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1. Notes on the Blume-Capel model

The original Blume-Capel model is an Ising-type model for S = 1 (Sz = 0,±1) and axial
crystal field[1]. It can be generalized to any spin-S[2, 3]. In the 1-dimensional case, the
Hamiltonian for a chain of N identical spins S is written

H =
N∑
j=1

[
−2JSz,jSz,j+1 +D (Sz,j)

2] (1)

where Sz = −S,−S + 1, . . . , S − 1, S.

Thermodynamic magnitudes can be obtained from the canonical partition function Z, which
is calculated by the transfer matrix method. In the Sz representation and assuming a ring of
N spins (Sz,N+1 = Sz,1) with large N , the partition function, ZN , can be expressed as

ZN = Tr
N∏
j=1

Tj = Tr
[
TN
]

(2)

where T = Tj ∀j, i.e., all Tj are identical hermitian matrices. This is the transfer matrix,
which has the form T = e−βH with β = 1/kBT and matrix elements

〈Sz|T|S ′z〉 = e2βJSzS′
z−(βD/2)[(Sz)2−(S′

z)
2)] (3)

Then, the calculation procedure will include diagonalizing T to obtain its eigenvalues λi, in
order to use Tr

[
TN
]

=
∑N

i=1 λ
N
i . Since the transfer matrix is real square with positive elements,

there exist a non-degenerate largest real eigenvalue λ1 (the principal eigenvalue). For large N ,
ZN ≈ λN1 , and in the thermodynamic limit N →∞ the ring is equivalent to an infinite chain.

The specific heat is calculated from the partition function as

CV = − 1

ZN
∂ZN
∂β

(4)

in the thermodynamic limit N →∞.

The equilibrium susceptibility is calculated from spin correlation functions. For a general
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spin at position K, its correlation function with spin at position K + l is

〈SKSK+l〉 = lim
N→∞

1

ZN

∑
{S}

SKSK+l exp (−βH)

= lim
N→∞

1

ZN

n∑
i,j=1

λliλ
N−l
j 〈φi|S|φj〉 〈φj|S|φi〉

≈
n∑
i=1

(
λi
λ1

)l
〈φi|S|φ1〉〈φ1|S|φi〉

(5)

where S is the spin matrix, n = 2S + 1 is its dimension and φi are the eigenfunctions of the
transfer matrix. Then the (parallel) molar susceptibility is

χ =
NAµ

2
Bg

2

kBT

+∞∑
l=−∞

〈Sz,KSz,K+l〉 (6)

We note that in the infinite chain, for a given spin K the interaction is symmetric with
respect to spins at either side of K, i.e, 〈σKσK+l〉 = 〈σKσK−l〉, |l| > 0. Therefore, eq. (6) can
be writen

χ =
NAµ

2
Bg

2

kBT

[
〈Sz,KSz,K〉+ 2

+∞∑
l=1

〈Sz,KSz,K+l〉

]
(7)

The cases of S = 1 and 3/2 can be solved analytically, while for larger spin numerical cal-
culations are performed [3]. For both specific heat and susceptibility, the calculation procedure
includes diagonalization of the transfer matrix and obtaining a limit numerically. In the latter,
the influence of the principal eigenvalue is of the utmost importance. Although the principal
value is non-degenerate, next lower eigenvalues can be close, and therefore convergence of the
calculations for increasing N has to be checked, which can be an issue for very low or very large
temperatures in comparison with the interaction energies involved (J and D).

