Supporting information

Metal-substituted tungstosulfates with Keggin structure: Synthesis and Characterization

Shinya Azuma,^a Taiga Kadoguchi,^a Yohei Eguchi,^a Hikaru Hirabaru,^a Hiromi Ota,^b Masahiro Sadakane,^c Kazumichi Yanagisawa,^d Takuya Hasegawa,^e Tadaharu Ueda^{a,f,g,*}

- a) Department of Applied Science, Faculty of Science, Kochi University, Kochi, 780-8520, Japan
- b) Division of Instrumental Analysis, Department of Instrumental Analysis and Cryogenics, Advanced Science Research Center, Okayama University, Okayama, 700-8530, Japan
- *c)* Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Hiroshima, Japan
- d) Hydrothermal Reaction Center, Faculty of Science, Kochi University, Japan
- e) Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi, 980-8577, Japan
- *f)* Department of Marine Resources, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan
- g) Center for Advanced Marine Core Research, Kochi University, Nankoku, 783-8520, Japan

Experimental

Preparation of $(n-Bu_4N)_4H_2[SW_{11}O_{39}]$ (SW₁₁)

 $(n-Bu_4N)_2[SW_{12}O_{40}]$ (1.35 g) prepared by using the reported method, S1 was dissolved in 90 mL of acetone, and 0.9 mL of 1 M KHCO₃ was added. The formed white precipitation were separated by filtration, and then 40 mL of water containing 1.5 g of *n*-Bu₄NBr was added to the filtrate to generate a pale-yellow precipitate. If the precipitate was oily, it was washed with Et₂O under sonication to obtain a powdery precipitate. The precipitate was washed with water and ethanol and dried in air. The final crystalline product was obtained by recrystallization from dry acetone (Yield: 1.1 g). Anal. Calcd for (n-Bu₄N)₄H₂[SW₁₁O₃₉]: C 21.06, H 4.03, N 1.53, S 0.88%. Found; C 20.55, H 3.80, N 1.52, S 0.94%.

Preparation of the tetra-butylammonium salt of metal-substituted tungstosulfates, $[SMW_{11}O_{39}]^{n-1}$ $(M=Mn, Co, Ni, Cu)(SMW_{11})$

 $(n-Bu_4N)_4H_2[SW_{11}O_{39}]$ (0.948 g) was dissolved in 120 mL of acetone, and then 3.0 mL of 0.2 M metal-nitrate stock solution was added. After stirring the solution for 10 min, 70 mL of water containing 1.0 g of *n*-Bu_4NBr was added to afford a precipitate. It was collected by filtration and washed with a plenty of water and ethanol. Fine crystals were obtained by recrystallization from acetone. Yields: 0.92 g (M=Mn); 0.95 g (M=Co); 0.89 g (M=Ni); and 0.93 g (M=Cu). Calcd for (n-Bu_4N)_4[SMnW_{11}O_{39}]; C 20.74, H 3.97, N 1.51, S 0.86\%. Found; C, 20.22, H 3.83, N 1.52, S 0.89\%. Calcd for $(n-Bu_4N)_4[SCoW_{11}O_{39}]$; C 20.72, H 3.96, N 1.51, S 0.86\%. Found; C 20.41, H 3.83, N 1.50, S 0.52\%. Calcd for $(n-Bu_4N)_4[SNiW_{11}O_{39}]$; C 20.72, H 3.96, N 1.50, S 0.86\%. Found; C, 20.61, H 3.85, N 1.48, S 0.87\%. Calcd for $(n-Bu_4N)_4[SCuW_{11}O_{39}]$; C 20.72, H 3.96, N 1.50, S 0.86\%. Found; C 20.90, H 3.68, N 1.47, S 0.87\%.

