Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for:

Charge Neutral Rhenium(I) Tricarbonyl Complexes of Tridentate *N*-Heterocylic Carbene Ligands that Bind to Amyloid Plaques of Alzheimer's Disease

Nuchareenat Wiratpruk,^a Asif Noor,^b Catriona A. McLean,^c Paul S. Donnelly^b Peter J. Barnard^{a*}

^aDepartment of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.

^bSchool of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.

^cFlorey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia

Synthesis

6-nitro-2-(4-N,N-dimethylaminophenyl)benzothiazole: This compound was synthesised as Racane¹ from 2-amino-5-nitrothiophenol (0.85 5.00 4reported by g, mmol). (dimethylamino)benzaldehyde (0.75 g, 5.00 mmol) in pyridine (10 mL). The product was obtained as an orange solid (Yield: 0.72g, 48%). ¹H NMR (400 MHz) (CDCl₃): δ (ppm) 3.11 (s, 6H, CH₃), 6.76 (d, 2H, ${}^{3}J_{H-H} = 9.04$ Hz, H_{Ar}), 7.98-8.00 (m, 3H, H_{Ar}), 8.30-8.33 (dd, 1H, ${}^{3}J_{H-H} = 2.32$, 8.96 Hz, H_{Ar} , 8.76 (d, 1H, ${}^{3}J_{H-H} = 2.28$ Hz, H_{Ar}). ${}^{13}C$ NMR (CDCl₃): δ (ppm) 40.1 CH₃, 111.6 C_{Ar}, 117.9 C_{Ar}, 120.3 C_a, 121.9 C_{Ar}, 121.9 C_{Ar}, 129.5 C_{Ar}, 134.8 C_a, 144.0 C_a, 153.0 C_a, 158.6 C_a, 174.5 C_a.

6-amino-2-(4-*N***,***N***-dimethylaminophenyl)benzothiazole**: This compound was synthesised as reported by Racane¹ from anhydrous tin(II) chloride (2.17 g, 9.62 mmol), 6-nitro-2-(4-N,N-dimethylaminophenyl)benzothiazole (0.72 g, 2.41 mmol), conc. HCl (4.5 mL) and methanol (4.5 mL). The product was obtained as a brown solid. (Yield: 0.094 g, 15%). ¹H NMR (400 MHz) (DMSO-*d*₆): δ (ppm) 2.90 (s, 6H, 2CH₃), 5.18 (s, 2H, NH₂), 6.53 (d, 2H, ³*J*_{H-H} = 8.44 Hz, H_{Ar}), 6.69 (d, 2H, ³*J*_{H-H} = 8.44 Hz, H_{Ar}), 6.78 (s, 2H, *HC*=*CH*), 7.29 (d, 2H, ³*J*_{H-H} = 8.48 Hz, H_{Ar}), 7.32 (d, 2H, ³*J*_{H-H} = 8.84 Hz, H_{Ar}). ¹³C NMR (DMSO-*d*₆): δ (ppm) 39.5-40.5 CH₃, 104.5 C_{Ar}, 112.4 C_{Ar}, 115.1 C_{Ar}, 121.5 C_q, 121.6 C_q, 122.7 C_{Ar}, 128.1 C_{Ar}, 135.7 C_q, 145.9 C_q, 147.1 C_q, 152.0 C_q, 162.0 C_q.

p-nitro-*p*'-*N*,*N*-dimethylaminostilbene: This compound was synthesised as described by Gao² from *p*-nitro-phenylacetic acid (5.00 g, 30 mmol), *p*-dimethylaminobenzaldehyde (6.18 g, 41 mmol), and piperidine (10 mL). The product was obtained as a bright orange solid. (Yield: 2.96 g, 42%). ¹H NMR

