Double donation in trigonal planar iron-carbodiphosphorane complexes – a concise study on the spectroscopic and electronic properties.

Supplementary Information

Nis-Julian H. Kneusels,^{†,‡} Jörn E. Münzer,[†] Kimon Flosdorf,[†] Dandan Jiang,[¶] Bernhard Neumüller,[†] Lili Zhao,^{¶,*} Andreas Eichhöfer, ^{§,*} Gernot Frenking^{†,¶,*} and Istemi Kuzu^{†,*}

[†]Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany. Email: istemi.kuzu@chemie.uni-marburg.de; frenking@chemie.uni-marburg.de

¶Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China. Email: ias_llzhao@njtech.edu.cn

[‡]Current address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, England.

[§]Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. Email: andreas.eichhoefer@kit.edu

Table of content

Figure S1. Measured (black) and simulated (grey) X-ray powder diffraction pattern (XRD).

Figure S2. Molecular structure of recrystallized [CDP^{Me}-Fe{N(SiMe₃)₂}₂] (2).

Figure S3. ¹H NMR spectrum of $[CDP^{Me}-Fe{N(SiMe_3)_2}_2]$ (2).

Figure S4. Variable temperature ¹H NMR spectrum of $[CDP^{Ph}-Fe{N(SiMe_3)_2}_2]$ (1).

Figure S5. ¹H NMR spectrum of $[CDP^{Ph}-Fe{N(SiMe_3)_2}_2]$ (1).

Figure S6. FT-IR spectrum of $[CDP^{Ph}-Fe{N(SiMe_3)_2}_2]$ costoluene (1 costoluene).

Figure S7. FT-IR spectrum of $[CDP^{Me}-Fe{N(SiMe_3)_2}_2]$ (2).

Figure S8. Plots of magnetization *M* versus *H* between 2 and 25 K for 1 and 2. **Table S1.** Crystal data and structure refinement.

Table S2. The calculated NBO charge (q) and natural bond order (P) of the optimized structures.

Figure S9. Shape of the most important interacting MOs of fragments, plot of deformation densities $\Delta \rho_{1+2}$ of the pairwise orbital interactions and the associated interaction energies (ΔE_{orb}) between fragments.

Figure S10. Plot of deformation densities $\Delta \rho_{3-7}$ of the pairwise orbital interactions between the quintet (Q) [(Me₃Si)₂N]₂Fe and singlet (S) C(PPh₃)₂ fragments in [(Me₃Si)₂N]₂Fe-C(PPh₃)₂, associated interaction energies ΔE_{orb} (in kcal/mol) and eigenvalues v.

Table S3. Cartesian coordinates and SCF energy of calculated molecular structure of [(Me₃Si)₂N]₂Fe-C(PPh₃)₂ at the BP86/def2-TZVPP level.

Figure S1. Measured (black) and simulated (grey) X-ray powder diffraction pattern (XRD) of $[CDP^{Ph}-Fe\{N(SiMe_3)_2\}_2]$ (2, below).

Figure S2. Molecular structure of recrystallized $[CDP^{Me}-Fe{N(SiMe_3)_2}_2]$ (2) with 30 % probability for thermal ellipsoids. H atoms are omitted for clarity. Selected bond lengths [pm] and angles [°]: C1–P2 170.1(2), C1–P3 17.0(3), C1–Fe1 211.4(2), Fe1–N1 199.24(17), Fe1–N2 198.91(19); P2–C1–P3 121.94(13), P2–C1–Fe1 119.99(12), P3–C1–Fe1 118.05(11), N1–Fe1–N2 120.80(8), N2–Fe1–C1 119.37(8), N1–Fe1–C1 119.81(8), N1–Fe1–C1–P3 46.1, N2–Fe1–C1–P2 45.7.

Figure S3. ¹H NMR spectrum of $[CDP^{Me}-Fe\{N(SiMe_3)_2\}_2]$ (2) in C₆D₆ (300 K). (\bigcirc) denotes impurity.

Figure S4. Variable temperature ¹H NMR spectrum of $[CDP^{Ph}-Fe{N(SiMe_3)_2}_2](1)$ in toluened₈.