Apparatus and reagents

X-ray single-crystal crystallographic data were collected with a Rigaku Saturn 724 diffractometer using multilayer mirror monochromated Mo-K α radiation. The linear absorption coefficients, μ values, for Mo-K α radiation are 116.904 cm⁻¹ for SW₁₁, 112.191 cm⁻¹ for SMnW₁₁, 112.728 cm⁻¹ for SCoW₁₁, 114.980 cm⁻¹ for SNiW₁₁ and 114.076 cm⁻¹ for SCuW₁₁. An empirical absorption correction was applied, which resulted in transmission factors ranging from 0.203 to 0.311 for SW₁₁, from 0.202 to 0.291 for SMnW₁₁, from 0.363 to 0.508 for SCoW₁₁, from 0.265 to 0.317 for SCoW₁₁ and from 0.261 to 0.320 for SCuW₁₁. The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods^{S2} and expanded using Fourier techniques. The cations and solvent molecules were omitted by the SQUEEZE procedure^{S3} because it was not important to elucidate the interaction between the POMs and the tetra-alkyl ammonium cations.¹⁷ The final cycle of full-matrix least-squares refinement^{S4} on F² was based on 649 observed reflections for SW₁₁, 668 observed reflections for SMnW₁₁, 669 observed reflections for SCoW₁₁, 668 observed reflections for SNiW₁₁, and 675 observed reflections for SCuW₁₁, and 19 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o| = 0.0934$ for SW₁₁, 0.0726 for SMnW₁₁, 0.0417 for SCoW₁₁, 0.0489 for SNiW₁₁, and 0.0362 for SCuW₁₁

 $wR_2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2} = 0.2189$ for SW_{11} , 0.1755 for $SMnW_{11}$, 0.1056 for $SCoW_{11}$, 0.1151 for $SNiW_{11}$, and 0.0866 for $SCuW_{11}$

The goodness of fits^{S5} were 1.28 for SW₁₁, 1.21 for SMnW₁₁, 1.08 for SCoW₁₁, 1.13 for SNiW₁₁, and 1.03 for SCuW₁₁. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 1.64 and -0.90 e⁻/Å³ for SW₁₁, 1.06 and -0.76 e⁻/Å³ for SMnW₁₁, 1.69 and -1.23 e⁻/Å³ for SCoW₁₁, 1.85 and -1.18 e⁻/Å³ for SNiW₁₁ and 0.96 and -0.75 e⁻/Å³ for SCuW₁₁.

Neutral atom scattering factors were taken from the International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 5.^{S6} Anomalous dispersion effects were included in Fcalc;^{S7} the values for Df and Df" were those of Creagh and McAuley.^{S8} The values for the mass attenuation coefficients are those of Creagh and Hubbell.^{S9} All calculations were performed using the Rigaku Corporation

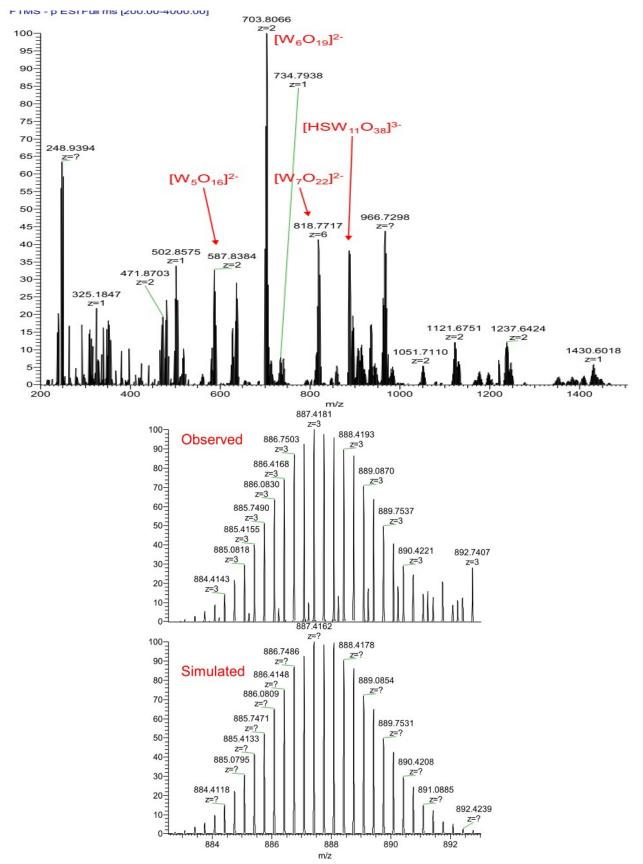
CrystalStructure9 crystallographic software package except for refinement, which was performed using SHELXL Version 2016/6SHELXL97.^{S10}

