Supporting information

Crystal Growth of Novel 3D Skeleton Uranyl Germanium Complexes:

Influence of Synthetic Conditions to Crystal Structures

Haijian Li^{†,‡,*}, Philip Kegler[‡], Evgeny V. Alekseev^{‡,§,*}

[†]Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China

[‡]Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

[§]Institut für Kristallographie, RWTH Aachen University, 52066 Aachen, Germany

*contact E-Mail: <u>h.j.li@outlook.com</u>, <u>e.alekseev@fz-juelich.de</u>

Figure S1. The theoretical (black line) and experimental (red line) powder diffraction patterns of $Cs_6(UO_2)_2Ge_8O_{21}$. The theoretical diffraction patterns were calculated using *Mercury* software (version 3.8).¹

Figure S2(a). EDS analysis for K₈BrF(UO₂)₃(Ge₂O₇)₂.

Table S1 (a)	. Atom ratio	of K ₈ BrF(UO ₂) ₃ ($Ge_2O_7)_2.$ (U	is keep as 3)
--------------	--------------	--	------------------	---------------

	U	Ge	K	Br	F	
Point1	3	4.29	7.71	1.03	0.56	
Point2	3	4.13	6.20	1.16	0.82	
Average	3	4.21	7.00	1.10	0.69	

Figure S2(b). EDS analysis for $Rb_6(UO_2)_3(Ge_2O_7)_2 \cdot 0.5H_2O_1$

Table S1 (b). Atom ratio of $Rb_6(UO_2)_3(Ge_2O_7)_2 \cdot 0.5H_2O$. (U is keep as 3)

	U	Ge	Rb	
Point1	3	4.43	8.56	
Point2	3	4.67	6.16	
Average	3	4.55	7.36	

Figure S2(c). EDS analysis for Cs₆(UO₂)₂Ge₈O₂₁.

	U	Ge	Cs	
Point1	2	9.42	6.92	
Point2	2	8.72	6.30	
Average	2	9.07	6.61	

Table S1(c). Atom ratio of $Cs_6(UO_2)_2Ge_8O_{21}$. (U is keep as 2)

Figure S2(d). EDS analysis for Rb₂(UO₂)₃(GeO₄)_{2.}

	U	Ge	Rb	
Point1	3	2.28	2.45	
Point2	3	2.28	2.35	
Average	3	2.28	2.40	

Table S1(d). Atom ratio of Rb₂(UO₂)₃(GeO₄)₂. (U is keep as 3)

Figure S2(e). EDS analysis for Cs₂(UO₂)₃(GeO₄)₂.

Table S1(e)	. Atom ratio	of Cs ₂ (UO ₂) ₃ (Ge	$O_4)_2$. (U is kee	p as 3)
-------------	--------------	--	----------------------	---------

	U	Ge	Cs	
Point1	3	2.44	2.24	
Point2	3	2.87	2.29	
Average	3	2.66	2.27	

Table S2. Results of Bond valence calculation for $K_8BrF(UO_2)_3(Ge_2O_7)_2$, $Rb_6(UO_2)_3(Ge_2O_7)_2$. $O.5H_2O_3$, $Cs_6(UO_2)_2Ge_8O_{21}$, and $A^+_2(UO_2)_3(GeO_4)_2$ ($A^+ = Rb^+$, Cs^+), respectively. Note that for an atom, the corresponding valence V is obtained through the following formula:

$$V = \sum_{i} exp^{[in]}[(R_i - d_i)/b]$$

Here the bond valence parameter R_i and constant b of hexavalent U are taken from Burn.² The bond valence parameter R_i and constant b of other elements are provided by Brese and O'Keeffe.^{3, 4}

	U(1)	U(2)	U(3)	Ge(1)	Ge(2)	K(1)	K(2)	K(3)	K(4)	Σ
0(1)	2.2294 ^{× 2↓}					2.7261		2.942		2.039
O(2)		2.2141 ^{×2↓}			1.8070	2.6787	2.9075			2.089
O(3)		1.8072 ^{×2↓}				2.6929	2.9909			2.011
O(4)				1.7210	1.7376		2.8103			2.128
							3.3141			
O(5)			2.2299× ^{2↓}	1.7051	1.6595			3.1104	3.0509	1.966
O(6)	$2.2671^{\times 2\downarrow}$							3.0127	2.9647	1.930
								3.0135		
O(7)	1.8389×2↓					2.7403			2.5753	1.986
O(8)			$1.8171^{\times 2\downarrow}$		1.7109		2.7401	2.8104	3.0206	2.001
O(9)			$2.2608^{\times 2\downarrow}$				3.3881		3.0170	2.044
O(10)		2.21 ^{×2↓}		1.7337			3.1614		2.8043	1.980
				1.7342						
Br(1)						3.1254	3.0746	3.2255		1.039
						3.2347	3.4651	3.4430		
F(1)						2.5579	2.9525	3.2909	2.8581	0.625
						2.5669				
Σ	5.651	6.039	5.797	4.276	4.256	1.759	1.221	0.892	0.926	

