Supplementary Information

Configurational landscapes of chiral iron (II) bis(phosphane) complexes

Francisco Estevan^a and Marta Feliz^b

^a Departament de Química Inorgànica, Universitat de València, Dr. Moliner 50, 46100

Burjassot-Valencia, Spain

^b Instituto de Tecnología Química (Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas), Avd. de los Naranjos s/n, 46022 Valencia,

Spain.

TABLE OF CONTENTS

I. Experimental details

Table S1. Details of the reactions done with $[FeH(\eta^2-H_2)\{(R,R)-Me-DUPHOS\}_2](BF_4)$ and $[FeH(\eta^2-H_2)\{(S,S)-Me-DUPHOS\}_2](BF_4)$ complexes.

II. Tables and figures

Table S2. Simulated ¹H and ³¹P{¹H} chemical shifts (ppm) and coupling constants (Hz) for the new species derivatized from [FeH(η^2 -H₂){(*R*,*R*)-Me-DuPhos}₂]⁺.

Figure S1. Simulated (bottom) and experimental (top) ¹H NMR spectra (hydride region) of the $[FeH(THF-d_8)\{(R,R)-Me-DuPhos\}_2]^+$ compound.

Figure S2. ³¹P{¹H} NMR spectra of the *cis* (*) and *trans* (+) isomers of [**FeHL**{(*R*,*R*)-Me-**DuPhos**]¹⁺ (L = Et₂O (top), THF (bottom)).

Figure S3. ³¹P{¹H} NMR spectra of the product obtained from $[Fe(H_2O)_6](BF_4)_2$, (R,R)-Me-DuPhos and TBAI mixture and registered from -93 to 25 °C in THF-d₈.

Figure S4. ³¹P{¹H} NMR spectrum acquired after addition of KI in a THF-d₈ solution of [FeH(η^2 -H₂){(*R*,*R*)-Me-DuPhos}₂](BF₄). The *, \blacklozenge , +, and # notations correspond to the characteristic signals of [FeH(η^2 -H₂){(*R*,*R*)-Me-DuPhos}₂]⁺, [FeH(THF-d₈){(*R*,*R*)-Me-DuPhos}₂]⁺, *trans*-[FeHI{(*R*,*R*)-Me-DuPhos}₂] and *cis*-[FeHI{(*R*,*R*)-Me-DuPhos}₂] compounds, respectively.

Figure S5. ¹H NMR spectra (hydride region) of *trans*-[**FeHCl**{(R,R)-Me-DuPhos}₂] registered in CD₂Cl₂ (¹H{³¹P} spectrum (top), ¹H spectrum (bottom)).

Figure S6. ³¹P{¹H} NMR spectra evolution with time after addition of TBACl in a CD₂Cl₂ solution of [FeH(η^2 -H₂){(*R*,*R*)-Me-DuPhos}₂](BF₄).

Table S3. Selected bond distances and angles for compound trans-[FeCl₂{(R,R)-Me-DuPhos}₂] and comparison with other structurally similar compounds.

Figure S7. X-ray crystal structure of trans-[FeCl₂{(R,R)-Me-DuPhos}₂]. The hydrogen atoms are omitted for clarity.

Figure S8. X-ray crystal structure of Δ -[FeI{(*S*,*S*)-Me-DuPhos}₂]⁺. The hydrogen atoms are omitted for clarity.

Figure S9. X-ray crystal structure of Λ -[FeI{(*R*,*R*)-Me-DuPhos}₂]⁺. The hydrogen atoms are omitted for clarity.

Figure S10. X-ray crystal structure of $[FeCl{(R,R)-Me-DuPhos}_2]^+$. The hydrogen atoms are omitted for clarity.

Table S4. Selected bond distances and angles for compound Δ -[FeI{(*S*,*S*)-Me-DuPhos}₂](ClO₄), Λ -[FeI{(*R*,*R*)-Me-DuPhos}₂]I·H₂O, and [FeI(opdp)₂]I·2CH₂Cl₂ compounds. Figure S11. Representations of the calculated structures of Λ (left) and Δ (right) isomers of [FeI{(*R*,*R*)-Me-DuPhos}₂]⁺, a) front view, b) lateral view. The hydrogen atoms are omitted for clarity.

Table S5. Main bond distances and angles for Λ - and Δ -[Fel{(*R*,*R*)-Me-DuPhos}₂]⁺ isomers, τ parameter, and relative Gibbs free energy for computed geometries.

Figure S12. ³¹P{¹H} NMR spectrum registered after dissolution of crystals of Λ -[FeI{(*R*,*R*)-Me-DuPhos}₂]I·H₂O in (CD₃)₂CO.

Figure S13. ³¹P{¹H} (top) and ³⁵Cl (bottom) NMR spectra registered after dissolution of crystals of [FeCl{(R, R)-Me-DuPhos}_2](BF₄) in CD₂Cl₂ and CD₃CN, respectively.

III. Structural description

Details of the structure refinement and X-ray structure determination.

Table S6. Crystal data and structure refinement for Δ -[FeI{(*S*,*S*)-Me-DuPhos}₂](ClO₄) and Λ -[FeI{(*R*,*R*)-Me-DuPhos}₂]I·H₂O.