Elemental analyses was carried out with PERKIN ELMER Series II CHNS/O Analyzer 2400. ESI-MS spectra were obtained in CH₃CN in anion mode with a Thermo Fisher Scientific LTQ Orbitrap XL instrument, and ionization was achieved by applying 5 kV. Spectrophotometric measurements were carried out by using a Jasco FT/IR-4100 IR spectrometer, a Horiba-Jobin Yvon HR-800 instrument with a 514.5 nm Ar laser for excitation for Raman, and a Jasco V-670 for UV-Vis spectrophotometry.

Voltammetric measurements were carried out with a BAS 50 W (Bioanalytical Systems, BAS) electrochemical workstation. A standard three-electrode arrangement was employed: a glassy carbon disk electrode with a surface area of 0.071 cm^2 was used as working electrode, platinum wire was used as the counter electrode, and Ag/Ag⁺ (0.01 M AgNO₃ in CH₃CN) was used as the reference electrode. The silver wire was put in 0.01 M AgNO₃ containing CH₃CN in a double-jacketed system separated by sintered glass. Unless otherwise stated, the scan rate for voltammetric experiments was 100 mV s⁻¹. The measured potential versus Ag/Ag⁺ was converted to the Fc/Fc⁺ (Fc = ferrocene) scale using data derived from voltammograms of the oxidation of ferrocene. Prior to each measurement, the glassy carbon electrode (GCE) was polished with an aqueous 0.1-µm diamond slurry and washed with distilled water. The sample solution was always purged with nitrogen or argon gas to remove dissolved oxygen. All electrochemical measurements were made at 25.0±0.2°C.

Tetrabutylammonium hexafluorophosphate, $[n-Bu_4N]$ [PF₆], recrystallized at least twice from ethanol, was used as the electrolyte in the electrochemical experiments. Acetonitrile (CH₃CN) of LC-MS grade were purchased from WAKO and used as received from the manufacturer for ESI-MS and electrochemical measurements. Other reagents were of analytical grade and were used as received.

References and notes


- (S1) Himeno, S.; Takamoto, M.; Hoshiba, M.; Higuchi, A.; Hashimoto, M., Preparation and characterization of an α-Keggin-type [SW₁₂O₄₀]²⁻ complex. *Bull. Chem. Soc. Jpn.* **2004**, 77, 519-524.
- (S2) Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. Siliqi, D. and Spagna R. J. Appl. Cryst. 2007, 40, 609-613.
- (S3) Spek, A. L., Acta Cryst., 2009, D65, 148-155.
- (S4) Least Squares function minimized (SHELXL97): $\Sigma w(F_0^2 F_c^2)^2$ where w = Least Squares weights.
- (S5) Goodness of fit is defined as: $[\Sigma w(F_0^2 F_c^2)^2/(N_0 N_V)]^{1/2}$ where: N_0 = number of observations; N_V = number of variables
- (S6) International Tables for Crystallography, Vol. C. Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, 1992, pp. 572.
- (S7) Ibers, J. A. & Hamilton, W. C.; Acta Cryst., 1664, 17, 781.
- (S8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, 1992, p. 219-222.
- (S9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, 1992, p. 200-206.
- (S10) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