(500 MHz) (CDCl₃): δ (ppm) 3.03 (s, 6H, CH₃), 6.72 (d, 2H, H_{Ar}), 6.94 (d, 1H, ${}^{3}J_{\text{H-H}} = 16.2$ Hz, HC=CH), 7.22 (d, 1H, ${}^{3}J_{\text{H-H}} = 16.3$ Hz, HC=CH), 7.45 (d, 2H, ${}^{3}J_{\text{H-H}} = 8.70$ Hz, H_{Ar}), 7.57 (d, 2H, ${}^{3}J_{\text{H-H}} = 8.70$ Hz, H_{Ar}), 8.19 (d, 2H, ${}^{3}J_{\text{H-H}} = 8.85$ Hz, H_{Ar}). 13 C NMR (CDCl₃): δ (ppm) 40.3 CH₃, 112.2 C_{Ar}, 121.6 C=C, 124.2 C_{Ar}, 126.1 C_{Ar}, 128.4 C_{Ar}, 133.4 C=C, 145.0 C_q, 150.9 C_q.

p-amino-*p'N*,*N*-dimethylaminostilbene: This compound was prepared using the same procedure as described by Gao² from *p*-nitro-*p'-N*,*N*-dimethylaminostilbene (0.91 g, 3.54 mmol), anhydrous tin(II) chloride (3.20 g, 14.2 mmol), conc. HCl (10 mL) and methanol (10 mL). The product was obtained as a yellow solid. (Yield: 0.10 g, 12%). ¹H NMR (500 MHz) (DMSO-*d*₆): δ (ppm) 2.99 (s, 6H, 2CH₃), 5.33 (s, 2H, NH₂), 6.72-6.74 (dd, 1H, H_{Ar}), 6.79 (d, 2H, ³*J*_{H-H} = 8.85, H_{Ar}). ¹³C NMR (DMSO-*d*₆): δ (ppm) 112.9 C_{Ar}, 114.4 C_{Ar}, 123.7 C_q, 125.1 H*C*=*C*H, 126.1 C_{Ar}, 126.6 C_{Ar}, 127.4 C_{Ar}, 148.4 C_q, 149.8 C_q.

1: This compound was synthesised as described by Hemelaere³ from ethanolamine (5.00 g, 81.9 mmol), MgSO₄ (19.7 g, 164 mmol) and benzylaldehyde (8.69 g, 81.9 mmol) in methanol (150 mL). The product was obtained as a yellow oil. (Yield: 9.85 g, 79%). ¹H-NMR (400 MHz) (CDCl₃): δ (ppm) 2.76 (t, 2H, ³*J*_{H-H} = 5.20 Hz, H₂C-CH₂), 2.94 (s, 2H, NH₂), 3.64 (t, 2H, ³*J*_{H-H} = 5.12 Hz, CH₂CH₂), 3.78 (s, 2H, CH₂OH), 7.24-7.32 (m, 5H, H_{Ar}). ¹³C NMR (CDCl₃): δ (ppm) 50.6 (CH₂CH₂), 53.5 (CH₂CH₂), 60.7 (*C*H₂N), 127.2 C_{Ar}, 128.3 C_{Ar}, 128.5 C_{Ar}.

2: To a stirred solution of 1 (0.5 g, 3.31 mmol) in acetonitrile (30 mL), NaHCO₃ (0.42 g, 4.95 mmol) was added. The mixture was cooled to 0 °C before a solution of *t*-butyl bromoacetate (0.65 g, 3.31 mmol) in acetonitrile (5 mL) was added dropwise, and the resultant mixture was stirred at room temperature for 2 h and the solvent was then removed on a rotatory evaporator. The crude product was redissolved in dichloromethane, washed with water (3 × 10 mL), dried with MgSO₄ and the solvent was evaporated to dryness on a rotatory evaporator. The crude product was purified on silica with methanol (3%) and dichloromethane (97%) as the eluent. The product was obtained as a yellow oil. (Yield: 0.37 g, 42%). ¹H-NMR (400 MHz) (CDCl₃): δ (ppm) 1.46 (s, 9H, 3CH₃), 2.85 (t, 2H, ³J_{H-H} = 5.20 Hz, CH₂CH₂), 3.23 (s, 2H, CH₂COO), 3.59 (t, 2H, ³J_{H-H} = 5.08 Hz, CH₂CH₂), 3.82 (s, 2H, CH₂N), 7.28-7.34 (m, 5H, H_{Ar}). ¹³C NMR (CDCl₃): δ (ppm) 27.8 CH3, 55.5 CH₂COO, 56.6 CH₂CH₂, 58.6 CH₂CH₂, 59.0 CH₂N, 81.3 C_q, 127.3 C_{Ar}, 128.4 C_{Ar}, 128.9 C_{Ar}, 138.5 C_q, 171.2 C_q.