Table S7. Crystal data and structure refinement for $[FeCl_{(R,R)}-Me-DuPhos_2](BF_4)$ and *trans*- $[FeCl_{2}(R,R)-Me-DuPhos_{2}]$.

IV. Computational data

Optimized Gibbs free energies (in a.u.) and Cartesian atomic coordinates (in Å) of the structures described in Table S5.

V. References

I. Experimental details

 $\textbf{Table S1. Details of the reactions done with [FeH(\eta^2-H_2)\{(\textit{R},\textit{R})-Me-DUPHOS\}_2](BF_4) and [FeH(\eta^2-H_2)\{(\textit{S},\textit{S})-Me-DUPHOS}_2](BF_4) complexes. \\$

Precursor(s) ^[a]	Reactor type	Solvent	Temp	Reaction time	Solution color	Solid formed and X-ray identification
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4)$ (5 mg)	NMR tube	THF-d ₈ (750 μL)	Room	Few minutes	Yellow	
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4)$ (5 mg)	NMR tube	THF-d ₈ (750 μL)	Room	Few days	Orange	Orange-red crystals of ∧-[FeI{(<i>R,R</i>)-Me-DuPhos} ₂]I·H ₂ O
[FeH(η ² -H ₂){(<i>S</i> , <i>S</i>)-Me-DuPhos} ₂](BF ₄) (5 mg), KClO ₄ (5 mg); mol ratio 1/5 (Fe/KClO4)	NMR tube	THF-d ₈ (750 μL)	Room	Few days	Orange	Orange-red crystals of} ∆-[FeI{(<i>S,S</i>)-Me-DuPhos} 2](ClO ₄)
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4)$ (5 mg), THF- d ₈ (50 µL)	NMR tube	CD ₂ Cl ₂ (0.8 mL)	Room	Up to 8 days	Orange	Orange-red crystals
[FeH(η^2 -H ₂){(<i>R</i> , <i>R</i>)-Me-DuPhos} ₂](BF ₄) (5 mg), Et ₂ O (50 µL)	NMR tube	CD ₂ Cl ₂ (0.8 mL)	40 °C	Up to 30 days	Orange	Orange-red crystals
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4)$ (5 mg)	NMR tube	(CD ₃) ₂ CO (750 µL)	Room	Few days	Yellow	
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4)$ (5 mg), KI (8 mg); mol ratio 1/7 (Fe/KI)	NMR tube	THF-d ₈ (750 μL)	Room	Up to 7 days	Orange	Orange-red crystals of Λ-[FeI{(<i>R,R</i>)-Me-DuPhos} ₂]I·H ₂ O
[Fe(H ₂ O) ₆](BF ₄) ₂ (7 mg), (<i>R</i> , <i>R</i>)-Me-DuPhos (12.5 mg), TBAI (37.5 mg); mol ratio 1/2/5 (Fe/DuPhos/TBAI)	NMR tube	THF-d ₈ (750 μL)	50 °C	1 month	Dark red	
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4)$ (20 mg), TBAI (49 mg); mol ratio 1/5 (Fe/TBAI)	Schlenk	CH ₂ Cl ₂ (3 mL)	Room	4h	Orange	Orange-red
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4) $ (5 mg), TBACl (8 mg); mol ratio 1/5 (Fe/TBACl)	NMR tube	CD ₂ Cl ₂ (750 µL)	Room	Up to 5-7 h	Orange	Red crystals of <pre>[FeCl{(R,R)-Me-DuPhos}2](BF4)</pre>
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4) (14 mg),$ TBACl (24 mg); mol ratio 1/5 (Fe/TBACl)	Schlenk	CH ₂ Cl ₂ (3 mL)	Room	4h	Orange	Red crystals
$[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4)$ (5 mg)	Fisher- Porter tube	CH ₂ Cl ₂ (3 mL)	Room	Few days	Yellow	Crystals of trans-[FeCl ₂ {(<i>R</i> , <i>R</i>)-Me-DuPhos} ₂]

[a] Reactions done under Ar or N₂, indistinctly.

II. Tables and figures

Table S2. Simulated ¹H and ³¹P{¹H} chemical shifts (ppm) and coupling constants (Hz) for the new species derivatized from [FeH(η^2 -H₂){(*R*,*R*)-Me-DuPhos}₂]⁺.

		Chemical shift (ppm)								
Compound	Stereoisomer	δН	δP_a	δP_b	δP_c	δP_d	$^{2}J_{HPa}$	$^{2}J_{HPb}$	$^{2}J_{HPc}$	$^{2}J_{HPd}$
$[FeH(THF-d_8)\{(R,R)-Me-DuPhos\}_2]^+$	cis ^[a]	-10.3	93.66	110.62	115.31	115.96	36.2	52.3	64.5	62.0
[FeH(THF-d8){(R,R)-Me-DuPhos}2] ⁺	trans ^[b]		96.0	104.0						
[FeH(THF-d ₈){(<i>R</i> , <i>R</i>)-Me-DuPhos} ₂] ⁺	cis ^[b]	-11.6	89.39	98.70	102.62	110.10	26.9	45.9	58.6	58.6
[FeHCl{(<i>R</i> , <i>R</i>)-Me-DuPhos}2]	cis ^[c]	-9.0	100.56	103.12	122.01	128.70	71.6	63.1	60.1	46.6
[FeHCl{(<i>R</i> , <i>R</i>)-Me-DuPhos} ₂]	trans ^[c]	-14.8	120.81	124.34						
[FeHI{(<i>R</i> , <i>R</i>)-Me-DuPhos2]	cis ^[c]	-10.2	101.08	103.44	122.34	143.60	36.4	52.4	61.2	63.3
[FeHI{(<i>R</i> , <i>R</i>)-Me-DuPhos}2]	trans ^[c]	-14.7	120.46	124.26						

[a] Spectra registered in THF-d₈; [b] in CD₂Cl₂ with *ca*. 6% of THF; [c] in CD₂Cl₂.

