Supporting Information

Rare-earth metal-promoted (double) C–H-bond activation of a lutidinyl-functionalized alkoxy ligand: formation of [ONC] pincer-type ligands and implications for isoprene polymerization

Dominic Diether,^a Melanie Meermann-Zimmermann,^{a,b} Karl W. Törnroos,^b Cäcilia Maichle-Mössmer,^a and Reiner Anwander^a*

^a Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

^b Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway

Corresponding Author

* reiner.anwander@uni-tuebingen.de

Table of Contents

Figure S1. ¹ H NMR spectrum of $[ONCH_2]La(AIMe_3)_2(AIMe_4)$ (2^{La})	S 3
Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of [ONCH ₂]La(AlMe ₃) ₂ (AlMe ₄) (2 ^{La})	S 3
Figure S3. ¹ H ¹³ C-HSQC NMR spectrum of [ONCH ₂]La(AlMe ₃) ₂ (AlMe ₄) (2 ^{La})	S4
Figure S4. VT ¹ H NMR spectrum of [ONCH ₂]La(AlMe ₃) ₂ (AlMe ₄) (2 ^{La})	S4
Figure S5. Detailed view of VT ¹ H NMR spectrum of [ONCH ₂]La(AlMe ₃) ₂ (AlMe ₄) (2 ^{La})	S5
Figure S6. Detailed view of VT ¹ H NMR spectrum of [ONCH ₂]La(AlMe ₃) ₂ (AlMe ₄) (2 ^{La})	S5
Figure S7. ¹ H NMR spectrum of [ONCH ₂]Nd(AlMe ₃) ₂ (AlMe ₄) (2 Nd)	S6
Figure S8. ¹ H NMR spectrum of $[ONCH_2]Y(AIMe_3)_2(AIMe_4)$ (2 ^Y)	S 7
Figure S9. ¹³ C{ ¹ H} NMR spectrum of [ONCH ₂]Y(AlMe ₃) ₂ (AlMe ₄) (2^{Y})	S 7
Figure S10. ¹ H ¹³ C-HSQC NMR spectrum of [ONCH ₂]Y(AlMe ₃) ₂ (AlMe ₄) (2 ^Y)	S 8
Figure S11. VT ¹ H NMR spectrum of $[ONCH_2]Y(AlMe_3)_2(AlMe_4)$ (2^{Y})	S 8
Figure S12. Detailed view of VT ¹ H NMR spectrum of $[ONCH_2]Y(AlMe_3)_2(AlMe_4)$ (2 ^Y)	S9
Figure S13. Detailed view of VT ¹ H NMR spectrum of $[ONCH_2]Y(AlMe_3)_2(AlMe_4)$ (2 ^Y)	S9
Figure S14. ¹ H NMR spectrum of [ONCH]Y(AlMe ₃) ₃ (3^{Y})	S10
Figure S15. ¹³ C{ ¹ H} NMR spectrum of [ONCH]Y(AlMe ₃) ₃ ($3^{\mathbf{Y}}$)	S10
Figure S16. $^{1}H^{13}C$ -HSQC NMR spectrum of [ONCH]Y(AlMe ₃) ₃ (3^{Y})	S11
Figure S17. Detailed view of VT ¹ H NMR spectrum of [ONCH]Y(AlMe ₃) ₃ (3^{Y})	S11
Figure S18. ¹ H NMR spectrum of [ONCH]Lu(AlMe ₃) ₂ (AlMe ₄) (3 ^{Lu})	S12
Figure S19. ¹³ C{ ¹ H} NMR spectrum of [ONCH]Lu(AlMe ₃) ₂ (AlMe ₄) (3 ^{Lu})	S12
Figure S20. ¹ H ¹³ C-HSQC NMR spectrum of [ONCH]Lu(AlMe ₃) ₃ (3 ^{Lu})	S13
Figure S21. Crystal structure of [ONCH ₂]La(AlMe ₃) ₂ (AlMe ₄) (2 ^{La})	S13
Figure S22. Crystal structure of $[ONCH_2]Y(AIMe_3)_2(AIMe_4)$ (2 ^Y)	S14
Figure S23. Crystal structure of [ONCH]Y(AlMe ₃) ₃ (3 ^Y)	S14
Figure S24. Crystal structures of [ONCH]Lu(AlMe ₃) ₃ (3 ^{Lu} and 3 ^{Lu} *)	S15
Figure S25. Comparison of both enantiomers of the crystal structure of 2^{Nd}	S15
Table S1. Crystallographic data for 2^{La} , 2^{Nd} and 2^{Y}	S16
Table S2. Crystallographic data for 3^{Y} , 3^{Lu} and 3^{Lu*}	S17
Figure S26. ¹ H NMR spectrum of the reaction of 2^{La} with [Ph ₃ C][B(C ₆ F ₅) ₄]	S18
Figure S27. ¹ H NMR spectrum of the reaction of 2^{La} with [PhNMe ₂ H][B(C ₆ F ₅) ₄]	S18
Figure S28. ¹¹ B{ ¹ H} NMR spectrum of the reaction of 2^{La} with B(C ₆ F ₅) ₃	S19
Figure S29. Refractive index of bimodalic polyisoprenes	S19