3: To a solution of **2** in methanol (2.71 g, 10.2 mmol), was added 10% Pd/C (0.50 g) and the mixture was stirred overnight under a hydrogen atmosphere. The solution was filtered through a plug of Celite, evaporated to dryness on a rotatory evaporator and purified on silica with dichloromethane (2%) and

methanol (98%) as the eluent. The pure compound was obtained as a yellow oil (Yield: 1.53 g, 85%). ¹H-NMR (400 MHz) (CDCl₃): δ (ppm) 1.44 (s, 9H, 3CH₃), 2.60 (s_{br}, 1H, NH), 2.74 (t, 2H, ³J_{H-H} = 5.20 Hz, CH₂), 3.28 (s, 2H, OCCH₂), 3.59 (t, 2H, ³J_{H-H} = 5.12 Hz, CH₂). ¹³C NMR (CDCl₃): δ (ppm) 28.0 CH₃, 51.1 OCN, 51.2 CH₂, 60.9 CH₂, 81.4 C_q, 171.9 C_q.

4: To a solution of **3** (0.50 g, 2.85 mmol) in anhydrous DMF (5 mL) was added NaHCO₃ (0.29 g, 3.42 mmol). The mixture was cooled to 0 °C and a solution of benzyl bromoacetate (0.72 g, 3.14 mmol) in anhydrous DMF (2 mL) was added dropwise. The mixture was stirred at 0 °C for 1 h, allowed to warm to room temperature then stirred for another 12 h. The solution was filtered and the solvent was removed on a rotatory evaporator. The crude product was purified on silica with ethyl acetate (40%) and hexane (60%) as the eluent. The pure compound was obtained as a yellow oil. (Yield: 0.74g, 81%). ¹H-NMR (400 MHz) (CDCl₃): δ (ppm) 1.46 (s, 9H, CH₃), 2.90 (t, 2H, ³J_{H-H} = 4.12 Hz, CH₂), 3.46 (s, 2H, NCH₂), 3.54 (t, 2H, ³J_{H-H} = 2.12 Hz, CH₂), 3.61 (s, 2H, NCH₂), 5.16 (s, 2H, CH₂), 7.34-7.37 (m, 5H, H_{Ar}). ¹³C NMR (CDCl₃): δ (ppm) 28.1 CH₃, 55.8 NCH₂, 56.5 NCH₂, 57.1 OCH₂, 59.3 NCH₂, 66.6 O-CH₂-Ar, 81.6 C_q, 128.3 C_{Ar}, 128.4 C_{Ar}, 128.6 C_{Ar}, 135.5 C_q, 171.3 C_q, 171.9 C_q.

5: A mixture of 4 (2.57 g, 7.95 mmol) and triphenylphosphine (2.09 g, 7.95 mmol) was dissolved in anhydrous DCM (20 mL) and cooled to 0 °C under a nitrogen atmosphere. *N*-bromosuccinimide (1.42 g, 7.95 mmol) was added portion-wise and the mixture was stirred for 2.5 h at 0 °C.⁴ A pale orange crystalline solid was obtained after the solvent was removed on a rotatory evaporator. The crude product was washed with ether (2 × 20 mL) and then purified on silica with hexane (40%) and ethyl acetate (60%) as the eluent. The pure compound was obtained as a yellow oil. (Yield: 1.87 g, 43%). ¹H NMR (400 MHz) (CDCl₃): δ (ppm) 1.46 (s, 9H, CH₃), 3.17 (t, 2H, ³*J*_{H-H} = 7.68 Hz, CH₂), 3.43 (s, 2H, CH₂), 3.66 (s, 2H, CH₂), 5.16 (s, 2H, CH₂), 7.35-7.39 (m, 5H, H_{Ar}). ¹³C NMR (CDCl₃): δ (ppm) 28.1 CH₃, 30.2 CH₂Br, 55.6 NCH₂, 56.4 NCH₂, 56.7 NCH₂, 66.5 O-CH₂-Ar, 81.4 C_q, 128.3 C_{Ar}, 128.4 C_{Ar}, 128.6 C_{Ar}, 135.6 C_q, 170.4 C_q, 171.1 C_q.