Figure S1. Simulated (bottom) and experimental (top) ¹H NMR spectra (hydride region) of the [**FeH(THF-d**₈){(R,R)-Me-DuPhos}₂]⁺ compound.

Figure S2. ³¹P{¹H} NMR spectra of the *cis* (*) and *trans* (+) isomers of [FeHL{(R, R)-Me-DuPhos}2]⁺ (L = Et₂O (top), THF (bottom)).

Figure S3. ³¹P{¹H} NMR spectra of the product obtained from $[Fe(H_2O)_6](BF_4)_2$, (*R*,*R*)-Me-DuPhos and TBAI mixture and registered from -93 to 25 °C in THF-d₈.

Figure S4. ³¹P{¹H} NMR spectrum acquired after addition of KI in a THF-d₈ solution of $[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2](BF_4)$. The *, \blacklozenge , +, and # notations correspond to the characteristic signals of $[FeH(\eta^2-H_2)\{(R,R)-Me-DuPhos\}_2]^+$, $[FeH(THF-d_8)\{(R,R)-Me-DuPhos\}_2]^+$, trans-[**FeHI**{(R,R)-Me-DuPhos}_2] and cis-[**FeHI**{(R,R)-Me-DuPhos}_2] compounds, respectively.

Figure S5. ¹H NMR spectra (hydride region) of *trans*-[**FeHCl**{(R,R)-Me-DuPhos}₂] registered in CD₂Cl₂ (¹H{³¹P} spectrum (top), ¹H spectrum (bottom)).

Figure S6. ³¹P{¹H} NMR spectra evolution with time after addition of TBACl in a CD_2Cl_2 solution of [FeH(η^2 -H₂){(*R*,*R*)-Me-DuPhos}₂](BF₄).

Distances (Å) [a,b]	trans-[FeCl2{(R,R)-Me- DuPhos}2]	trans-[FeCl2(opdp)2]·THF ¹	trans-[FeCl2(0-C6H4P(H ⁱ Pr2)2] ^{[c],2}		trans-[FeCl2(dppen)2] ³
			А	В	
Fe-P(1)	2.6055(7)	2.612(4)	2.232(2)	2.234(2)	2.675(1)
Fe-P(2)	2.5836(7)	2.623(5)	2.237(2)	2.227(2)	2.532(1)
Fe-Cl	2.3763(6)	2.347(4)	2.333(2)	2.329(2)	2.347(1)
Angles (°) ^[a]					
P(1)-Fe-P(2)'	174.56(2)	180.00	180.00	180.00	180.00
P(2)-Fe-P(1)'	174.56(2)	180.00	180.00	180.00(8)	180.00
P(1)-Fe-P(2)	77.99(2)	74.38(13)	84.16(7)	84.22(7)	77.96(1)
P(1)'-Fe-P(2)'	77.99(2)	74.38(13)	84.16(7)	84.22(7)	77.96(1)
P(1)-Fe-P(1)'	97.44(3)	105.62(13)	95.84(7)	95.78(7)	102.04(1)
P(2)-Fe-P(2)'	106.73(3)	105.62(13)	95.84(7)	95.78(7)	102.04(1)

Table S3. Selected bond distances and angles for compound *trans*-[FeCl₂{(R,R)-Me-DuPhos}₂] and comparison with other structurally similar compounds.

[a] Standard deviations of the measurement are given in parenthesis. [b] The remaining phosphorous (P(1)' and P(2)') and chlorine (Cl') atoms are symmetry-related. For all the compounds, the Fe-P(1) bond is *trans* to the Fe-P(2)' bond, and the Fe-P(2) bond is *trans* to the Fe-P(1)' bond. [c] A and B refers to each independent molecule in the unit cell.

Figure S7. X-ray crystal structure of *trans*-[**FeCl**₂{(*R*,*R*)-**Me-DuPhos**}₂]. The hydrogen atoms are omitted for clarity.

Figure S8. X-ray crystal structure of Δ -[**FeI**{(*S*,*S*)-**Me-DuPhos**}₂]⁺. The hydrogen atoms are omitted for clarity.

Figure S9. X-ray crystal structure of Λ -[**FeI**{(*R*,*R*)-**Me-DuPhos**}₂]⁺. The hydrogen atoms are omitted for clarity.

Figure S10. X-ray crystal structure of [FeCl{(*R*,*R*)-Me-DuPhos}₂]⁺. The hydrogen atoms are omitted for clarity.