(a) BVS calculation for $K_8BrF(UO_2)_3(Ge_2O_7)_2$.

	U(1)	U(2)	U(3)	Ge(1)	Ge(2)	Rb(1)	Rb(2)	Rb(3)	Rb(4)	Σ
0(1)	2.2331× ^{2↓}			1.7071			3.1296		2.9922	2.038
O(2)				1.7576	1.7579	2.9729 3.4736	3.3052			2.193
O(3)			2.2402 ^{× 2↓}	1.7242			3.0554	3.1178		1.959
O(4)		2.2334×2↓			1.7373	3.0381			2.941	1.998
O(5)			2.2471ײ↓		1.6742	3.2207		3.0893		2.070
O(6)			1.8058×2↓			2.9086	2.9473	3.0936		2.033
O(7)		2.1967 ^{×2↓}		1.7468		3.2567		2.8746		1.999
O(8)	2.2502 ^{×2↓}				1.7297		3.0570 3.1024			1.934
O(9)	1.7953 ^{×2↓}						3.6024	2.7782	2.7422	2.177
O(10)		1.7967×2↓				2.9515		2.9945	2.7326	2.199
OW1						3.1866	3.2841			0.313
Σ	5.953	6.091	5.875	4.161	4.274	0.864	0.741	0.891	0.854	

(b) BVS calculation for $Rb_6(UO_2)_3(Ge_2O_7)_2 \cdot 0.5H_2O$.

	U(1)	U(2)	Ge(1)	Ge(2)	Ge(3)	Ge(4)	Cs(1)	Cs(2)	Cs(3)	Cs(4)	Σ
O(1)			2.0108		2.2023	2.1940	3.4874	3.2398			1.248
O(2)		2.2629 ^{×2↓}		1.7196			3.1425 3.1684			2.9257 3.2772	2.349
O(3)				1.7590	1.7661		3.3961	3.5577		3.1337	2.184
O(4)				1.7522		1.7662	3.0610	3.3311		3.4540	2.261
O(5)	1.8243×2↓							3.2311	3.1485 3.6696		1.821
O(6)			1.8134	1.7370				3.4495	3.0971		2.089
O (7)	2.2169 ^{×2↓}				1.6916			3.1818	3.2929		2.093
O(8)			1.7596		1.7668			3.0804	3.6288		2.124
O(9)	2.2278 ^{× 2↓}					1.7159		3.3469	3.1665 3.5602		2.041
O(10)		1.8239×2↓					3.1333	3.1287		3.1377 3.6933	2.004
O (11)		2.2327× ^{2↓}	1.7365				3.2407 3.4139			3.1746	2.022
O(12)			1.7493			1.7122		3.0627	3.7105		2.303
O(13)					1.7944	1.7944		3.4031	3.1174		1.985
Σ	5.876	5.742	3.8352	4.0694	3.949	4.026	0.894	1.175	0.821	0.859	

(c) BVS calculation for $Cs_6(UO_2)_2Ge_8O_{21}$.

	U(1)	U(2)	U(3)	Ge(1)	Rb(1)	Σ
0(1)			1.7918		2.7862	2.126
O(2)	2.4659		2.5942	2.0275		1.708
O(3)	2.4045 ^{× 2↓}	2.3348 ^{× 2↓}		1.7629	3.0859	2.244
O(4)			1.7973		2.8864	1.993
O(5)	1.8149				2.8946	1.929
O(6)			2.3159 2.3160	1.7612	3.4165	2.167
O (7)		1.8107	2.3212×2↓		3.0977 3.5654	1.848
O(8)		2.3508		1.9024		1.861
O(9)	2.2762 ^{× 2↓}	2.3650 ^{× 2↓}		1.7699		2.100
O(10)	1.8040				2.9415	1.920
O (11)		1.7993			2.9673	1.914
Σ	5.836	5.916	5.913	3.997	1.206	