[BCuw][039] .					
Formula	$SW_{11}O_{39}$	$SMnW_{11}O_{39}$	$SCoW_{11}O_{39}$	$SNiW_{11}O_{39}$	$SCuW_{11}O_{39}$
FW(g mol ⁻¹)	2678.39	2733.32	2737.32	2737.09	2741.93
Crystal system	cubic	cubic	cubic	cubic	cubic
Space group	Im3m (229)	Im3m (229)	Im3m (229)	Im3m (229)	Im3m (229)
a(Å)	17.565	17.864	17.854	17.747	17.805
$V(Å^3)$	5419(5)	5701(9)	5691(8)	5590(8)	5645(8)
Z	2	2	2	2	2
$d_{calcd} g/cm^3$	1.641	1.592	1.597	1.626	1.574
No. observations (all data)	42711	43310	43956	43725	43579
GOF	1.282	1.211	1.084	1.134	1.030
final R indices(I>2.00 σ (I)) ^a	R ₁ =0.0934 wR ₂ =0.2188	$R_1=0.0726$ w $R_2=0.1739$	$R_1=0.0417$ w $R_2=0.1054$	$R_1=0.0489$ w $R_2=0.1147$	$R_1=0.0362$ w $R_2=0.0859$
final R indices(all data) ^b	$R_1=0.0931$ w $R_2=0.2189$	$R_1=0.0753$ w $R_2=0.1755$	R ₁ =0.0419 wR ₂ =0.1056	R ₁ =0.0495 wR ₂ =0.1151	$R_1=0.0373$ w $R_2=0.0866$
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} \ (I > 2.00 \ \sigma \ (I)). {}^{b}wR_{2} = [\sum (w(F_{o}^{2} - F_{c}^{2})^{2}) / \sum w(F_{o}^{2})^{2}]^{1/2}.$					

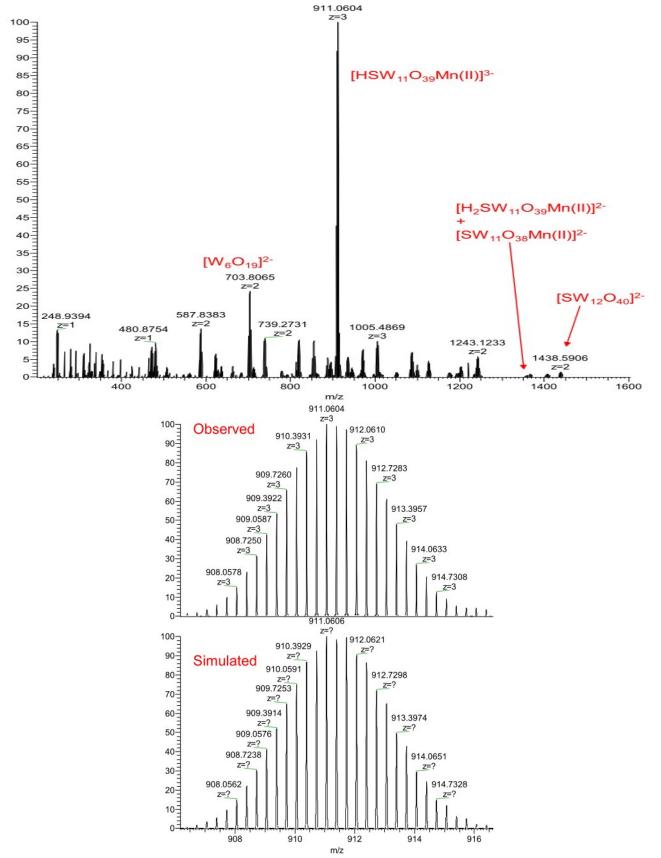

Table S1 Crystallographic data for $[SW_{11}O_{39}]^{6-}$, $[SMnW_{11}O_{39}]^{4-}$, $[SCoW_{11}O_{39}]^{4-}$, $[SNiW_{11}O_{39}]^{4-}$ and $[SCuW_{11}O_{39}]^{4-}$.

Table S2 Observed and calculated ionic molecular weights per anion charge (m/z) of POMs in ESI-
MS spectra.