Distances (Å) ^[a]	Δ-[FeI{(<i>S</i> , <i>S</i>)-M	e-DuPhos}2] ^{+ [b]}	Λ-[FeI{(<i>R</i>,<i>R</i>)-M	Λ-[FeI{(<i>R</i>,<i>R</i>)-Me-DuPhos} ₂] ^{+ [b]}		dp)2] ^{+ [b],1}
	А	В	А	В	А	В
Fe-P(1)	2.3013(15)	2.2964(15)	2.2909(14)	2.2883(13)	2.378(7)	2.356(5)
Fe-P(2) ^[c]	2.2892(15)	2.2821(15)	2.2810(14)	2.2859(14)	2.378(7) ^[d]	2.356(5) ^[d]
Fe-P(3)	2.2692(14)	2.2694(14)	2.2673(14)	2.2619(14)	2.324(5)	2.315(5)
Fe-P(4)	2.2714(15)	2.2641(15)	2.2648(14)	2.2688(14)	2.324(5) ^[d]	2.315(5) ^[d]
Fe-X (X = I, Br)	2.5915(8)	2.5924(7)	2.5760(6)	2.5872(7)	2.646(5)	2.633(5)
Angles (°) ^[a]						
P(1)-Fe-P(2)	121.71(6)	122.06(6)	120.69(5)	120.76(5)	164.4(2)	167.7(2)
P(3)-Fe-P(4)	179.10(6)	178.85(6)	178.83(5)	178.42(6)	174.5(2)	173.7(2)
P(1)-Fe-P(3)	81.46(5)	81.01(5)	81.39(5)	81.11(5)	80.2(2)	80.6(2)
P(2)-Fe-P(4)	81.39(5)	81.21(5)	81.53(5)	81.61(5)	80.2(2) ^[d]	80.6(2) ^[d]
P(1)-Fe-P(4)	97.90(5)	97.94(5)	98.19(5)	99.05(5)	99.0(2)	98.7(2)
P(3)-Fe-P(2)	99.48(6)	99.74(6)	99.63(5)	99.68(5)	99.0(2) ^[d]	98.7(2) ^[d]
P(1)-Fe-I	121.62(5)	121.90(5)	121.34(4)	121.33(4)	97.8(1)	93.2(2)
P(2)-Fe-I	116.67(5)	116.04(5)	117.97(4)	117.91(4)	97.8(1) ^[d]	93.2(2) ^[d]
P(3)-Fe-I	89.89(4)	89.65(4)	89.19(4)	88.83(4)	92.8(2)	96.2(1)
P(4)-Fe-I	89.92(5)	90.51(4)	90.11(4)		92.8(2) ^[d]	96.2(1) ^[d]

Table S4. Selected bond distances and angles for compound Δ -[FeI{(*S*,*S*)-Me-DuPhos}2](ClO₄), Λ -[FeI{(*R*,*R*)-Me-DuPhos}2]I·H₂O, and [FeI(opdp)2]I·2CH₂Cl₂ compounds.

[a] Standard deviations of the measurement are given in parenthesis. [b] A and B refers to each independent molecule in the unit cell. [c] For all the compounds, P(2) lies in the plane defined by P(1)-Fe-I. [d] Distances and angles generated by symmetry operations of the space group.

Figure S11. Representations of the calculated structures of Λ (left) and Δ (right) isomers of [FeI{(*R*,*R*)-Me-DuPhos}₂]⁺, a) front view, b) lateral view. The hydrogen atoms are omitted for clarity.

Distances (Å) [a]		$(a, \mathbf{D}_{\mathbf{v}}\mathbf{D}_{\mathbf{b}}a_{\mathbf{c}})a_{\mathbf{c}}^{\dagger}$	Δ-[FeI{(<i>R</i> , <i>R</i>)-Me-
Distances (A)	Λ-[Γει{(Λ,Λ)-Ν	1e-Durnos}2j	DuPhos}2] ⁺
	Experimental	Calculated	Calculated
Fe-P(1)	2.2896[13]	2.282	2.339
Fe-P(2) ^[b]	2.2835[24]	2.282	2.318
Fe-P(3)	2.2646[27]	2.317	2.324
Fe-P(4)	2.2668[20]	2.317	2.326
Fe-I	2.5816[56]	2.586	2.617
Angles (deg)			
P(1)-Fe-P(2)	120.73[4]	98.48	94.13
P(3)-Fe-P(4)	178.63[21]	179.35	166.04
P(1)-Fe-P(3)	81.25[14]	82.71	82.33
P(2)-Fe-P(4)	81.57[4]	82.70	82.45
P(1)-Fe-P(4)	98.62[43]	96.87	106.90
P(3)-Fe-P(2)	99.66[3]	96.87	107.76
P(1)-Fe-I	121.34[1]	130.78	137.72
P(2)-Fe-I	117.94[3]	130.74	128.12
P(3)-Fe-I	89.01[18]	90.32	82.91
P(4)-Fe-I	89.93[18]	90.33	83.27
τ ^[b]	0.96	0.81	0.47
$G (\text{kcal/mol})^{[c]}$	-	-14.5	0.0

Table S5. Main bond distances and angles for Λ - and Δ -[FeI{(*R*,*R*)-Me-DuPhos}₂]⁺ isomers, τ parameter, and relative Gibbs free energy for computed geometries.

[a] Standard deviations for averaged values are given in brackets. [b] τ corresponds to the Adison parameter. ⁴ [d] Gibbs free energy relative to the Δ -isomer.

