Supporting Information

Room-temperature conversion of Cu_{2-x}Se to CuAgSe nanoparticles to enhance the photocatalytic performance of their composites with TiO₂

Sweta Gahlot,¹ Frederic Dappozze,¹ Deobrat Singh,² Rajeev Ahuja,² Luis Cardenas,¹ Laurence Burel,¹ David Amans,³ Chantal Guillard,¹ Shashank Mishra^{*1}

¹Université Claude Bernard Lyon 1, CNRS, UMR 5256, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), 2 avenue Albert Einstein, 69626 Villeurbanne, France.

² Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden.

³ Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (ILM), 69626 Villeurbanne, France.

E-mail: shashank.mishra@ircelyon.univ-lyon1.fr (SM)

Figure S1. Schematic representation of the synthesis of the a) CuAgSe NPs and b) *n*% CuAgSe-TiO₂ nanocomposites.

Figure S2. XRD patterns of n mol% CuAgSe-TiO₂ nanocomposites obtained from Cu_{2-x}Se, Ag(TFA), ^{*t*}Bu₂Se and TiO₂ when stirred at room temperature for 6h. (a) 0.01% CuAgSe-TiO₂, (b) 0.1% CuAgSe-TiO₂, (c) 0.3% CuAgSe-TiO₂, (d) 1% CuAgSe-TiO₂, and (e) 10% CuAgSe-TiO₂.

Figure S3. TEM image (a) and associated EDX analysis (b) of 10% CuAgSe-TiO₂ nanocomposites.

Figure S4. The experimental setup for FA photodegradation under UV light.

Figure S5. Absorbance spectra for n% CuAgSe-TiO₂ nanocomposites.

Figure S6. HPLC result after stability test using 0.3% CuAgSe-TiO₂ under acidic conditions (HNO₃).

Sample Name	Surface area (m^2/g)	Total pore volume	Av. Pore diameter
		(cm^{3}/g)	(nm)
TiO ₂	58.9	0.23	15.6
0.01% CuAgSe-TiO ₂	53.7	0.52	38.9
0.1% CuAgSe-TiO ₂	52.4	0.49	37.5
0.3% CuAgSe-TiO ₂	51.2	0.41	32
1% CuAgSe-TiO ₂	54.9	0.24	17.6

 $\label{eq:stables} \textbf{Table S1.}\ N_2 \ adsorption \ and \ desorption \ isotherm \ and \ related \ data \ of \ TiO_2 \ and \ CuAgSe-TiO_2 \ nanocomposites.$