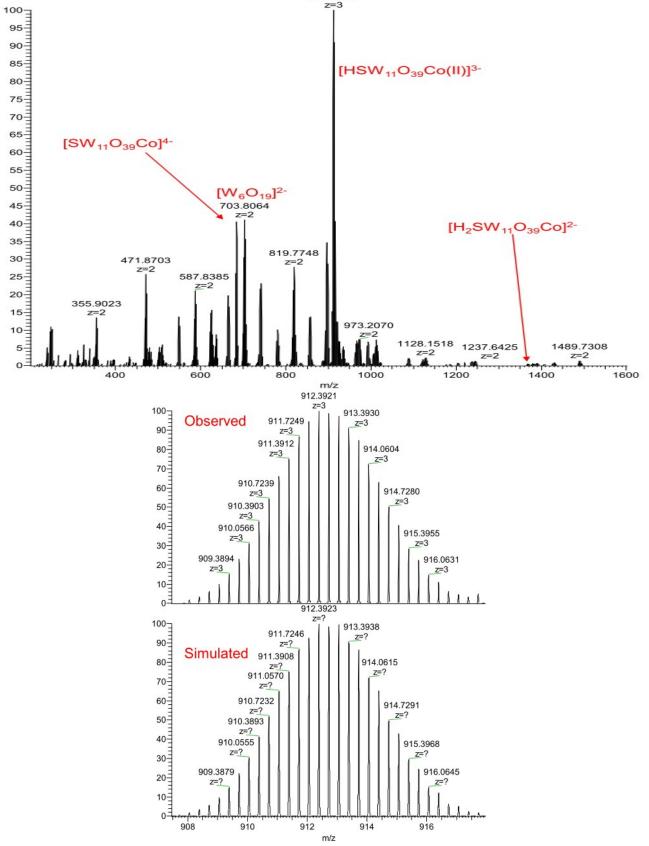

POMs	Calculated	Observed
	m/z	m/z
H[SW ₁₁ O ₃₈] ³⁻	887.4182	887.4181
$H[SMn^{II}W_{11}O_{39}]^{3-1}$	911.0606	911.0604
H[SCo ^{II} W ₁₁ O ₃₉] ³⁻	912.3923	912.3921
H[SNi ^{II} W ₁₁ O ₃₉] ³⁻	912.7265	912.7259
$[SCu^{III}W_{11}O_{39}]^{3-1}$	914.0556	914.0547

Figure S1 ESI-MS spectra of $(Bu_4N)_4H_2[SW_{11}O_{39}]$ dissolved in CH₃CN. (top) Spectrum between m/z of 200 and 1500 and (bottom) expansion of the profile assignable to $[HSW_{11}O_{38}]^{3-}$.