Figure S5. ¹H NMR spectrum of $[CDP^{Ph}-Fe\{N(SiMe_3)_2\}_2]$ (1) in toluene-d₈ (293 K). (\bigcirc) denotes impurity.

Figure S6. FT-IR spectrum of $[CDP^{Ph}-Fe{N(SiMe_3)_2}_2]$ $(1 \circ 3 toluene)$.

Figure S7. FT-IR spectrum of $[CDP^{Me}-Fe{N(SiMe_3)_2}_2]$ (2).

Figure S8. Plots of magnetization *M* versus *H* between 2 and 25 K for **1** (above) and **2** (below). Solid lines represents the results of the simultaneous curve fitting with the χT data, according to a spin Hamiltonian by the PHI program (equation S1).

X-Ray determination

Table S1. Crystal data and structure refinement for $[CDP^{Ph}-Fe{N(SiMe_3)_2}_2]$ stoluene (1 stoluene), $[CDP^{Me}-Fe{N(SiMe_3)_2}_2]$ stoluene (1 stoluene) and $[CDP^{Me}-Fe{N(SiMe_3)_2}_2]$ (2).

Compound	1c3C7H8	2 C3C ₃ H ₇	2
CCDC	1965230	1965231	1966059
Internal code	Kuzu42_sq	Kuzu89	Kuzu89b
Empirical formula	$C_{56}H_{74}FeN_2P_2Si_4$	$C_{42}H_{69}FeN_2P_2Si_4$	$C_{39}H_{62}FeN_2P_2Si_4$
Formula weight	1005.32	832.14	789.05
Temperature/ K	100(2)	100(2)	180(2)
Crystal system	triclinic	triclinic	orthorhombic
Space group	PI	P1	P2 ₁ 2 ₁ 2 ₁
a/ Å	14.358(1)	11.215(1)	12.3110(8)
b/ Å	15.795(1)	13.123(1)	16.4794(7)
c/ Å	16.772(2)	16.998(2)	21.9452(10)
α/°	101.67(1)	88.64(1)	
β/°	109.39(1)	83.80(1)	
γ/ °	112.53(1)	71.76(1)	
Volume/ Å ³	3068.0(5)	2361.9(3)	4452.2(4)
Ζ	2	2	4
$\rho_{calc} g/cm^3$	1.088	1.170	1.177
μ/ mm ⁻¹	0.409	0.518	0.546
F(000)	1072.0	894.0	1688
Crystal size/ mm ³	0.25 imes 0.23 imes 0.14	0.23 imes 0.15 imes 0.14	0.60 x 0.49 x 0.44
Radiation	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)
Θ range for data collection/ °	2.29 to 28.00	1.634 to 25.894	2.264 to 27.949
Index ranges	$-18 \le h \le 17$,	$-13 \le h \le 13$,	-16<=h<=16,
	$-20 \le k \le 20,$	$-16 \le k \le 16,$	-20<=k<=21,
	$0 \le l \le 22$	$-20 \le l \le 20$	-26<=l<=28
Reflections collected	69139	18999	29404
Independent reflections	14592 [$R_{int} = 0.0688$,	9089 [$R_{int} = 0.0291$,	$10570 [R_{int} = 0.0497,$
	$R_{sigma} = 0.0531$	$R_{sigma} = 0.0291]$	$R_{sigma} = 0.0476$
Flack-parameter	-	-	-0.006(11)
Data/restraints/parameters	14592/ 0/ 570	9089/ 0/ 475	10570/0/448
Goodness-of-fit on F ²	1.016	1.041	0.921
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0435, WR_2 = 0.0957$	$R_1 = 0.0287, wR_2 = 0.0745$	$R_1 = 0.0268, WR_2 = 0.0535$
Final R indexes [all data]	$R_1 = 0.0732, wR_2 = 0.1057$	$R_1 = 0.0351, wR_2 = 0.0769$	$R_1 = 0.0339, WR_2 = 0.0550$
Abs. structure parameter			-0.006(11)
Largest diff. peak/hole / e Å ⁻³	0.61/-0.44	0.312/-0.436	0.237/-0.367