Figure S1. ¹H NMR spectrum (400 MHz) of [ONCH₂]La(AlMe₃)₂(AlMe₄) (2^{La}) in C₆D₆ at 26 °C.

Figure S2. ${}^{13}C{}^{1}H$ spectrum (101 MHz) of [ONCH₂]La(AlMe₃)₂(AlMe₄) (2^{La}) in C₆D₆ at 26 °C. Toluene is marked with #.

Figure S3. ¹H¹³C-HSQC NMR spectrum (400/101 MHz) of [ONCH₂]La(AlMe₃)₂(AlMe₄) (2^{La}) in C₆D₆ at 26 °C.

Figure S4. VT ¹H NMR spectra (500 MHz) of [ONCH₂]La(AlMe₃)₂(AlMe₄) (**2**^{La}) in tolune-*d8*, in the range from -80 °C to 40 °C.

Figure S5. Detailed view of the VT ¹H NMR spectra (500 MHz) of $[ONCH_2]La(AlMe_3)_2(AlMe_4)$ (**2**^{La}) in tolune-*d8*, in the range from -80 °C to 40 °C.

Figure S6. Detailed view of VT ¹H NMR spectra (500 MHz) of [ONCH₂]La(AlMe₃)₂(AlMe₄) (**2**^{La}) in tolune-*d8*, in the range rrom -80 °C to 40 °C.

Figure S7. ¹H NMR spectrum (400 MHz) of [ONCH₂]Nd(AlMe₃)₂(AlMe₄) (2Nd) in C₆D₆ at 26 °C. Toluene is marked with #.

Figure S8. ¹H NMR spectrum (400 MHz) of $[ONCH_2]Y(AlMe_3)_2(AlMe_4)$ (2^Y) in C₆D₆ at 26 °C.

Figure S9. ${}^{13}C{}^{1}H{}$ spectrum (101 MHz) of [ONCH₂]Y(AlMe₃)₂(AlMe₄) (2^Y) in C₆D₆ at 26 °C.

Figure S10. ¹H¹³C-HSQC NMR spectrum (400/101 MHz) of [ONCH₂]Y(AlMe₃)₂(AlMe₄) (**2**^Y) in C₆D₆ at 26 °C.

Figure S11. VT ¹H NMR spectra (500 MHz) of $[ONCH_2]Y(AlMe_3)_2(AlMe_4)$ (**2**^Y) in tolune-*d8*, in the range from -80 °C to 60 °C.

Figure S12. Detailed view of VT ¹H NMR spectra (500 MHz) of $[ONCH_2]Y(AIMe_3)_2(AIMe_4)$ (**2**^Y) in tolune-*d8*, in the range from -80 °C to 60 °C.

Figure S13. Detailed view of VT ¹H NMR spectra (500 MHz) of $[ONCH_2]Y(AlMe_3)_2(AlMe_4)$ (**2**^Y) in tolune-*d8*, in the range from -80 °C to 60 °C.

Figure S14. ¹H NMR spectrum (400 MHz) of [ONCH]Y(AlMe₃)₃ (3^Y) in C₆D₆ at 26 °C.

Figure S15. ¹³C ^{1}H spectrum (101 MHz) of [ONCH]Y(AlMe₃)₃ (3^Y) in C₆D₆ at 26 °C. *n*-Hexane is marked with #.

Figure S16. ¹H¹³C-HSQC NMR spectrum (400/101 MHz) of [ONCH]Y(AlMe₃)₃ (**3**^Y) in C₆D₆ at 26 °C.

Figure S17. Detailed view of VT ¹H NMR spectra (500 MHz) of [ONCH]Y(AlMe₃)₃ (3^{Y}) in tolune-*d8*, in the range from – 80 °C to 60 °C.

Figure S18. ¹H NMR spectrum (400 MHz) of [ONCH]Lu(AlMe₃)₃ (3^{Lu}) in C₆D₆ at 26 °C.

Figure S19. ¹³C{¹H} spectrum (101 MHz) of [ONCH]Lu(AlMe₃)₃ (3^{Lu}) in C₆D₆ at 26 °C.