2. Specific heat under external magnetic field

Fig. S.1 shows the experimental specific heat of the {Fe3YO2} compound under external
magnetic field with values H = 10, 20 and 40 kOe. Note that a magnetic field of 10 kOe produces
maximum Zeeman splittings in a powder sample of ∼ gSµBH/kB ∼ 1 K, i.e., of the order of
the temperatures where the effect of the single ion anisotropy and intercluster interactions
a show up. We have calculated this specific heat using a quantum Monte Carlo simulation
(from ALPS project libraries [4]) on a chain of 20 spin S = 5/2 clusters with intercluster
Heisenberg interaction J = −40 mK and magnetocrystalline anisotropy parameterD = −0.56 K
as obtained from the zero field measurements. The fig. S.1 includes the calculations for H =
10 kOe after a powder average carried out with simulations for angles between the anisotropy
axis (quantization axis) and applied field direction, θ, in steps of 5◦. The agreement supports
the proposed model of an antiferromagnetic chain with single ion anisotropy.
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Figure S.1: Experimental specific heat of the {Fe3YO2} compound under various external magnetic fields H.
Inset: experimental data for H = 10 kOe and quantum Monte Carlo simulation of the specific heat for a
isotropic Heisenberg chain of 20 S = 5/2 cluster spins with axial magnetocrystalline anisotropy D = −0.56 K,
intercluster interaction constant J = −40 mK and external applied field H = 10 kOe (the lattice contribution
has been added to the calculation).

3. Equilibrium magnetic susceptibility

In the main text we have shown the calculation of the equilibrium susceptibility for an
antiferromagnetic chain including axial magnetic anisotropy. This has been done using the
general spin Blume-Capel model and a classical Monte Carlo simulation of Heisenberg chain.
In order to assess the effect of the anisotropy, here we have added the results for the Ising and
classical Heisenberg S = 5/2 chain without anisotropy (Fig. S.2). The major contribution of
the anisotropy is a fast drop of χT with decreasing temperature. However, in every studied
model, the very low temperature trend to a non zero value of χT is not predicted. As explained
in the text, such a trend could be produced by a small ferromagnetic component, a finite chain
length or a not random powder sample.
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Figure S.2: Experimental (large circles) and calculated χT of the {Fe3YO2} compound for several chain inter-
action models and with or without single molecule magnetic anisotropy.

4. Magnetic relaxation under external dc field

At zero magnetic field, spin-phonon processes are forbidden in Kramers-conjugate states
(van Vleck cancellation). This is the present case of the S = 5/2 Fe3 clusters. However, the
phonon-driven processes can be made observable by applying an external magnetic field. When
an external static magnetic field ~H0 is applied and a parallel ac magnetic field ~h = ~h0 cosωt
is used to measure the ac susceptibility, this frequency-dependent susceptibility can be written
as [5]

χ(ω, T,H) =
∑
k

∆χk(T,H)

1 + (iωτk)
+ χVV (8)

where χVV is the van Vleck susceptibility which includes quantum processes, as quantum tun-
nelling. The first term includes phonon-induced jumps between energy levels characterized by
relaxation times τk and susceptibility amplitudes ∆χk. Each spin transition from a state n to
a state n′ will produce a Debye-like function χ′′(ω) that peaks at τ = 1/ω and is symmetric in
a logarithm scale.

For H0 � h0, the static field produces Zeeman splitting of the spin energy levels which are
modulated by the ac field. We searched for relaxation modes triggered by external magnetic
applied fields at 2 K in the frequency range 0.1 Hz− 1 kHz (Fig. S.3). A process was observed
for a frequency around 1 Hz, which is assigned to a direct process under phonon-bottleneck
effect. The magnetic field dependence of the amplitude of the out-of-phase susceptibility χ′′max

(or ∆χ) shows a maximum at ≈ 8 kOe. For the measurements of the ac susceptibility as a
function of temperature in the frequency range 0.1 Hz− 10 kHz the applied field value 6.5 kOe
was chosen, which showed a phonon-induced process with characteristic time ∼ 10−5 s and an
Arrhenius type temperature dependence (see main text).
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Figure S.3: χ′′(f) at T = 2 K at applied magnetic fields 0 ≤ H ≤ 30 kOe for the {Fe3YO2} compound. Inset:
magnetic field dependence of the maximum of χ′′; the vertical arrow indicates the field value used for subsequent
χ(f) measurements at higher temperatures.