Table S2. The calculated NBO charge (q) and natural bond order (P) of the optimized structures of $[(Me_3Si)_2N]_2Fe-C(PPh_3)_2$ in the quintet state at the BP86/def2TZVPP level of theory.

q(Fe1)	q(C1)	q(P1Ph ₃)	q(P2Ph ₃)	$q(N1((SiMe_3)_2))$	$q(N2((SiMe_3)_2)$	P(Fe1-C1)
0.98	-1.47	0.84	0.85	-0.61	-0.59	0.38

Figure S9. Shape of the most important interacting MOs of fragments, plot of deformation densities $\Delta \rho$ of the pairwise orbital interactions and the associated interaction energies (ΔE_{orb}) between fragments. The direction of the charge flow is red to blue.

Figure S10. Plot of deformation densities $\Delta \rho_{3-7}$ of the pairwise orbital interactions between the quintet (Q) [(Me₃Si)₂N]₂Fe and singlet (S) C(PPh₃)₂ fragments in [(Me₃Si)₂N]₂Fe-C(PPh₃)₂, associated interaction energies ΔE_{orb} (in kcal/mol) and eigenvalues v. The eigenvalues v indicate the size of the charge flow, and the direction of charge flow is red—blue.

Table S3. Cartesian coordinates and SCF energy of calculated molecular structure of $[(Me_3Si)_2N]_2Fe-C(PPh_3)_2$ at the BP86/def2-TZVPP level.

[(Me₃Si)₂N]₂Fe-C(PPh₃)₂

SCF Energy = -5122.3891173

С	-0.0543130	3.2601700	-5.1734129
С	0.7323028	2.1042756	-5.1844222
С	-0.7171880	3.6327804	-4.0039197
С	0.8537846	1.3280139	-4.0316168
С	-2.2510447	-1.9647513	-3.3392088
С	-1.4837174	-0.8429945	-3.0146262
С	-4.2251458	1.7342969	-2.9416235
С	-0.5910558	2.8590069	-2.8471184
С	0.1953874	1.7035936	-2.8448499
С	-2.4272982	-2.9918146	-2.4107570
С	4.4642445	-1.3257124	-2.0692351
С	4.3147950	0.0636891	-2.0644453
С	3.3519182	-2.1366773	-1.8400556
С	3.0632575	0.6333901	-1.8302703
С	-3.9543493	4.4572589	-1.6299057
С	-0.8875227	-0.7273323	-1.7493679
С	2.0970926	-1.5669638	-1.6080486
С	1.9356159	-0.1731241	-1.5925819
С	-6.3086894	2.7146131	-0.9798770
С	-0.2426405	5.7155616	-1.0050344
С	-1.8518275	-2.8800754	-1.1427808
С	-1.0972036	-1.7532695	-0.8147388
С	-4.8595602	-0.7710895	-0.3088663
С	3.6679738	4.3777457	-0.1573115

С	2.6486827	3.4385645	0.0285414
С	0.0151989	1.4517639	0.1614589
С	-2.1794358	7.3707494	0.5315917
С	4.6866852	4.4955709	0.7887834
С	2.6328799	2.6122345	1.1559590
С	3.4328831	-0.4145211	1.5908486
С	2.0448985	-0.2214904	1.6487657
С	3.9883567	-1.6721211	1.8417988
С	0.4634532	6.5224541	1.7906797
С	1.2288655	-1.3274964	1.9479064
С	-4.6097957	5.1191225	2.1478329
С	3.1695350	-2.7563909	2.1600439
С	-5.6635586	0.9941869	1.9893863
С	1.7842325	-2.5806107	2.2084250
С	4.6742106	3.6836213	1.9285615
С	-2.9020081	-0.2705073	1.9695494
С	3.6502711	2.7553484	2.1172273
С	0.6941574	1.8839503	3.0820629
С	0.7840885	3.2304023	3.4740751
С	-3.0102658	3.1148656	3.7655448
С	-2.3264437	6.0173537	3.9330332
С	0.3430511	0.9288859	4.0505509
С	0.5728801	3.6018594	4.8024087
С	0.1150024	1.3056002	5.3757978
С	0.2462873	2.6408967	5.7608178

