Supporting Information

Amorphous Ni-Fe-Se Hollow Nanospheres Electrodeposited on Nickel Foam as the Highly Active and Bifunctional Catalyst for Alkaline Water Splitting

Xuerui Yi^{2†}, Xiaobo He^{1,3†}, Fengxiang Yin^{1,3*}, Biaohua Chen¹, Guoru Li¹, Huaqiang Yin⁴

1 Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of

Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China

2 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China

3 Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, PR China

4 Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, PR China

*Corresponding author

Tel.: +86-519-86330253

E-mail: yinfx@cczu.edu.cn (F. Yin)

† These authors contributed equally.

Fig. S1 SEM images of (a, b) Ni-Fe-Se/NF(-1.9) and (c, d) Ni-Fe-Se/NF(-1.1).

Fig. S2 High-angle annular dark field (HAADF) image (grey), Ni (green), Fe (brown), Se (purple) and O (red) mapping images of (a) Ni-Se/NF and (b) Fe-Se/NF.

Fig. S3 Electrochemical performance of the resultant catalysts. (a, c) LSV curves; (b,

d) Corresponding Tafel plots. (e) Nyquist plots. (f) Double-layer charging currents plotted as a function of scan rate.

Fig. S4 Electrode geometric surface area normalized current density (blue) and catalysts loading mass normalized current density (red) for (a) HER and (b) OER. LSV curves of Ni-Fe-Se samples with various Ni:Fe feeding ratios for (c) HER and (d) OER.

Fig. S5 LSV curves of the resulting samples with Se (Ni-Se/NF, Fe-Se/NF and Ni-Fe-Se/NF) and without Se (Ni/NF, Fe/NF and Ni-Fe/NF) for (a) HER and (b) OER.

Fig. S6 LSV curves of Ni-Fe-Se/NF for HER (a) and OER (b) after chronopotentiometric water splitting tests and CV scans.

Samples	С	Ni	Fe	Se	0
	(at. %)				
Ni-Se/NF	16.25	35.91		26.67	21.26
Ni-Fe-Se/NF(-1.1)	18.09	25.36	7.67	29.73	19.19
Ni-Fe-Se/NF	16.39	26.27	8.49	26.91	21.94
Ni-Fe-Se/NF(-1.9)	15.39	24.71	8.93	27.95	23.09
Fe-Se/NF	18.75	10.16	16.52	28.33	26.24

Table S1. The surface composition of the resultant samples determined by XPS.

Table S2. Summary of HER and OER activity for the resultant samples.

Samples		OER			
	HER Overpotential @10 mA cm ⁻² (mV)	HER	Overpotential	OER	
		Tafel slope	@100 mA cm ⁻	Tafel slope	
		(mV dec ⁻¹)	2	(mV dec ⁻¹)	
			(mV)		
Ni-Fe-Se/NF	~82	~102	~222	~39	
Ni-Fe-Se/NF(-1.9)	~118	~118	~261	~70	
Ni-Fe-Se/NF(-1.1)	~92	~116	~244	~63	

Catalyst	Overpotential @10 mA cm ⁻² (mV)	Overpotential @100 mA cm ⁻² (mV)	Refs.
NiFe-LDH/MXene/NF	~132	~192	S1
Pt/C/NF	~70	~205	S 1
MoS ₂ /NiS on carbon cloth	62	131	S2
Ni ₂ P embedded in N-doped carbon nanofibers	104	~200	S 3
Ni ₃ N-Ni(OH) ₂ interface on Ti mesh	~60	181	S4
NiMoN/Ni ₃ N nanosheets on carbon cloth	31	200	S5
Ni ₃ N-Co	194	~290	S6
Ni ₃ FeN/reduced graphene oxide	94	~210	S7
Ni ₃ FeN/carbon cloth	105	~450	S 8
MoNi ₄ /MoO ₂ @Ni foam	15	~39	S9
Mn-doped CoP nanosheets Ti mesh	76	150	S10

 Table S3 Comparison of the HER activity in 1 M KOH for the recently reported

 catalysts.

Co ₃ Se ₄ nanowires on Co foam	179	262	S 11
Ni-Fe-Se/NF	~85	~192	This work

Catalyst	Overpotential @10 mA cm ⁻² (mV)	Overpotential @100 mA cm ⁻² (mV)	Refs.
Ni ₃ Se ₂ /NF		315	S12
NiSe/NF		411	S12
Ni _{0.85} Se	302	364	S13
Ni _{2.3%} -CoS ₂ /CC	270	370	S14
Co-S/Ti	361	430	S15
N-graphene-CoO	340	490	S16
NiSe/Ni	270	314	S17
Co-P film	345	413	S18
Co ₃ O ₄ /rm-GO	310	370	S19
Ni-Fe-Se/NF		~222	This work

 Table S4 Comparison of the OER activity in 1 M KOH for the recently reported

 catalysts.

Supplementary References

- M. Yu, Z. Wang, J. Liu, F. Sun, P. Yang and J. Qiu, *Nano Energy*, 2019, 63, 103880.
- J. Lin, P. Wang, H. Wang, C. Li, X. Si, J. Qi, J. Cao, Z. Zhong, W. Fei and J. Feng, *Adv. Sci.*, 2019, 6, 1900246.
- M. Q. Wang, C. Ye, H. Liu, M. Xu and S. J. Bao, *Angew. Chem. Int. Ed.*, 2018, 57, 1963-1967.
- M. Gao, L. Chen, Z. Zhang, X. Sun and S. Zhang, J. Mater. Chem. A, 2018, 6, 833-836.
- A. Wu, Y. Xie, H. Ma, C. Tian, Y. Gu, H. Yan, X. Zhang, G. Yang and H. Fu, Nano Energy, 2018, 44, 353-363.
- C. Zhu, A. L. Wang, W. Xiao, D. Chao, X. Zhang, N. H. Tiep, S. Chen, J. Kang,
 X. Wang and J. Ding, *Adv. Mater.*, 2018, **30**, 1705516.
- Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang and X. Yao, ACS nano, 2018, 12, 245-253.
- Z. Liu, H. Tan, J. Xin, J. Duan, X. Su, P. Hao, J. Xie, J. Zhan, J. Zhang and J.-J.
 Wang, ACS Appl. Mater. Interfaces, 2018, 10, 3699-3706.
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech and X. Feng, *Nat. Commun.*, 2017, 8, 15437.
- T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun and L. Chen, ACS Catal., 2016, 7, 98-102.

- W. Li, X. Gao, D. Xiong, F. Wei, W. G. Song, J. Xu and L. Liu, *Adv. Energy Mater.*, 2017, 7, 1602579.
- 12. A. Sivanantham and S. Shanmugam, *Appl. Catal.*, *B.*, 2017, **203**, 485-493.
- X. Wu, D. He, H. Zhang, H. Li, Z. Li, B. Yang, Z. Lin, L. Lei and X. Zhang, *Int. J. Hydrogen Energy*, 2016, 41, 10688-10694.
- 14. W. Fang, D. Liu, Q. Lu, X. Sun and A. M. Asiri, *Electrochem. Commun.*, 2016, 63, 60-64.
- T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He and A. M. Asiri, *Electrochem. Commun.*, 2015, **60**, 92-96.
- S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, *Energy Environ. Sci.*, 2014, 7, 609-616.
- C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, *Angew. Chem. Int. Ed.*, 2015, 54, 9351-9355.
- N. Jiang, B. You, M. Sheng and Y. Sun, *Angew. Chem. Int. Ed.*, 2015, 54, 6251-6254.
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, *Nat. Mater.*, 2011, 10, 780.