5. Transition probability models

Thermal relaxation processes have been described by stochastic models, which assume single
spin flips [6]. The relaxation times can be calculated from a master equation and transition
probabilities Wi(σi) to flip spin i from σi to −σi (σi = ±1) under a local field Ei = 2JS2(σi−1 +
σi+1). Thermal equilibrium requires that Wi(σi) have the general form

Wi(σi) = f

(
Ei
kBT

)[
1− σi tanh

(
Ei
kBT

)]
(9)

where f is an even function of the local field. Then, the relaxation times are calculated from
the master equation

dp(σ1, · · · , σN , t)
dt

= −
∑
i

Wi(σi)p(σ1, · · · , σi, · · · , σN , t)+
∑
i

Wi(−σi)p(σ1, · · · ,−σi, · · · , σN , t)

(10)
which considers the change with time of the probability a particular spin configuration p(σ1, · · · , σN , t)
through its destruction by flipping of any spin σi or creation from spins −σi.

Two models for Wi(σi) will be considered:

i. Glauber’s model [6]. The function f is taken as f = 1/2τ0, where τ0 is the spin flip time
in absence of interspin interactions. This is the simplest model. Then,

Wi(σi) =
1

2τ0

[
1− σi tanh

(
Ei
kBT

)]
(11)

ii. Arrhenius law. The main advantage of Glauber’s models is that the master equation is
solvable analytically. However, a more physical probability law can be chosen through an
Arrhenius law

Wi(σi) =
1

2τ0
exp

(
−Eiσi
kBT

)
(12)

which comes out from Eq. 9 when the choice f(Ei/kBT ) = cosh(Ei/kBT )/2τ0 is made.
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When an external magnetic field H is applied, the models can be modified as follows:

i. Glauber’s model. The transition probability is

Wi(σi) =
1

2τ0

[
1− tanh

(
µH

kBT

)][
1− σi tanh

(
Ei
kBT

)]
(13)

where µ = gµBS. This choice of Wi(σi) was used by Glauber for small values of H [6].

ii. Arrhenius law:

Wi(σi) =
1

2τ0
exp

(
−Ei + µH

kBT
σi

)
(14)

iii. Suzuki-Kubo model [7]. An alternative to Glauber’s choice is

Wi(σi) =
1

2τ0

[
1− σi tanh

(
Ei + µH

kBT

)]
(15)

Note that τ0 is also expected to follow an Arrhenius law τ0 = τi exp (−∆A/kBT ). Coulon et
al. [8] have calculated the dependence of the activation energy of the normalized relaxation time
∆τ/τ0 as a function of the inverse of the reduced applied field µH/kBT for the three transition
probability functions above (see Fig. 13 in ref. [8]). The main results are:

i. ∆τ/τ0 is almost independent of the reduced applied field for Glauber’s model.

ii. For the Suzuki-Kubo probability law, ∆τ/τ0 decreases monotonously with the applied field
until µH/kBT ≈ 0.5, when it stabilized at ∆τ/τ0 = 0. Then, for h & 0.5 the activation
energy obtained from the measured relaxation time τ is ∆τ = ∆A.

iii. For the Arrhenius probability law, ∆τ/τ0 decreases monotonously and it drops below zero
for µH/kBT ≈ 0.5. In this case, the observed activation energy is smaller than ∆A for
h & 0.5.

6. Additional figures of supramolecular magnetic chains

In addition to Fig. 8 in the main text, three further figures are included in order to help
visualize the chain formation of S = 5/2 Fe3 spin clusters in the {Fe3YO2} compound. The
chains are represented in a simplified structure with only Fe and Y atoms shown and the
proposed orientation of magnetic moments. Chains are viewed along the a (left figure), b
(centre figure), and c (right figure) crystallographic axes. In each figure, a plane containing the
centres of the Fe3 clusters of a single chain is also depicted.

Figure S.4: S = 5/2 Fe3 spin clusters chains
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