Η	-0.1497385	3.8665658	-6.0745322	Н	-2.9881657	7.1309030	-0.1729264
Н	1.2526718	1.8026089	-6.0938978	Н	-1.6278164	8.2303395	0.1199053
Н	-2.7148472	-2.0298261	-4.3235548	Н	-5.2108085	-1.6366930	0.2741052
Н	-1.3364575	4.5293137	-3.9865520	Н	-0.6548543	-1.6745658	0.1753941
Н	1.4627235	0.4255970	-4.0596855	Н	5.4818985	5.2283250	0.6494950
Н	-4.8404082	2.2061786	-3.7233589	Н	-2.6423448	7.6991224	1.4708117
Н	-1.3546749	-0.0573728	-3.7557432	Н	-5.0313533	4.3358877	1.5035992
Н	-3.1819804	1.7520580	-3.2852195	Н	4.0 0.4135	458 1.3348	849
Н	-4.5326216	0.6830566	-2.8609667	Н	0.7793102	7.5167606	1.4383466
Н	-4.5771401	4.8519513	-2.4474763	Н	-6.5652598	1.2323939	1.4101915
Н	-3.0236896	-3.8674763	-2.6673406	Н	-4.6408535	6.0668176	1.5929946
Н	5.1722989	0.7100135	-2.2534409	Н	5.0694042	-1.8009927	1.7833979
Н	5.4406130	-1.7724371	-2.2587474	Н	1.3399414	5.8629104	1.7076523
Н	-6.7926788	3.2304425	-1.8236671	Н	-3.2833573	-1.2458838	2.3091439
Н	-1.1092279	3.1515008	-1.9290798	Н	0.1462485	-1.2045341	1.9827695
Н	3.4532859	-3.2221170	-1.8490118	Н	3.6062711	-3.7345809	2.3623297
Н	-2.9043110	4.5733336	-1.9267705	Н	1.1318636	-3.4199993	2.4507991
Н	2.9642403	1.7166415	-1.8538858	Н	-1.9673517	-0.4326819	1.4184018
Н	-1.0183648	5.6475019	-1.7784334	Н	-5.4645640	1.8435070	2.6550872
Н	1.2401174	-2.2189956	-1.4523671	Н	-5.8991656	0.1244987	2.6227908
Н	0.3560985	6.6133886	-1.2232946	Н	-5.2695232	5.2239486	3.0228554
Н	0.4164512	4.8459342	-1.1074286	Н	0.2051087	6.6160650	2.8531885
Н	-6.7650504	1.7184708	-0.9033287	Н	5.4581780	3.7834118	2.6797918
Н	3.6550687	5.0234409	-1.0354497	Н	1.0330233	3.9970127	2.7452565
Н	-4.1158480	5.0848082	-0.7447575	Н	-2.6635196	0.3247951	2.8606021
Н	-4.0938331	-1.1257744	-1.0101299	Н	3.6350040	2.1521346	3.0251724
Н	-5.7131999	-0.4103077	-0.8997116	Н	-3.4504419	2.2772020	3.2150625
Н	1.8356452	3.3530059	-0.6936860	Н	-2.2245203	7.0184645	3.4954344
Н	-6.5591977	3.2705741	-0.0660820	Н	0.2692863	-0.1236565	3.7922690
н	-1.9982932	-3.6665337	-0.4022399	н	-2.0410425	2.7885503	4.1616617

H -1.3783584 5.7684808 4.4288319 -3.6682252 3.3278656 4.6225042 Н H -3.0972204 6.0810517 4.7169116 0.6677429 4.6500042 5.0850550 Н H -0.1527393 0.5452239 6.1095773 H 0.0876621 2.9317255 6.7993837 N -3.5163511 1.9332198 0.0042278 N -1.7437633 4.4570313 1.3520659 Si -4.4343109 2.6585086 -1.2963177 Si -0.9878379 5.8997917 0.7255506 Si -4.1934081 0.5692836 0.8610785 Si -2.8541064 4.6639480 2.6981954 P 0.2876075 0.6404844 -1.3363886 P 1.2300887 1.4194972 1.3727470 Fe -1.7628479 2.6649179 0.5115902