Figure S12. ³¹P{¹H} NMR spectrum registered after dissolution of crystals of Λ -[FeI{(*R*,*R*)-Me-DuPhos}2]I·H₂O in (CD₃)₂CO.

Figure S13. ³¹P{¹H} (top) and ³⁵Cl (bottom) NMR spectra registered after dissolution of crystals of [**FeCl**{(R,R)-Me-DuPhos}2](BF₄) in CD₂Cl₂ and CD₃CN, respectively.

III.Structural description

Details of the structure refinement and X-ray structure determination

Anisotropic displacement parameters were refined for all non-hydrogen atoms of the iron complex cations and of the *trans*-[FeCl₂{(*R*,*R*)-Me-DuPhos}₂] compound. The hydrogen atoms were included in calculated positions and refined riding on the respective carbon atoms with isotropic displacement parameters in all compounds. For Δ -[FeI{(S,S)-Me-**DuPhos**₂(ClO₄), disorder was observed on two of the four oxygen atoms of each perchlorate counterions. Each pair of oxygen atoms were modeled isotropically over two positions for each oxygen atom, and refined with a constraint to the total occupancy of one. For Λ -[FeI{(R,R)-Me-DuPhos}₂]I·H₂O, disorder was observed on the two iodide counterions. Each pair of iodine atoms were modeled isotropically over two positions for each iodine atom, and refined with a constraint to the total occupancy of one. Two peaks were located in the Fourier map and were assigned to two oxygen atoms, which were refined isotropically. These atoms were assigned to two water molecules, and the hydrogen atoms bonded to each oxygen atom were included at their idealized positions. In the case of $[FeCl{(R,R)-Me-DuPhos}_2](BF_4)$, disorder was observed on the four fluorine atoms of the counterion. Each pair of the fluorine atoms were modeled isotropically over two positions for each fluorine atom, and refined with a constraint to the total occupancy of one.

The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 1952455 (Δ -[FeI{(*S*,*S*)-Me-DuPhos}2](ClO₄)), 1952457 (Λ -[FeI{(*R*,*R*)-Me-DuPhos}2]I·H₂O), 1952456 ([FeCl{(*R*,*R*)-Me-DuPhos}2](BF₄)), and 1952454 (*trans*-[FeCl₂{(*R*,*R*)-Me-DuPhos}2]).

Compound	$\Delta - [FeI{(S,S)-Me-DuPhos}_2](ClO_4)$	Λ-[FeI{(<i>R</i> , <i>R</i>)-Me-DuPhos} ₂]I·H ₂ O
Empirical formula	C ₃₆ H ₅₆ ClFeIO ₄ P ₄	C ₃₆ H ₅₈ FeI ₂ OP ₄
Formula weight	894.88	940.35
Temperature	293(2) K	200.00(10) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	orthorhombic	monoclinic
Space group	P212121	P21
Unit cell dimensions	a = 11.23747(14) Å	11.3411(3) Å
	b = 20.9195(3) Å	20.8867(4) Å
	c = 33.7258(4) Å	17.3185(3) Å
	90°	90°
	90°	103.587(2)°
	90°	90°
Volume	7928.34(18) Å ³	3987.58(14) Å ³
Z	8	4
Density (calculated)	1.499 mg/m ³	1.566 mg/m^3
Absorption coefficient	1.424 mm ⁻¹	2.114 mm ⁻¹
F(000)	3680.0	1896.0
Crystal size	$0.2894 \times 0.187 \times 0.0625 \ mm^3$	$0.241\times0.162\times0.064\ mm^3$
Theta range for data collection	5.844 to 58.206°	5.7 to 48
Index ranges	$\begin{array}{l} \text{-15} \leq h \leq 15, \text{-27} \leq k \leq 27, \text{-40} \leq l \leq \\ 44 \end{array}$	$-12 \le h \le 12, -23 \le k \le 23, -19 \le l \le 19$
Reflections collected	93611	70382
Independent reflections	19581 [R(int) = 0.0441]	12484 [$R_{int} = 0.0362$]
Completeness to theta	(26.32°) 99.71%	(26.32°) 99.80%
Absorption correction	gaussian	gaussian
Data/restraints/parameters	19581 / 0 / 821	12484/1/823
Goodness-of-fit on F^2	1.068	1.024
Final R indexes [I>2sigma(I)]	$R_1 = 0.0397, wR_2 = 0.1012$	$R_1 = 0.0217, wR_2 = 0.0531$
Final R indexes (all data)	$R_1 = 0.0509, wR_2 = 0.1099$	$R_1 = 0.0235, wR_2 = 0.0541$
Largest diff. peak and hole	0.904 and -1.441 e·Å ⁻³	0.52 and -0.53 e· Å ⁻³
Flack parameter	-0.011(6)	-0.025(5)

and Λ -[FeI{(R,R)-Me-DuPhos}₂]I·H₂O

Table S7. Crystal data and structure refinement for [FeCl{(R,R)-Me-DuPhos}2](BF4)

and *trans*-[FeCl₂{(*R*,*R*)-Me-DuPhos}₂].