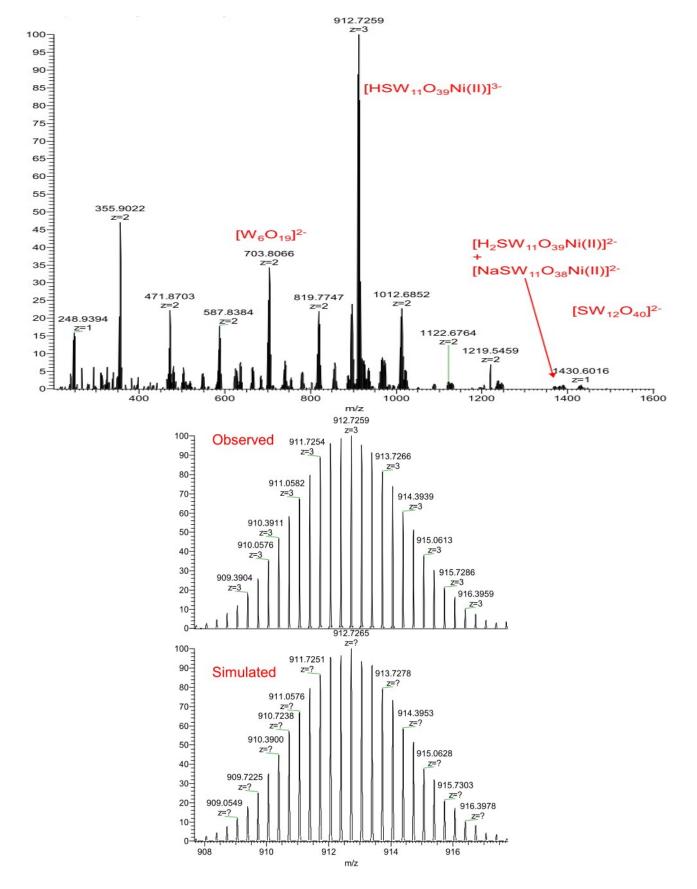
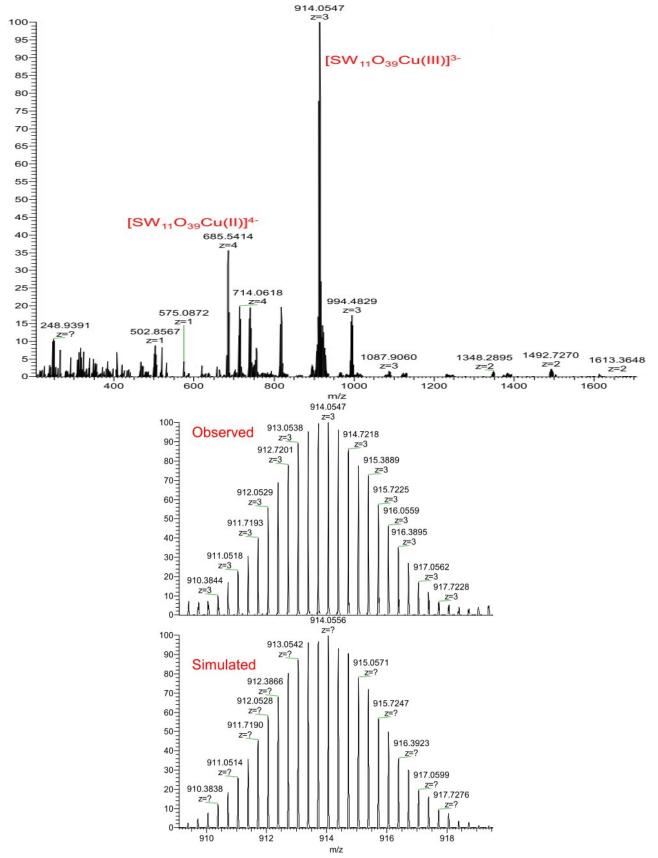
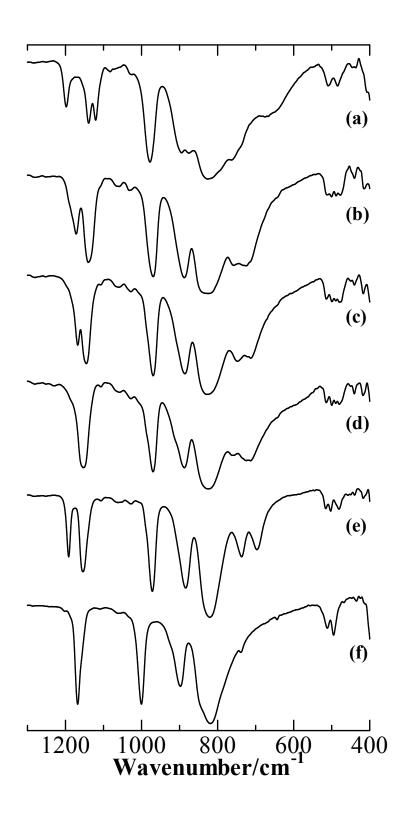
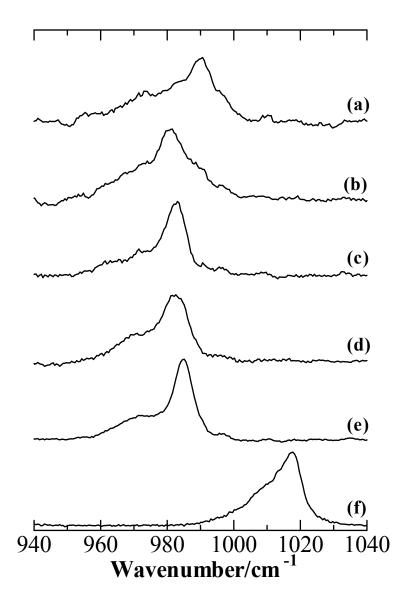