Figure S1. ¹H and ¹³C NMR spectra for 6-nitro-2-(4-*N*,*N*-dimethylaminophenyl)benzothiazole.

Figure S2. ¹H and ¹³C NMR spectra for 6-amino-2-(4-*N*,*N*-dimethylaminophenyl)benzothiazole.

Figure S3. ¹H and ¹³C NMR spectra for *p*-nitro-*p*'-*N*,*N*-dimethylaminostilbene.

Figure S4. ¹H and ¹³C NMR spectra for *p*-amino-*p* '*N*,*N*-dimethylaminostilbene.

Figure S5. 1 H and 13 C NMR spectra for compound 1.

Figure S6. ¹H and ¹³C NMR spectra for compound **2**.

Figure S7. ¹H and ¹³C NMR spectra for compound **3**.

Figure S8. ¹H and ¹³C NMR spectra for compound **4**.

Figure S9. 1 H and 13 C NMR spectra for compound 5.

Figure S10. ¹H and ¹³C NMR spectra for compound **6**.

Figure S11. 1 H and 13 C NMR spectra for compound 7.

Figure S12. 1 H and 13 C NMR spectra for compound 8.

Figure S13. ¹H and ¹³C NMR spectra for compound 9.

Figure S14. ¹H and ¹³C NMR spectra for compound **10**.

Figure S15. ¹H and ¹³C NMR spectra for compound **11**.

Figure S16. ¹H and ¹³C NMR spectra for compound **12**.

Figure S17. 1 H and 13 C NMR spectra for complex 13.

Figure S18. ¹H and ¹³C NMR spectra for complex **14**.

FT-IR Spectra

Figure S19. FT-IR spectrum for complex 13.

Figure S20. FT-IR spectrum for complex 14.

X-ray Crystallography

Identification code	13	15
Empirical formula	$C_{28}H_{27}N_6O_6ReS$	$C_{30}H_{32}Cl_2N_5O_6Re$
Formula weight	761.81	815.7
Temperature/K	150.00(10)	136(5)
Crystal system	triclinic	monoclinic
Space group	P-1	$P2_1/c$
a/Å	7.20011(12)	15.6976(11)
b/Å	7.20961(14)	11.3209(5)
c/Å	27.7581(7)	19.2779(10)
$\alpha/^{\circ}$	91.5713(19)	90
β/°	93.4633(18)	109.671(7)
$\gamma/^{\circ}$	108.3622(16)	90
Volume/Å ³	1363.42(5)	3226.0(3)
Ζ	2	4
$\rho_{calc}g/cm^3$	1.856	1.68
µ/mm ⁻¹	9.911	9.31
F(000)	752	1616
Crystal size/mm ³	$0.04 \times 0.03 \times 0.03$	$0.05\times0.03\times0.03$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.588 to 130.172	9.206 to 149.004
Index ranges	$-8 \le h \le 8, -8 \le k \le 8, -32 \le 1$ < 32	$-19 \le h \le 19, -14 \le k \le 13, -23 \le 1$ < 24
Reflections collected	8184	17006
Independent reflections	8184 [Rsigma = 0.0179]	6591 [$R_{int} = 0.0409$, $R_{sigma} = 0.0472$]
Data/restraints/parameters	8184/0/383	6591/0/400
Goodness-of-fit on F ²	1.04	1.049
Final R indexes [I>= 2σ (I)]	R1 = 0.0452, wR2 = 0.1233	$R_1 = 0.0506, wR_2 = 0.1275$
Final R indexes [all data]	R1 = 0.0460, wR2 = 0.1246	$R_1 = 0.0630, wR_2 = 0.1394$
Largest diff. peak/hole / e Å ⁻³	3.11/-0.83	3.35/-1.42

