Electronic Supplementary Information (ESI) for:

A heat-set lanthanide metallogel capable of emitting stable luminescence under thermal, mechanical and water stimuli

Binbin Zhang^a, Xuelin Dong,^{ab} Yuxing Xiong^b, Qi Zhou,^a Shan Lu,^a Yonggui Liao,^a Yajiang Yang ^a and Hong Wang^{*a}

Additional data

1. ¹H-NMR spectra of H₆L

¹H-NMR spectrum of H₆L in DMSO-*d*₆ was recorded on a Bruker Avance III spectrometer operating at 400 MHz. 13.03 (6H), 9.70 (3H), 8.46 (6H), 8.11 (3H).

Fig. S1 ¹H NMR spectra of H_6L in DMSO- d_6 .

2. ESI-MS spectra of H₆L

 H_6L was dissolved in DMF and diluted to 10^{-5} M with acetonitrile, and its ESI mass spectrum was recorded on a Bruker UltiMate 3000-microTOFII in positive-ion mode. MS m/z: calcd. For $C_{27}H_{18}N_6O_{12}$ [H_6L+H]⁺: 619.1062; found: 619.1042.

Fig. S2 ESI-MS spectra of H₆L.

3. Preparation of H₆L/Tb gel in varied solvents

 H_6L (7.4 mg, 0.012 mmoL) and $TbCl_3 \cdot 6H_2O$ (4.5 mg, 0.012 mmoL) were dissolved in a predetermined volume of DMF or DMSO (mL) after which CH_3OH , H_2O or CH_3CH_2OH (predetermined volume, mL) was added with vortex blending. A total mixed solution of 1 mL was then placed in a closed vessel (5 mL) and heated for 2 h at 85°C to achieve gelation.

××	9:1	8:2	7:3	6:4	5:5	4:6	3:7	2:8	1:9
Solvents Results									
DMF/CH ₃ OH	S	S	TS	G	G	G	TS	Р	Р
DMF/H ₂ O	Р	Р	G	G	G	G	G	Р	Р
DMSO/H ₂ O	S	S	S	S	G	G	G	G	G
DMF/CH ₃ CH ₂ OH	S	S	S	S	S	S	S	TS	TS
DMSO/CH ₃ OH	S	S	S	S	S	S	S	TS	TS
DMSO/CH ₃ CH ₂ OH	S	S	S	S	S	S	TS	TS	Р

Tab. S1 Gelation tests of H_6L and Tb^{3+} in different mixed solvents

S = solution; G = gel; TS = turbid solution; P = precipitation.

4. Preparation of H₆L/Tb gel with different H₆L or Tb³⁺ concentration

 H_6L (predetermined weight, mg) and $TbCl_3 \cdot 6H_2O$ (4.5 mg, 0.012 mmoL) were dissolved in DMF (0.5 mL) after which CH_3OH (0.5 mL) was added with vortex blending. The solution was then placed in a closed vessel (5 mL) and heated for 2 h at 85°C to achieve gelation.

Tab. S2 Gelation tests of H_6L at a constant Tb^{3+} concentration

H ₆ L (mg)	0.0	3.7	7.4	11.1	14: 8	18.5
Results	S	Р	G	G	G	TS

S = solution; G = gel; TS = turbid solution; P = precipitation.

 H_6L (7.4 mg, 0.012 mmoL, the minimum gelation weight of H_6L) and TbCl₃·6H₂O (predetermined molar weight) were dissolved in DMF (0.5 mL) after which CH₃OH (0.5 mL) was added with vortex blending. The solution was then placed in a closed vessel (5 mL) and heated for 2 h at 85°C to achieve gelation.

Tab. S3 Gelation tests with different H_6L/Tb^{3+} molar ratio

H ₆ L: Tb ³⁺	1.0: 0.0	1.0: 0.5	1.0:1.0	1.0: 1.5	1.0: 2.0	1.0: 2.5
Results	Р	Р	G	G	G	TS

P = precipitation; G = gel; TS = turbid solution.

5. FT-IR spectra of H_6L and H_6L/Tb^{3+} powder

Fig. S3 FT-IR spectra of H_6L (1) and H_6L/Tb^{3+} powder prepared from H_6L/Tb^{3+} solutions heated for various times: 0 min (2), 10 min (3), 30 min (4), 60 min (5), 90 min (6), and 120 min (7) at 85°C.

6. Schematic illustration of self-assembly of H₆L/Tb complex.

Fig. S4 Schematic illustration of self-assembly of H₆L/Tb complex.

7. The effect of solvents and H_6L/Tb^{3+} ratios on the luminescent intensity of H_6L/Tb gel

Fig. S5 Effect of solvents on luminescent intensity of H_6L/Tb gel (λ_{ex} =333 nm) formation in 1/1 (v/v) solvent/solvent.

Fig. S6 The effect of the H_6L/Tb^{3+} ratios on luminescent intensity of H_6L/Tb gel ($H_6L = 7.4$ mg, $\lambda_{ex}=333$ nm) formation in 1/1 (v/v) DMF/CH₃OH.

8. Thermal stability of H₆L/Tb gel

The H_6L/Tb gel was placed in the thermostat (DHG-9035AE) and maintained at 1 h for each temperature, and the gel was found stable in 0 and 100 °C.

Fig. S7 Photographs of H_6L/Tb gel appearance in 0 and 100 °C.

9. Stable luminescence of collapsed H_6L/Tb gels by manual shaking treated by varied sonication time.

Fig. S8 Luminescence stability performance of collapsed H_6L/Tb gels by manual shaking treated by varied sonication time, where the ratio of I/I_0 is the luminescence intensities of the collapsed H_6L/Tb gel before and after sonication.

10. Luminescence decay curves

Fig. S9 Luminescence decay curves of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (544 nm) from H₆L/Tb gel (red) and H₆L/Tb gel after manual shaking (blue).

11. FT-IR spectra of H₆L/Tb xerogel and the powder of H₆L/Tb gel after manual shaking

The powder of H_6L/Tb gel after shaking was prepared by centrifugally separating the H_6L/Tb gel after manual shaking and then drying at 40°C under vacuum for 24 hours.

Fig. S10 FT-IR spectra of H₆L/Tb xerogel and the powder of H₆L/Tb gel after manual shaking.

12. XRD pattern of powder of H₆L/Tb gel after manual shaking

The powder of H_6L/Tb gel after shaking was prepared by centrifugally separating the H_6L/Tb gel after manual shaking and then drying at 40°C under vacuum for 24 hours.

Fig. S11 XRD pattern of H₆L/Tb gel after manual shaking.

13. FT-IR spectra of H₆L/Tb xerogel and the powder of H₆L/Tb xerogel after soaking in water

The solid powder of H_6L/Tb xerogel after soaking in water was prepared by centrifugally separating the H_6L/Tb xerogel after soaking in water of 18 h and then drying at 40 °C under vacuum for 24 hours.

Fig. S12 FT-IR spectra of H₆L/Tb xerogel and H₆L/Tb xerogel upon the treatment of soaking in water.

14. XRD pattern of solid power of H₆L/Tb xerogel after soaking in water

The solid power of H_6L/Tb xerogel after soaking in water was prepared by centrifugally separating the H_6L/Tb xerogel after soaking in water of 18 h and then by drying at 40°C under vacuum for 24 hours.

Fig. S13 XRD pattern of H_6L/Tb xerogel after soaking in water.