Figure S20. ¹H¹³C-HSQC NMR spectrum (400/101 MHz) of [ONCH]Lu(AlMe₃)₃ (3^{Lu}) in C₆D₆ at 26 °C.

Figure S21. Crystal structure of [ONCH₂]La(AlMe₃)₂(AlMe₄) (**2**^{La}). Hydrogen atoms are omitted for clarity. The asymmetric unit contains 0.5 toluene which is omitted for clarity. Atomic displacement parameters set at the 50% probability level. Selected bond lengths [Å] and angles [°]: La1–C1 2.726(2), La1–C4 2.688(2), La1–C5 2.787(2), La1–C8 2.720(2), La1–C11 2.949(2), La1–Al1 3.3509(5), La1–Al2 3.2827(6), La1–Al3 3.4013(5), La1–N1 2.517(1), La1–O1 2.412(1), Al1–O1 1.862(1), Al3–C11 2.092(2), O1-La1-C11 126.21(4), O1-La1-N1 76.37(4), N1-La1-C11 51.40(4), N1-La1-Al2 107.20(3).

Figure S22. Crystal structure of $[ONCH_2]Y(AlMe_3)_2(AlMe_4)$ (**2**^Y). Hydrogen atoms are omitted for clarity. The asymmetric unit contains 0.5 toluene which is omitted for clarity. Atomic displacement parameters set at the 50% probability level. Selected bond lengths [Å] and angles [°]: Y1–C1 2.583(3), Y1–C4 2.518(3), Y1–C5 2.677(3), Y1–C8 2.513(4), Y1–C11 2.848(3), Y1–Al1 3.1934(8), Y1–Al2 3.1390(9), Y1–Al3 3.251(1), Y1–N1 2.386(2), Y1–O1 2.270(2), Al1–O1 1.851(2), Al3–C11 2.070(3), O1-Y1-C11 130.21(7), O1-Y1-N1 78.70(6), N1-Y1-C11 53.16(8), N1-Y1-Al2 108.75(5).

Figure S23. Crystal structure of [ONCH]Y(AlMe₃)₃ (3^{Y}). Hydrogen atoms are omitted for clarity. The asymmetric unit contains one toluene which was omitted for clarity. Atomic displacement parameters set at the 50% probability level. Selected bond lengths [Å] and angles [°]: Y1–C1 2.568(2), Y1–C4 2.640(2), Y1–C7 2.483(2), Y1–C10 2.611(2), Y1–X11 3.1899(6), Y1–X12 2.8420(6), Y1–X13 3.1295(6), Y1–N1 2.325(1), Y1–O1 2.270(1), Al1–O1 1.849(1), Al2–C10 2.052(2), Al3–C10 2.063(2), O1-Y1-C10 134.96(5), O1-Y1-N1 75.10(5), N1-Y1-C10 56.92(5).

Figure S24. Crystal structures of [ONCH]Lu(AlMe₃)₃ (left: **3**^{Lu}, right **3**^{Lu}*). Hydrogen atoms are omitted for clarity. Atomic displacement parameters set at the 50% probability level. Selected bond lengths [Å] and angles [°]: **3**^{Lu}: Lu1–C1 2.511(3), Lu1–C4 2.580(3), Lu1–C7 2.436(3), Lu1–C10 2.524(3), Lu1[…]Al1 3.1221(9), Lu1[…]Al2 2.8623(8), Lu1[…]Al3 3.0575(9), Lu1–N1 2.281(2), Lu1–O1 2.193(2), Al1–O1 1.848(2), Al2–C10 2.076(3), Al3–C10 2.073(3), O1-Lu1-C10 136.27(8), O1-Lu1-N1 78.38(7), N1-Lu1-C10 58.33(9). **3**^{Lu*}: Lu1–C1 2.550(2), Lu1–C4 2.508(2), Lu1–C7 2.440(2), Lu1–C10 2.526(2), Lu1[…]Al1 3.1082(6), Lu1[…]Al2 2.9630(6), Lu1[…]Al3 3.0479(6), Lu1–N1 2.277(2), Lu1–O1 2.187(1), Al1–O1 1.851(1), Al2–C10 2.082(2), Al3–C10 2.063(2), O1-Lu1-C10 136.56(5), O1-Lu1-N1 78.69(5), N1-Lu1-C10 58.43(6).

Figure S25. Comparison of both enantiomers of the crystal structure of 2Nd.