Table S1. X-ray	crystallographic	data for compounds 13 and 14
-----------------	------------------	------------------------------

13 Solved in the triclinic space group P-1. The structure is twinned, and Crysalis Twin Data Reduction was carried out. Hklf4 and hklf5 files were generated and final refinement on the hklf5 lowered R1 to 4.52%

14 Solved in the monoclinic space group $P2_1/c$. The cifcheck report lists 1 level B alert.

(1) PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.95A From Re01 3.18 eA-3

It is apparent that this residual electron density is associated with the heavy Re metal centre and no attempts were made to model this density.

Partition coefficient (LogP) studies

1-Octanol/water partition coefficients for complexes **13** and **14** were determined using the slowstirring method as described by Pereiro and co-workers.⁵ The 1-octanol and Mili-Q water were saturated prior their use and the starting concentration of complexes **13** and **14** in the 1-octanol phase was 80 μ M. Approximately 5 mL of the pre-saturated water and 1-octanol were added to a glass vial containing a magnetic stir bar. The vials were slowly stirred and maintained at 25 °C for two days. The metal complex concentration in the 1-octanol phase was then analysed using an Agilent Technologies Cary 300 UV-visible spectrophotometer in a quartz cuvette (1 cm). A calibration curve for each complex was prepared at its λ_{max} value (365 nm for **13** and 360 nm for **14**).

Complex 13

Concentration (µM)	Absorbance	
1	0.046748	
2	0.070164	
5	0.227143	
10	0.419519	
20	1.040334	
50	2.499851	

Table S2. Standard samples of 13 with its corresponding absorbance.

Extinction coefficient = 0.0507 μ mol⁻¹ L cm⁻¹= 50700 mol⁻¹ L cm⁻¹

Figure S21. Calibration curve for complex 13 in 1-octanol.

Replicate 1: $\lambda_{max} = 365 \text{ nm}, \text{ A} = 2.39$

Concentration in octanol = $A/\epsilon l = 2.39/(50700 \times 1) = 4.71 \times 10^{-5} M = 47.1 \mu M$ Total concentration of **13** added for partition between water and octanol = 80 μM Concentration in octanol = 47.1 μM and concentration in water = 32.9 μM

$$Log P = log \left(\frac{[13]octanol}{[13]water}\right) = log \left(\frac{47.1}{32.9}\right) = 0.156$$

Replicate 2: $\lambda_{max} = 365 \text{ nm}, \text{ A} = 2.35$

Concentration in octanol = $A/\epsilon l = 2.35/(50700 \times 1) = 4.64 \times 10^{-5} M = 46.4 \,\mu M$ Total concentration of **13** added for partition between water and octanol = 80 μM Concentration in octanol = 46.4 μM and concentration in water = 33.6 μM

$$Log P = log \left(\frac{[13]octanol}{[13]water}\right) = log \left(\frac{46.4}{33.6}\right) = 0.140$$

Replicate 3: $\lambda_{max} = 365 \text{ nm}, \text{ A} = 2.37$ Concentration in octanol = A/ɛl = 2.37/(50700 × 1) = 4.67 × 10⁻⁵ M = 46.7 μ M Total concentration of **13** added for partition between water and octanol = 80 μ M Concentration in octanol = 46.7 μ M and concentration in water = 33.3 μ M ([13]octanol) (46.7)

$$Log P = log \left(\frac{[13]octanol}{[13]water}\right) = log \left(\frac{40.7}{33.3}\right) = 0.147$$

Complex 13, average log $P = 0.15 \pm 0.01$

Complex 14

Table S3. Standard samples of 14 with its corresponding absorbance.

