5(4)	$\mathrm{O}(1) \# 3-\mathrm{In}(2)-\mathrm{O}(1) \# 5$	180.00(12)
$\mathrm{C}(4) \# 6-\mathrm{C}(5)-\mathrm{N}(2) \# 1$	119.1(5)	$\mathrm{O}(3) \# 4-\mathrm{In}(2)-\mathrm{O}(1)$	88.52(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(2) \# 1$	119.3(6)	$\mathrm{O}(3)-\mathrm{In}(2)-\mathrm{O}(1)$	91.48(7)
$\mathrm{O}(3)-\mathrm{In}(1)-\mathrm{O}(4) \# 2$	97.01(9)	$\mathrm{O}(1) \# 3-\mathrm{In}(2)-\mathrm{O}(1)$	89.96(14)
$\mathrm{O}(3)-\mathrm{In}(1)-\mathrm{O}(4)$	97.01(9)	$\mathrm{O}(1) \# 5-\mathrm{In}(2)-\mathrm{O}(1)$	90.04(14)
$\mathrm{O}(4) \# 2-\mathrm{In}(1)-\mathrm{O}(4)$	97.52(14)	$\mathrm{O}(3) \# 4-\mathrm{In}(2)-\mathrm{O}(1) \# 4$	91.49(7)
$\mathrm{O}(3)-\mathrm{In}(1)-\mathrm{O}(2) \# 3$	89.89(7)	$\mathrm{O}(3)-\mathrm{In}(2)-\mathrm{O}(1) \# 4$	88.52(7)
$\mathrm{O}(4) \# 2-\mathrm{In}(1)-\mathrm{O}(2) \# 3$	88.43(10)	$\mathrm{O}(1) \# 3-\mathrm{In}(2)-\mathrm{O}(1) \# 4$	90.04(14)
$\mathrm{O}(4)-\mathrm{In}(1)-\mathrm{O}(2) \# 3$	170.24(10)	$\mathrm{O}(1) \# 5-\mathrm{In}(2)-\mathrm{O}(1) \# 4$	89.96(14)
$\mathrm{O}(3)-\mathrm{In}(1)-\mathrm{O}(2)$	89.89(7)	$\mathrm{O}(1)-\mathrm{In}(2)-\mathrm{O}(1) \# 4$	180.0
$\mathrm{O}(4) \# 2-\mathrm{In}(1)-\mathrm{O}(2)$	170.24(9)		

Symmetry transformations used to generate equivalent atoms:

$$
\begin{aligned}
& \# 1 \mathrm{y}+1 / 3,-\mathrm{x}+\mathrm{y}+2 / 3,-\mathrm{z}+2 / 3 \quad \# 2-\mathrm{x}+\mathrm{y},-\mathrm{x}+1, \mathrm{z} \quad \# 3-\mathrm{y}+1,-\mathrm{x}+1, \mathrm{z} \\
& \# 4-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1 \quad \# 5 \mathrm{y}, \mathrm{x},-\mathrm{z}+1 \quad \# 6-\mathrm{x}+\mathrm{y}+1, \mathrm{y}, \mathrm{z}
\end{aligned}
$$

Table S3. Comparison of $\mathrm{Cr}(\mathrm{VI})$ adsorption ability of compound $\mathbf{1}$ with selected MOFs.

Absorbent	Maximum Capacity (mg g ${ }^{-1}$)	References
UTSA-74	790	Angew. Chem. Int. Ed. 2017, 56, 16376.
Zn-MOF-74	750	
MOR-2	193.7	J. Mater. Chem. A 2017, 5, 14707.
MOR-2-HA	162.8	
TMU-30	145	Inorg. Chem. 2016, $\mathbf{5 5}, 5507 .$
MOR-1-HA	108.2-124.6	Chem. Sci. 2016, 7,$2427 .$
MOR-1 (protonated)	123.6-114	
MOR-1 (nonprotonated)	117.4-139.5	
$\mathrm{Cu}-\mathrm{MOF}$	107	Chem. Eur. J. 2018, $\mathbf{2 4}, 2718 .$
ABT-2ClO 4	102.9	Angew. Chem. Int. Ed. 2013, 52, 13769.
Ag-MOF	99.6	Chem. Commun. $2017,53,9206-9209 .$
$1-\mathrm{SO}_{4}$	79.9	Angew. Chem. Int. Ed. $2016,55,7811 .$
$1-\mathrm{NO}_{3}-\mathrm{OH}$	74.5	$\begin{gathered} \text { Dalton Trans., 2018, } \\ 47,9103 . \end{gathered}$
1	74.4	This work
FIR-54	49.6	Chem. Mater., 2015, 27, 205.
JLU-MOF50	44.3	$\begin{gathered} \hline \text { J. Mater. Chem. A, } \\ 2018, \mathbf{6}, 6363 . \end{gathered}$
NU-1000	36.1	Inorg. Chem., 2017, 56, 14178.
FIR-53	35.7	Chem. Mater., 2015, $27,205 .$
SLUG-35	30.7	Chem. Mater., 2013, 25, 647.
$1-\mathrm{ClO}_{4}$	28.2	$\begin{gathered} \hline \text { Chem. Commun., } \\ 2012, \mathbf{4 8}, 8231 . \end{gathered}$
SLUG-21	26.9	J. Am. Chem. Soc., 2011, 133, 11110.