Compound	[FeCl{(<i>R</i> , <i>R</i>)-Me-DuPhos}2](BF4)	trans-[FeCl ₂ {(<i>R</i> , <i>R</i>)-Me-DuPhos} ₂]
Empirical formula	$C_{36}H_{56}BClF_4FeP_4$	$C_{36}H_{56}Cl_2FeP_4$
Formula weight	790.79	739.43
Temperature	293(2) K	180.00(10)
Wavelength	0.71073 Å	0.71073 Å
Crystal system	orthorhombic	tetragonal
Space group	P2 ₁ 2 ₁ 2 ₁	P41212
Unit cell dimensions	14.8107(3) Å	11.05922(16) Å
	16.8676(4) Å	11.05922(16) Å
	15.5365(3) Å	30.7432(7) Å
	90°	90°
	90°	90°
	90°	90°
Volume	3881.34(15) Å ³	3760.09(14) Å ³
Z	4	4
Density (calculated)	1.353 mg/m ³	1.306 mg/m ³
Absorption coefficient	0.667 mm ⁻¹	0.738 mm ⁻¹
F(000)	1664.0	1568.0
Crystal size	$0.3475 \times 0.2515 \times 0.1435 \ mm^3$	$0.2219 \times 0.1503 \times 0.0949 \ mm^3$
Theta range for data collection	5.558 to 47.996	5.846 to 55.216
Index ranges	$-16 \leq h \leq 16, -17 \leq k \leq 19, -17 \leq l \leq 17$	$-14 \le h \le 12, -8 \le k \le 14, -37 \le l \le 37$
Reflections collected	33898	14568
Independent reflections	$6074 [R_{int} = 0.0467]$	$3945 [R_{int} = 0.0326]$
Completeness to theta	(26.32°) 99.75%	(24.66°) 99.44%
Absorption correction	multi-scan	analytical
Data/restraints/parameters	6074/0/423	3945/0/199
Goodness-of-fit on F^2	1.059	1.083
Final R indexes [I>2sigma(I)]	$R_1=0.0425,wR_2=0.1097$	$R_1=0.0266,wR_2=0.0576$
Final R indexes (all data)	$R_1 = 0.0464, wR_2 = 0.1143$	$R_1 = 0.0323, wR_2 = 0.0604$
Largest diff. peak and hole	0.52 and -0.42 e· Å ⁻³	0.26 and -0.19 e·Å ⁻³
Flack parameter	0.000(8)	-0.001(9)

Optimized Gibbs free energies (in a.u.) and Cartesian atomic coordinates (in Å) of

the structures described in Table S5:

Λ -[FeI{(*R*,*R*)-Me-DuPhos}2]⁺

E =	-1571.888382 a.u.		
Fe	-0.000110556157	-0.555150077035	-0.000392671672
Ι	-0.000457575025	-3.141187423519	-0.000869630508
Р	0.582607410820	0.933607211269	1.627666059841
Р	-0.582358363405	0.935507880711	-1.626798840980
Р	2.279574611276	-0.542134767805	-0.415916358132
Р	-2.279835543981	-0.541955515765	0.414890140065
С	0.598621002636	2.235744316593	-2.353984864307
Н	1.568983595282	1.723471697330	-2.270525169164
С	2.881770119442	1.137928939603	0.072440541213
С	2.134408825058	1.784947862648	1.081483767453
С	-0.597913469732	2.233635238493	2.356028314828
Η	-1.568547686021	1.722023335441	2.271723691370
С	-3.162799381868	-0.924519401638	2.055455310633
Η	-3.370440472097	0.032769018151	2.550200597512
С	0.734016914175	3.592570705422	-1.665710890805
Η	-0.201770020088	4.156962342104	-1.666191468808
Η	1.478537580793	4.192010723665	-2.202486996457
Η	1.073243761388	3.497985010577	-0.633051651852
С	-3.787878530348	3.567750513131	-1.146585795710
Η	-4.143724952196	4.498941652326	-1.573288499175
С	-2.881693644421	1.138714198550	-0.071784605602
С	4.056772875659	1.735141004792	-0.405759089488
Η	4.641478429482	1.249380533647	-1.179192755588
С	3.384287016256	-1.726269275068	0.604209801701
Η	2.690736651021	-2.356561615836	1.169575786214
С	3.789100181436	3.565199155878	1.150263600733
Η	4.145435148970	4.495641615248	1.578189125784
С	3.162280829385	-0.923189981710	-2.056975039067
Η	3.369780466513	0.034539633424	-2.550918525581
С	-2.133847309501	1.786827107670	-1.079761064884
С	-1.103962936205	0.301712506360	-3.364509106809
Η	-2.066802312447	0.809527876709	-3.519118816312
С	-0.732344247099	3.591370684798	1.669330906691
Η	0.203902970308	4.154992458505	1.670362780214
Η	-1.476296050304	4.190775108576	2.206936808481
Η	-1.071823946367	3.498330041055	0.636609541036
С	-4.466118486435	-1.632767499569	1.626896973562
Η	-4.893322913292	-2.182829837532	2.473256325878
Η	-5.220542280784	-0.904339515381	1.305009103034
С	-2.617763746209	2.983357175643	-1.633015804523
Η	-2.086280744283	3.466172029165	-2.444184443163
С	2.344572726362	-1.807087726152	-3.000365857690
Η	2.082932804642	-2.765082812558	-2.541976166230
Η	2.925772428023	-2.011781857193	-3.906824192932

