Supplementary information

Hydrothermal synthesis of delafossite CuScO₂ hexagonal plates as electrocatalyst for the alkaline oxygen evolution reaction

Yanwen Deng,^a Dehua Xiong,^{*,a} Han Gao,^a Jie Wu,^a Santosh Kumar Verma,^b Baoshun Liu,^a and Xiujian Zhao^{*,a}

^a State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China

* Corresponding author Email: xiongdehua2010@gmail.com (Dehua Xiong), opluse@whut.edu.cn (Xiujian Zhao)

^b Department of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China

Experimental details:

Materials synthesis

All chemicals used in the experiments were purchased from Sinopharm Chemical Reagent Co., Ltd with analytical grade and used as received without further purification. CuScO₂ were prepared according to a procedure reported in our previous works (J. Mater. Chem., 2012, 22, 24760-24768; New J. Chem., 2016, 40, 6498-6504; *Inorg. Chem. Front.*, 2018, 5, 183-188.). Typically, 15 mmol Cu(NO₃)₂·3H₂O and 15 mmol $Sc(NO_3)_3 \cdot xH_2O$ were dissolved sequentially in 70 ml deionized water at room temperature, 0.50 ml ethylene glycol and 5.00 g NaOH was added to the above solution for preparing the hydrothermal precursor. The mixture was stirred for 30 minutes at room temperature until a homogeneous suspension formed, and then the solution was loaded into a 100 mL Teflon-lined autoclave reactor which was kept at 240 °C in an oven for 24 hours. Subsequently, the autoclave reactor was naturally cooled down to room temperature. The as-obtained precipitates were collected and washed with diluted ammonia aqueous solution, deionized water and ethanol for 3 times to remove any byproduct impurities. Finally, the as-obtained CuScO₂ powders were dried at 60 °C for 12 hours for further characterization.

Structural characterization

The morphology, microstructure, and chemical composition of $CuScO_2$ powders were examined by field-emission scanning electron microscopy (FESEM, FEG Quanta 450) equipped with energy-dispersive X-ray spectroscopy (EDX). The crystalline structure of CuScO₂ powders was studied by X-ray diffractometry (XRD, PANalytical X'Pert PRO) using Cu K_{α} radiation ($\lambda = 1.540598$ Å) and a PIXcel detector. The surface chemical states of CuScO₂ powders were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Escalab 250Xi), and the C (1s) line (at 284.80 eV) corresponding to the surface adventitious carbon (C–C line bond) has been used as the reference binding energy. The thermal stability of CuScO₂ powders was investigated by a differential scanning calorimetry-thermogravimetry analyzer (DSC-TG, Diamond TG/DTA, Perkin-Elmer Instruments) from 25 °C to 1000 °C at a heating rate of 10 °C/min under air atmosphere.

Electrochemical measurements

The electrocatalytic activity towards oxygen evolution reaction was evaluated by cyclic voltammetry (CV) scan in a three-electrode configuration in 1.0 M KOH (pH = 13.5) using a CS2350H electrochemical workstation (Wuhan Corrtest Instruments Corp., China). A platinum wire and a saturated calomel electrode (SCE) were used as the counter and reference electrodes, respectively. The Ni@CuScO₂ working electrodes were fabricated as follows: CuScO₂ powders were dispersed in a mixture of 500 µL water, 480 µL isopropanol and 20 µL Nafion (5 wt%, Sigma), and cast onto a piece of nickel foam (the working area is 10×10 mm²). The CuScO₂ loading mass was kept as 0.15, 0.30, and 0.45 mg cm⁻², these working electrodes were denoted as Ni@CuScO₂-0.15, Ni@CuScO₂-0.30, and Ni@CuScO₂-0.45. Cyclic voltammetric (CV) scans were recorded between 1.00 and 1.90 V vs. reversible hydrogen electrode (RHE) at a scan rate of 5 mV s⁻¹.

All current density values are normalized with respect to the geometrical surface area of the working electrode. All CV curves presented in this work are *iR*-corrected (85%). The correction was done according to the following equation:

$$E_{\rm c} = E_{\rm m} - iR_{\rm s} \tag{1}$$

where E_c is the *iR*-corrected potential, E_m experimentally measured potential, and R_s the equivalent series resistance extracted from the electrochemical impedance spectroscopy measurements. Unless otherwise specified, all potentials are reported versus reversible hydrogen electrode (RHE) by converting the potentials measured *vs*. SCE according to the following formula: E (RHE) = E (SCE) + 0.241 + 0.059 pH (2)

Supplementary figures:

Fig. S1. XRD patterns (a) and SEM images (b, c) of Ni@CuScO₂-0.30 working electrodes.