Figure S2 ESI-MS spectra of $(Bu_4N)_4[SMnW_{11}O_{39}]$ dissolved in CH₃CN. (top) Spectrum between m/z of 200 and 1600 and (bottom) expansion of the profile assignable to $[HSMnW_{11}O_{39}]^3$.



912.3921


Figure S3 ESI-MS spectra of $(Bu_4N)_4[SCoW_{11}O_{39}]$ dissolved in CH₃CN. (top) Spectrum between m/z of 200 and 1600 and (bottom) expansion of the profile assignable to $[HSCoW_{11}O_{39}]^{3-}$.


Figure S4 ESI-MS spectra of $(Bu_4N)_4[SNiW_{11}O_{39}]$ dissolved in CH₃CN. (top) Spectrum between *m/z* of 200 and 1600 and (bottom) expansion of the profile assignable to $[HSNiW_{11}O_{39}]^{3-}$.

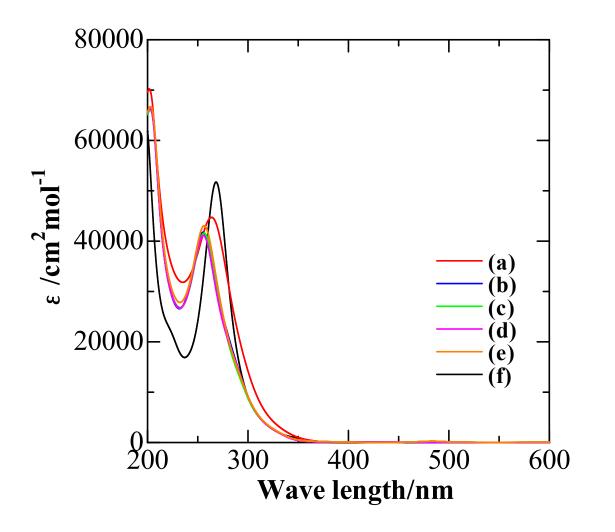

Figure S5 ESI-MS spectra of $(Bu_4N)_4[SCuW_{11}O_{39}]$ dissolved in CH₃CN. (top) Spectrum between m/z of 200 and 1600 and (bottom) expansion of the profile assignable to $[SCuW_{11}O_{39}]^{3-}$.

Figure S6 IR spectra of the tetra-butyl ammonium salts of (a) $[SW_{11}O_{39}]^{6-}$, (b) $[SMnW_{11}O_{39}]^{4-}$, (c) $[SCoW_{11}O_{39}]^{4-}$, (d) $[SNiW_{11}O_{39}]^{4-}$, (e) $[SCuW_{11}O_{39}]^{4-}$ and (f) $[SW_{12}O_{40}]^{2-}$.

Figure S7 Raman spectra of the tetra-butyl ammonium salts of (a) $[SW_{11}O_{39}]^{6-}$, (b) $[SMnW_{11}O_{39}]^{4-}$, (c) $[SCoW_{11}O_{39}]^{4-}$, (d) $[SNiW_{11}O_{39}]^{4-}$, (e) $[SCuW_{11}O_{39}]^{4-}$ and (f) $[SW_{12}O_{40}]^{2-}$.

Fi gure S8 UV-Vis spectra of (a) $[SW_{11}O_{39}]^{6-}$, (b) $[SMnW_{11}O_{39}]^{4-}$, (c) $[SCoW_{11}O_{39}]^{4-}$, (d) $[SNiW_{11}O_{39}]^{4-}$, and (e) $[SCuW_{11}O_{39}]^{4-}$ in CH₃CN and (f) $[SW_{12}O_{40}]^{2-}$ in acetone.