Η	1.414873890820	-1.324645960112	-3.300541558465
С	0.251263564576	2.329489550976	-3.851603123485
Η	-0.602757503742	3.003821771479	-4.001405236908
Η	1.092083865115	2.763048957980	-4.406026597269
С	-4.056717268680	1.735594774578	0.406775470588
Η	-4.641868094632	1.248916608808	1.179295581356
С	-2.345165505321	-1.809159136794	2.998203367439
Н	-2.083965374019	-2.767018447700	2.539275137313
Н	-2.926185304111	-2.014071983526	3.904723369039
Н	-1.415198704357	-1.327188302351	3.298300792096
С	1.103942291743	0.298001974048	3.364753969454
Н	2.066836405995	0.805541297724	3.519963405002
С	-1.309906639750	-1.199842591825	-3.559920403191
Н	-0.486142911254	-1.797299578727	-3.164370609369
Н	-1.401117852339	-1.417414606936	-4.630740020709
Н	-2.223971192382	-1.551499817173	-3.080473198522
С	4.373696671654	-1.039417472860	1.552005817522
Н	5.136210496907	-0.474482227646	1.006733628369
Н	4.887756009893	-1.803127632349	2.147000819661
Н	3.892626804404	-0.343228585203	2.244577522159
С	2.618936415387	2.980539173977	1.636253966143
Н	2.087902705019	3.462435211504	2.448271009957
С	-0.250846996366	2.325547822383	3.853845063503
Н	0.603315854059	2.999493418565	4.004558091039
Η	-1.091667135611	2.758712966291	4.408575520142
С	-3.384469213119	-1.725031620585	-0.606545210142
Η	-2.690866680465	-2.354728799697	-1.172508196103
С	-4.497642060521	2.953324418933	-0.112909922821
Η	-5.402757663632	3.409684050656	0.272328620020
С	-0.093064724828	0.926761685786	-4.345615233753
Η	0.815747921886	0.313965412030	-4.397770889757
Η	-0.519538487440	0.941724031982	-5.355362271436
С	4.465718625709	-1.631720194686	-1.629246668582
Η	4.892885970791	-2.180912097938	-2.476189640179
Η	5.220101734719	-0.903525111881	-1.306738723314
С	0.093051376165	0.922203004540	4.346393088074
Η	-0.815912030229	0.309583660612	4.397755366406
Η	0.519371518811	0.935984818615	5.356221392677
С	4.116721224185	-2.564186259382	-0.464354527527
Η	5.012523142266	-3.027955039072	-0.035729171804
Η	3.467999846642	-3.375899275086	-0.813473008376
С	4.498262787116	2.952016929371	0.115439544804
Η	5.403360014603	3.408645690796	-0.269523517767
С	1.309714514767	-1.203756055696	3.558729049380
Η	0.485329293138	-1.800653620151	3.163611245335
Η	1.402051758001	-1.422173140535	4.629303633409
Η	2.223135447608	-1.555297130007	3.077965035521
С	-4.373891843123	-1.037234945811	-1.553637024544
Η	-5.136506187483	-0.473021173981	-1.007757081058
Η	-4.887835290759	-1.800334425340	-2.149517538948
Н	-3.892881216062	-0.340205651979	-2.245401122933
C	-4.116901331536	-2.564068945495	0.461143838289
H	-5.012604602802	-3.027534109158	0.031984036664
Н	-3.468120517605	-3.376044562673	0.809542244791

$\Delta\text{-}[\text{FeI}\{(\textit{R},\textit{R})\text{-}\text{Me-DuPhos}\}_2]^+$