(d) BVS	calcul	lation	for R	b ₂ (UO_2)3(GeO ₄	1)2
----	-------	--------	--------	-------	------------------	--------	-----	------------------	-----

	U(1)	U(2)	U(3)	Ge(1)	Cs(1)	Σ
O (1)			1.7970		2.9001	2.165
O(2)	2.4735		2.5665	2.0410		1.687
O(3)	2.4001×2↓	2.3349 2.3350		1.7679	3.2875	2.096
O(4)			1.8049		2.9929	2.020
O(5)	1.8130				3.0611	1.983
O(6)			2.3169×2↓ 2.3294×2↓	1.7600	3.6579	2.139
O(7)		1.8122			3.2845 3.3933	1.909
O(8)		2.3655		1.8941		1.875
O(9)	2.2835 ^{× 2↓}	2.3812 ^{×2↓}		1.7716		2.070
O(10)	1.7996				3.0313	1.995
O (11)		1.7928			3.0646	1.984
Σ	5.840	5.883	5.847	3.981	1.318	

(e) BVS calculation for $Cs_2(UO_2)_3(GeO_4)_2$.

Figure S3. (a) Structure of $Rb_6(UO_2)_3(Ge_2O_7)_2 \cdot 0.5H_2O$ projected along *a* axis. (b) The unfolding wall of 12membered channels constructed by [UGe₄] pentamers (**A** type) and (**A2** type) in the structure of $Rb_6(UO_2)_3(Ge_2O_7)_2 \cdot 0.5H_2O$. (c) Structure of $Cs_6(UO_2)_3(Ge_2O_7)_2 \cdot 4H_2O^5$ projected along *a* axis. (d) The unfolding wall of 12-membered channels consisting of [UGe₄] pentamers (**A** type) and (**A1** type) in the structure of $Cs_6(UO_2)_3(Ge_2O_7)_2 \cdot 4H_2O^5$.

Compounds	U=O bonds	Bond lengths (Å)	Calculated (cm ⁻¹)				Experimental (cm ⁻¹)	
			ν_1	ν ₃	Average of v_1	Average of v_3	ν_1	ν ₃
$Cs_2(UO_2)_3(GeO_4)_2$	U(1)=O(10)	1.798(5)	812	881	809	878	721, 753, 781, 813 ,	830, 836, 851, 87 0 , 909,
	U(1)=O(5)	1.815(5)	796	860				
	U(2)=O(11)	1.792(5)	818	890				
	U(2)=O(7)	1.810(5)	800	865				
	U(3)=O(1)	1.793(5)	818	889				
	U(3)=O(4)	1.799(5)	811	880				
$Rb_2(UO_2)_3(GeO_4)_2$	U(1)=O(10)	1.804(5)	806	873	807	807 874	729, 757, 783, 818,	837, 854, 867, 908,
	U(1)=O(5)	1.816(5)	795	858				
	U(2)=O(11)	1.802(5)	808	876				
	U(2)=O(7)	1.812(5)	799	863				
	U(3)=O(1)	1.789(6)	821	893				
	U(3)=O(4)	1.798(6)	812	881				

Table S3 U=O bond lengths in uranyl $(UO_2)^{2+}$ ions for $A^+_2(UO_2)_3(GeO_4)_2$ ($A^+ = Rb$, Cs) compounds and corresponding to the stretching frequencies of v_1 and v_3 vibrational modes.

Figure S4. Infrared spectra of $Cs_6(UO_2)_2Ge_8O_{21}$ in the 400 – 1000 cm⁻¹ region.

References

- C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, Taylor, M. Taylor and J. v. D. Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457.
- (2) P. C. Burns, R. C. Ewing and F. C. Hawthorne, Can. Mineral., 1997, 35, 1551-1570.
- (3) Brown, I. D.; Altermatt, D., Ctca Crystallogr. . Acta Crystallogr., Sect. B 1985, 41, 244-247.
- (4) N. E. Brese and M. Okeeffe, Acta Crystallogr B, 1991, 47, 192-197.
- (5) C. H. Lin, R. K. Chiang and K. H. Lii, J. Am. Chem. Soc., 2009, 131 (6), 2068-2069.