Fig. S1 Illustration of Lewis structure of $\mathrm{H}_{2}(\mathrm{ipbp}) \mathrm{Br}$ linker.

Fig. S2 IR spectrum of compound 1. The absence of absorption around $1700 \mathrm{~cm}^{-1}$ confirms that the carboxylic groups $(-\mathrm{COOH})$ in $\mathrm{H}_{2}(\mathrm{ipbp}) \mathrm{Br}$ ligands are completely deprotonated and exited as $-\mathrm{COO}^{-}$, thus giving the stretch vibrations around $1619 \mathrm{~cm}^{-1}$ and $1385 \mathrm{~cm}^{-1} .{ }^{1,2}$ Moreover, the characteristic absorption around $1630 \mathrm{~cm}^{-1}$ confirms the existence of $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{C}$ stretching vibrations of the pyridinium group in compound $1 .{ }^{2}$

Fig. S3 The coordination environment of 1. The hydrogen atoms from linkers are omitted for clarity.

Fig. S4 The 3D framework of compound $\mathbf{1 .}$

Fig. S5 View of two different cages in compound 1.

Fig. $\mathbf{S 6} \mathrm{N}_{2}$ absorption-desorption isotherms of compound $\mathbf{1}$ at 77 K .

Fig. S7 SEM image and elemental mapping images of compound 1.

Fig. S8 PXRD patterns of simulated, before and after irradiation of compound 1.

Fig. S9 EPR signal of compound $\mathbf{1}$ after decolored.

Fig. S10 Photographs showing crystal colors of compound $\mathbf{1}$ after irradiation and XPS test.

Fig. S11 The electron transfer pathways between the oxygen atom of carboxylate and nitrogen atom of bipyridinium units from adjacent ligands in the structure of compound 1.

Fig. S12 PXRD patterns of compound 1 after immersed in water for one week, in aqueous solution with various pH for 48 h or heated at $250^{\circ} \mathrm{C}$ for 10 min .

Fig. S13 The predominance diagram showing the relative distribution of different $\mathrm{Cr}(\mathrm{VI})$ species in water as a function of pH and total $\mathrm{Cr}(\mathrm{VI})$ concentration.

Fig. S14 (a) Langmuir isotherm and (b) Freundlich isotherm fitting model for $\mathrm{Cr}(\mathrm{VI})$ removal by compound $\mathbf{1}$ according to Eq. (1) and (2) ${ }^{3}$, respectively:

$$
\begin{align*}
& C_{\mathrm{e}} / Q_{\mathrm{e}}=C_{\mathrm{e}} / Q_{\mathrm{m}}+1 /\left(K_{\mathrm{L}} \cdot Q_{\mathrm{m}}\right) \tag{1}\\
& \ln Q_{\mathrm{e}}=\ln K_{\mathrm{F}}+1 / n \ln C_{\mathrm{e}} \tag{2}
\end{align*}
$$

Fig. S15 PXRD patterns of compound $\mathbf{1}$ before and after $\mathrm{Cr}(\mathrm{VI})$ adsorption in the presence of differently competitive ions.

The release of $\mathrm{Cr}(\mathrm{VI})$ from $\mathrm{Cr}(\mathrm{VI}) @ 1$ was done in the following experiments. 10 mg of compound $\mathbf{1}$ was immersed in 30 mL of $\mathrm{Cr}(\mathrm{VI})$ aqueous solutions (134.2 ppm) under stirring condition for 48 h to obtain sample of $\mathrm{Cr}(\mathrm{VI}) @ 1$, which was separated by centrifugation and washed by water for three times. Then the obtained dried sample was immersed in 30 mL water containing 200-fold molar amounts of Br^{-}(relative to the absorbed $\operatorname{Cr}(\mathrm{VI})$). After 12 h and $24 \mathrm{~h}, 2 \mathrm{~mL}$ of the mixture was taken out, respectively. Then the supernatant was separated by centrifugation and analyzed by ICP, and the solid sample was washed by water for three times and then analyzed by PXRD (Fig. S16).

Fig. S16 PXRD patterns of compound 1 after $\mathrm{Cr}(\mathrm{VI})$ adsorption and release.

References

1. C. Q. Zhang, L. B. Sun, Y. Yan, J. Y. Li, X. W. Song, Y. L. Liu and Z. Q. Liang, Dalton Trans., 2015, 44, 230.
2. J.-K. Sun, P. Wang, C. Chen, X.-J. Zhou, L.-M. Wu, Y.-F. Zhang and J. Zhang, Dalton Trans., 2012, 41, 13441.
3. M. T. Ge; H. Z Liu. J. Mater. Chem. A, 2016, 4, 16714.