E =	-1571.865250 a.u.		
Fe	-0.000834087463	0.441861377527	-0.060034214604
Ι	0.059751083007	3.056597303544	-0.144164830230
Р	-0.837329622898	-1.312578295935	-1.361318473443
Р	0.815590846732	-0.955621702328	1.599484739434
Р	-2.259162640340	0.794717237672	0.358173409603
P	2.258655397163	0.645980307033	-0.572677849545
C	-2.493256795232	-1 775693669169	-0 629385291322
Ċ	3 963456197866	2,776200744764	-1 037067179635
н	3 233200000959	3 580197492242	-1 194735243264
н	4 926572417972	3 252022375772	-0.816954366119
C	3 517859237521	1 915425417402	0.160227316218
C	1 304619996191	-0.077537066737	3 233330437329
C	4 036061291412	1 890363836312	-2 276829375371
н	4.896065697090	1.000303050512	-2.27002/375371
н	4.070005077070	2 / 80907901162	-3 191063717760
C	2 723724461647	1 0801128/8567	-2 355309/11/251
C	1 273178035204	0.81/251861260	2.353577411251
C	3 001363816302	3 010006525884	0.248240471260
с ц	3 1570827/312/	3 826263610013	0.240249471209
н Ц	4 83/856513652	3.4532000015823	0.282890954110
п С	2 702021765204	1 631830001773	1 072620017272
C	-2.793021703304	0.81004/850372	0.166672711105
C	3 /0100076/031	1 073/11/652820	0.713073641027
C	3 088002653285	0.0156/7770701	0.057502112757
C	0.005535635402	-0.915047770701	-0.037302113737 2.402727101008
C	3 0/0187/73705	2.480270739389	2.492727101098
с ц	2 571021888728	3 366062578031	2 264205363020
C	-0.613766689373	-1 900129845850	_/ 0/227322200020
н	-1 1065/13395865	-1.9/0932056339	-5 020/86830383
н	0 440518510678	-1.540532050555	-4 230592050714
C	2 434852099324	-1.635183653807	0.965442126319
C	-0 169576152849	-3 033429537256	-1 872256987191
C	-1/11/30163665/	-1.086/21366/52	0.6989560/1793
н	-4 932691479087	-0.338439060686	1 287372332229
C	4 325272100150	1 36508/306187	0.545402158783
с ц	4.323272177150	0.801/07737007	1 311/7102688/
C	4 9002/7927052	-0.001477757772	-0.053088326130
н	5 848178721423	-2.330110403324	-0.055088520150
C	4 255592478259	-2.003370737320	0.957147798769
н	4 700802124463	-4 158609959758	1 351815354917
C	0 575909254334	-4.130007757750	4 332255601751
н	1 050237966487	-0.000052002257	5 304710965104
Н	-0.467200705061	-0.560704232151	4 428435872415
C	0.407200703001	-2 359036103024	3 937464689192
н	0.035939091218	-2 980990629769	4 616081019954
Н	1 665422845624	-2 714316201362	4 008050747525
C	-4 377145282494	-3 283800143028	-0.295203294308
н	-4 844943598568	-4 245867561432	-0 472780190431
C	-3.129286303132	-3.008201825661	-0.855257130114
й	-2.661328798761	-3.771280272740	-1.464224768358
C	-0.728890109690	-3.233426673764	-3.298687215466
Ĥ	-0.178215491332	-4.030408481208	-3.811520384957

Η	-1.780136640172	-3.541400972678	-3.271463553515
С	-5.023798557987	-2.321403598645	0.481439076644
Η	-5.997813459217	-2.529308755150	0.910228374593
С	-4.073648814918	2.420584419144	1.640824539154
Н	-4.950983081623	1.760848069938	1.671943357679
Н	-4.238460986903	3.197066746123	2.397358642517
С	-2.899964474260	0.776222798593	3.229639877432
Н	-1.930084739554	0.363584642971	3.517888708486
Н	-3.249446063809	1.396985566365	4.063509963228
Н	-3.605824341521	-0.052141862455	3.116232301480
Н	-1.983310315220	2.363082727268	2.111667527268
С	-2.906050715279	2.508780038050	-2.036341957713
Н	-2.256834566801	3.369014814859	-1.866769590825
Н	-2.350488199779	1.796288044408	-2.648683469607
Η	-3.769483382412	2.847355632966	-2.621768080411
Η	-4.238153506058	1.240928168279	-0.922834437026
Η	-0.607911493377	-3.752060578292	-1.169825203358
С	1.349362084408	-3.212963794619	-1.849290311431
Η	1.870716531737	-2.456107574361	-2.439797693507
Η	1.752644666298	-3.182139288029	-0.837775921764
Н	1.595216550520	-4.192394977252	-2.276817905686
С	-2.777072183700	-0.733310430937	-3.457727419940
Н	-2.928191010269	-0.293184423716	-4.449891028208
Н	-3.235613689143	-1.727135436580	-3.460145029456
Н	-3.326509029324	-0.127508894446	-2.735362627961
Н	-0.810440956573	0.166584491458	-3.329572420354
Н	1.920680714453	1.795222828463	-2.615771285151
С	2.743404278812	-0.031858416936	-3.387025255750
Н	3.480684634449	-0.804236171403	-3.149188479752
Н	1.766274951388	-0.510132880364	-3.478286160004
Н	3.000160772512	0.378600730961	-4.370530278528
С	3.180097906433	2.763748420681	1.388884368136
Η	2.650493355408	3.675020528252	1.105469530147
Η	2.559516602097	2.243858502051	2.120757660543
Η	4.111660270263	3.056825625343	1.888592965875
Н	4.347628490561	1.243023226234	0.420864180094
С	2.813225806326	-0.044774359381	3.511848951789
Н	3.005286483016	0.589372582805	4.384723019546
Н	3.197578807131	-1.045145887373	3.733502352871
Н	3.398728358313	0.346552839647	2.678146969473
Н	0.915914211601	0.944912385683	3.160696570601
Н	0.518009388758	-3.363874840234	1.989705683288
С	-1.427517982608	-2.622415915238	2.484478654060
Н	-1.928837597611	-1.725893784506	2.854823744375
Н	-1.816640072708	-2.834529952771	1.489531655422
Η	-1.713092236633	-3.455164093506	3.138019217861

V.References

- 1. J. E. Barclay, A. Hills, D. L. Hughes and G. J. Leigh, J. Chem. Soc., Dalton Trans., 1988, 2871-2877.
- 2. C. Redshaw, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, *Polyhedron*, 1993, **12**, 363-370.
- F. Cecconi, M. Di Vaira, S. Midollini, A. Orlandini and L. Sacconi, *Inorg. Chem.*, 1981, 20, 3423-3430.
- 4. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, *J. Chem. Soc., Dalton Trans.*, 1984, 1349-1356.