	2 ^{La}	2^{Nd}	2 ^Y
CCDC	1971551	1971552	1971555
formula	C33.5H51Al3LaNO	C _{33.5} H ₅₁ Al ₃ NdNO	$C_{33.5}H_{51}Al_3YNO$
$M [g \cdot mol^{-1}]$	703.60	708.93	653.60
Color Crystal dimensions [mm]	yellow 0.52 x 0.45 x 0.28	blue/green 0.242 x 0.214 x 0.165	yellow 0.197 x 0.183 x 0.070
Crystal system	triclinic	triclinic	monoclinic
space group	PĪ	ΡĪ	$P2_1/c$
a [Å]	10.3933(4)	10.6177(3)	17.8953(13)
b [Å]	11.9336(4)	11.4277(4)	10.0184(8)
c [Å]	15.6945(6)	16.3857(4)	20.9266(15)
α [°]	87.3861(4)	93.045(2)	90
β [°]	85.6753(4)	99.2350(10)	109.621(3)
γ [°]	72.0755(4)	112.8170(10)	90
V [Å ³]	1846.32(12)	1794.24(9)	3533.9(5)
Z	2	2	4
$\begin{array}{c} T \ [K] \\ \rho_{calcd} \ [g \cdot cm^{-3}] \\ \mu \ [mm^{-1}] \end{array}$	200(2) 1.266 1.252	100(2) 1.312 1.545	100(2) 1.228 1.749
F(000)	726	732	1380
Unique reflns	10787	8887	7791
Observed reflns (I>2σ)	31465	31707	56238
R1/wR2 (I>2σ) R1/wR2 (all data)	0.0229/0.0589 0.0255/0.0611	0.0233/0.0580 0.0260/0.0596	0.0450/0.0980 0.0566/0.1017
Goodness of fit	1.075	1.034	1.121

Table S1. Crystallographic data for compounds $2^{La},\,2^{Nd},\,\text{and}\,\,2^{Y}$

	3 ^Y	3 ^{Lu}	3 ^{Lu} *
CCDC	1971553	1971554	1977635
formula	C ₃₅ H ₅₅ Al ₃ YNO	C ₂₉ H ₄₃ Al ₃ LuNO	C ₂₉ H ₄₃ Al ₃ LuNO
M [g·mol ⁻¹]	675.65	677.55	677.55
Color Crystal dimensions	yellow 0.425 x 0.348 x 0.238	yellow 0.132 x 0.124 x 0.104	yellow 0.400 x 0.125 x 0.050
cell	triclinic	monoclinic	orthorhombic
space group	P1	$P2_1/n$	$P2_{1}2_{1}2_{1}$
a [Å]	10.3672(4)	11.1015(9)	10.6476(4)
b [Å]	12.9566(5)	21.7863(18)	13.3042(6)
c [Å]	14.9981(6)	13.0879(10)	22.2103(9)
α [°]	99.106(2)	90	90
β [°]	95.286(2)	104.7510(10)	90
γ [°]	109.956(2)	90	90
V [Å ³]	1846.44(13)	3061.1(4)	3146.3(2)
Z	2	4	4
$\begin{array}{c} T \ [K] \\ \rho_{calcd} \ [g \cdot cm^{-3}] \\ \mu \ [mm^{-1}] \end{array}$	100(2) 1.215 1.676	150(2) 1.470 3.332	103(2) 1.430 3.242
F(000)	716	1368	1368
Unique reflns	8139	9386	10781
Observed reflns (I>2σ)	74275	48629	10653
R1/wR2 (I>2σ) R1/wR2 (all data)	0.0307/0.0798 0.0333/0.0817	0.0303/0.0545 0.0488/0.0612	0.0121/0.0321 0.0123/0.0322
Goodness of fit	1.028	1.019	1.043

Table S2. Crystallographic data for compounds $\mathbf{3}^{Y}, \mathbf{3}^{Lu}$ and $\mathbf{3}^{Lu*}$

Figure S26. ¹H NMR spectrum (400 MHz) of the reaction of $[ONCH_2]La(AlMe_3)_2(AlMe_4)$ (**2**^{La}) with $[Ph_3C][B(C_6F_5)_4]$ in C_6D_6 at 26 °C.

Figure S27. ¹H NMR spectrum (400 MHz) of the reaction of $[ONCH_2]La(AlMe_3)_2(AlMe_4)$ (**2**^{La}) with $[PhNMe_2H][B(C_6F_5)_4]$ in C_6D_6 at 26 °C.

Figure S28. ¹¹B{¹H} NMR spectrum (96 MHz) of the reaction of $[ONCH_2]La(AlMe_3)_2(AlMe_4)$ (**2**^{La}) with $B(C_6F_5)_3$ in C_6D_6 at 25 °C.

Figure S29. Refractive index (RI) of bimodalic polyisoprenes (Table 2, entries 7, 10, 13, 15, and 17).