Fig. S2. SEM image (a), EDX spectrum (b) and elemental maps (c, Cu; d, Sc; e, Ni) of Ni@CuScO₂-0.30 working electrodes.

Fig. S3. CV curves recorded at a scan rate of 5 mV s⁻¹ in the potential range of 1.00 to 1.90 V vs RHE, and the loading mass of Ni@CuScO₂ working electrodes were 0.15, 0.30, and 0.45 mg cm⁻².

Fig. S4. Tafel plots of the bare Ni and Ni@CuScO₂ working electrodes.

Fig. S5. Chronopotentiometric curves of bare Ni and Ni@CuScO₂ working electrodes measured for 18 hours.

Fig. S6. SEM image of Ni@CuScO₂-0.30 working electrodes after long-term stability test for 18 hours under OER conditions.

Fig. S7. SEM image (a), EDX spectrum (b) and elemental maps (c, Cu; d, Sc; e, Ni) of Ni@CuScO₂-0.30 working electrodes after long-term stability test for 18 hours under OER conditions.

Supplementary Table:

Table S1. The OER activity of Ni@CuScO₂ electrodes in comparison to that of other

ternary metal oxides based OER catalysts recently reported in the literatures.

Catalysts	Electrolyte	Loadin g mass (mg cm ⁻²)	Tafel slope (mV dec ⁻¹)	J_{geo} (current density in mA cm^{-2} @overpotentia l in mV)	Reference
Ni@CuScO ₂	1.0 M KOH	0	132	10@η=520 20@η=570	• This work
		0.30	114	10@η=470 20@η=510	
5%-La-excess LaNiO ₃	0.1 M KOH	-	~70	0.042@η=400	Nano Lett. 2017, 17, 3126-3132.
5%-Ni-excess LaNiO ₃			~70	0.121@ŋ=400	
LaCoO ₃ -bulk	0.1 M KOH	0.25	102	10@η=620	Nat. Commun., 2016, 7, 11510.
LaCoO ₃ - 60 nm			78	10@η=550	
LaCoO ₃ - 80 nm			69	10@η=490	
LaCoO ₃ - 200 nm			89	10@η=540	
LaFeO ₃	0.1 М КОН	0.464	77	10@η=510	Chem. Mater.
$La_{0.95}FeO_{3-\delta}$			48	1@η=320 10@η=410	2016, 28, 1691- 1697.
SrCoO ₃	0.1 M KOH	-	145	0.7@η=350	<i>Mater. Horiz.,</i> 2015, 2, 495-501.
$\frac{SrSc_{0.025}Nb_{0.025}Co}{_{0.95}O_{3-\delta}}$			~70	10@η=350	
LiCoO ₂ 20–100 nm	1.0 M NaOH	0.32	48 <u>+</u> 3	10@η=430 <u>+</u> 14	Energy Environ.
LiCoO ₂ 50–150 nm		1.20	49 <u>+</u> 3	$10@\eta=430\pm8$	184-192.
CuRhO ₂	1.0 M KOH	20 µmol/c m ²	-	10@η=420	J. Phys. Chem. C 2015, 119, 6495- 6501.
CuCrO ₂			-	5@η=710	
CuCoO ₂			-	10@η=430	
CuFeO ₂			-	5@η=670	
CuCoO ₂	1.0 M KOH	0.30	93	1@η=390 10@η=440	Inorg. Chem. Front., 2018,5, 183-188.
CuMnO ₂	1.0 M	0.05	-	12.3@ 2.0 V	Journal of The

	КОН			vs. Ag/AgCl 10@ 1.69 V vs. Ag/AgCl	<i>Electrochemical</i> <i>Society</i> , 2019,166 (6) H233-H242.
NiCo ₂ O ₄	1.0 M KOH	-	75	10@η=460	Appl. Surf. Sci.,
$Fe_{0.5}Ni_{0.5}Co_2O_4$			27	10@η=350	2017, 416, 371- 378.
ZnCo ₂ O ₄	0.1 M KOH	0.051	38.5	20@η=420	J. Mater. Chem. A, 2016, 4, 10014-10022.
Ni-Mn-O nanomeshs	0.1 M KOH	1 <u>+</u> 0.2	41	10@η=372	Electrochimica
Ni-Mn-O nanoparticles			59	10@η=275	<i>Acta</i> , 2017, 243, 32-40.
CoFe ₂ O ₄ thin films	1.0 M NaOH	-	54.2	10@η=490	<i>Electrochem.</i> <i>Commun.</i> , 2018, 87, 1-4.

Supplementary information