Concentration (µM)	Absorbance
1	0.010805
2	0.02689
5	0.08842
10	0.199834
20	0.459253
50	1.223777

Max wavelength = 360 nm

Molar extinction coefficient = $0.0236 \,\mu$ mol⁻¹ L cm⁻¹ = 23600 mol^{-1} L cm⁻¹

Figure S22. Calibration curve for complex 14 in 1-octanol.

Replicate $1:\lambda_{max} = 360 \text{ nm}, \text{ A} = 1.34$

Concentration in octanol = $A/\epsilon l = 1.34/(23600 \times 1) = 5.68 \times 10^{-5} M = 56.8 \mu M$

Total concentration of complex 14 added for partition between water and octanol = $80 \,\mu$ M

Concentration in octanol = 56.8 μ M and concentration in water = 23.2 μ M.

$$Log P = log \left(\frac{[15]octanol}{[15]water}\right) = log \left(\frac{56.8}{23.2}\right) = 0.389$$

Replicate
$$2:\lambda_{max} = 360$$
 nm, A = 1.33

Concentration in octanol = $A/\epsilon l = 1.33/(23600 \times 1) = 5.64 \times 10^{-5} M = 56.4 \,\mu M$

Total concentration of complex 14 added for partition between water and octanol = $80 \ \mu M$ Concentration in octanol = $56.4 \ \mu M$ and concentration in water = $23.6 \ \mu M$.

$$Log P = log \left(\frac{[15]octanol}{[15]water}\right) = log \left(\frac{56.4}{23.6}\right) = 0.378$$

Replicate
$$3:\lambda_{max} = 360 \text{ nm}, \text{ A} = 1.34$$

Concentration in octanol = $A/\epsilon l = 1.34/(23600 \times 1) = 5.68 \times 10^{-5} M = 56.8 \mu M$

Total concentration of complex 14 added for partition between water and octanol = 80 μ M Concentration in octanol = 56.8 μ M and concentration in water = 23.2 μ M.

$$Log P = log \left(\frac{[15]octanol}{[15]water}\right) = log \left(\frac{56.8}{23.2}\right) = 0.389$$

Complex 14, average log P log P = 0.39 ± 0.01

Photophysical studies

Table S4. UV-visible absorption and fluorescence spectroscopic data for compounds: benzothiazole ligand, Re(I)-benzothiazole, stilbene ligand and Re(I)-stilbene.

Compound (Solvent)	λ_{max}/nm	Photoluminescence
	$(\epsilon/M^{-1}cm^{-1})$	λ_{max}/nm
9 a	365 (41500)	424
12 ^a	357 (34800)	454
13 ^b	369 (27900)	417
14 ^b	357 (20400)	457

 $\overline{a_1 \ \mu M}$ in acetonitrile, $b_{10} \ \mu M$ in acetonitrile

Figure S23. UV-vis spectra of 9 and 12 (1 μ M in acetonitrile).

Figure S24. UV-vis spectra of 13 and 14 (10 μ M in acetonitrile).

Figure S25. Excitation and emission spectra for compounds 9 and 12 (1 μ M in acetonitrile).

Figure S26. Excitation and emission spectra for compounds 13 and 14 (10 μ M in acetonitrile).

Reference

- 1. L. Racane, R. Stojkovic, V. Tralic-Kulenovic and G. Karminski-Zamola, *Molecules*, 2006, **11**, 325.
- 2. F. Gao, X. Zhong, Q. Wang, H. Li and S. Zhang, *Chin. J. Chem*. 2010, 28, 1057-1068.
- 3. R. Hemelaere, J. Desroches and J.-F. Paquin, Organic Letters, 2015, 17, 1770-1773.
- 4. *U.S Pat.*, 2001.
- 5. N. S. M. Vieira, J. C. Bastos, L. P. N. Rebelo, A. Matias, J. M. M. Araújo and A. B. Pereiro, *Chemosphere*, 2019, **216**, 576-586.