Supporting Information

The solvent and zinc source dual-induced synthesis of a two dimensional zeolitic imidazolate framework with farfalleshape and its crystal transformation to zeolitic imidazolate framework-8

Chun-Xin Jin, ^b Yu Wang, ^c Qiu-Shan Gao, ^b Dan-Yang Yao, ^d Si-Hong Wang, ^a Donghao Li, ^{*a, b} and Hai-Bo Shang^{*a, b}

^a Key Laboratory of Biological Resources of the Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province, 133002, China

^b Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, China

^c State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China

^d Agricultural college of Yanbian University, Park Road 977, Yanji City, Jilin Province, 133002, China

E-mail: dhli@ybu.edu.cn; hbshang@ybu.edu.cn

Fig. S1 TG analysis of ZIF-F after activation at 120 °C for 12 h.

Fig. S2 EDX analysis of ZIF-F.

Fig. S3 XRD patterns of re-produced ZIF-F samples: (a, b, c) three repetitions with the normal system, (d) A fivefold expansion of the synthesis system.

Fig. S4 SEM images of re-produced ZIF-F samples: (a, b, c) three repetitions with the normal system, (d) A fivefold expansion of the synthesis system.

Fig. S5 Photo pictures and SEM images of ZIF-F before and after thermal treatments under different temperatures for 12 h: (a, f) before heating, (b, g) 200 °C, (c, h) 300 °C,

Fig. S6 TG analysis of the calcined samples after 200, 300, 350, 400 $^{\circ}$ C for 12 h , respectively.

Fig. S7 TG analysis of the prepared ZIF-8.

Fig. S8 XRD patterns of ZIF-F after immersion in acid and basic solutions.

Fig. S9 XRD patterns of ZIF-F after immersion in organic solvents: (a) DMF, (b) DCM, (c) toluene.

Fig. S10 SEM images of ZIF-F after immersion in organic solvents for 14 days: (a, d) DMF, (b, e) DCM, (c, f) toluene.

Fig. S11 Curve of extent of crystallization (α) as a function of time (t) obtained from time-resolved in situ ¹H NMR.

Fig. S12 The linear regression analysis of Avrami's classical model.

Avrami's Equation

$$1 - y(t) = e^{kt^n} \tag{S1}$$

Linear form of Avrami's Equation

$$\ln\left(-\ln\left[1-y(t)\right]\right) = lnk + nlnt \tag{S2}$$

Where *t* is the synthesis time, *k* is the scaling constant, *n* is Avrami's constant and y(t) is the ZIF-8 relative crydtallinity as a function of time.

Fig. S13 (a) Nitrogen adsorption-desorption isotherm of ZIF-F at 77.3 K, (b) Pore diameter distribution of ZIF-F obtained by BJH method.

Fig. S14 The pseudo-first-order kinetic models (a) and pseudo-second-order kinetic models (b) of ZIF-F and ZIF-8.

	pseudo-second-order kinetic model			pseudo-first-order kinetic model	
	$q_{e(cal)} (\mathrm{mg}~\mathrm{g}^{-1})$	$k_2 (\mathrm{g}\mathrm{mg}^{-1}\mathrm{min}^{-1})$	R^2	$k_l (\min^{-1})$	R^2
ZIF-F	182.82	4.93×10 ⁻⁴	0.9996	3.49×10-3	0.9425
ZIF-8	149.25	8.69×10 ⁻⁵	0.9908	2.65×10-3	0.9687