Synthesis, characterization, catalytic and biological application of half-sandwich ruthenium complexes bearing hemilabile (κ^2 -C,S)-thioether-functionalised NHC ligands.

Weiguang Chen,^a Julien Egly,^a Amalia Poblador-Bahamonde,^{*b} Aline Maisse-Francois,^a Stéphane Bellemin-Laponnaz,^{*a} Thierry Achard,^{*a}

^a Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR7504, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France.

b Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.

E-mail: thierry.achard@ipcms.unistra.fr; bellemin@unistra.fr

Supporting Information

Table of Contents

1.	General remarks	S3
2.	Synthesis of imidazolium slats	S3
3.	Synthesis of [(NHC)Ru(p-cym)Cl][PF ₆] complexes	S12
4.	Variable temperature ¹ H-NMR experiments	S21
5.	General procedure for amine dehydrogenation catalysed by [Ru(NHC)Cl][PF ₆]	S26
6.	Datas of nitriles compounds	S26
7.	Optimisation conditions	S30
8.	Representative 1H NMR of crude reaction mixtures	S32
9.	Representative GC chromatogram of benzylamine dehydrogenation	S33

10. Evaluation of the lability of the thioether and the robustness of the complex 1c	S34
11. Gas Phase calculations with Solvent	S36
12. ¹ H and ¹³ C spectra of all compounds	S53
13. Inhibition of cell proliferation	S94
14. X-ray data and tables	S95
15. References	S133

1 GENERAL REMARKS

All manipulations were carried out under an inert atmosphere of argon using standard Schlenk techniques unless stated otherwise. Reagents were purchased from commercial chemical suppliers (mainly Acros, Aldrich, Alfa Aesar, TCI Europe and Strem) and used without further purification. Solvents were dried and degassed according to standard procedures.1-2-Dichlorobenzene (ODCB) solvent was either distilled under argon in presence of CaCl₂ and store under activated 4 Å molecular sieves or purchase dry from Aldrich. Benzylamine was distilled from CaH₂ under a nitrogen atmosphere, and then stored over 3Å molecular sieves for 2 days. 3-aminobenzylamine was sublimed under vacuum at room temperature for 12 h. ¹H, ¹³C ¹ and ¹⁹F nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300 spectrometer and a Bruker Avance III HD - 500 MHz, VT NMR experiments were conducted with a Bruker Avance III - 600 MHz. ¹³C assignments were confirmed when necessary with the use of DEPT 135 experiments. ¹H and ¹³C-NMR spectra were referenced using the residual solvent peak (CDCl₃: δ H = 7.26 ppm; δ C = 77.16 ppm) at 295K. Chemical shifts δ are given in ppm whereas coupling constants J are stated in Hertz (Hz). The following abbreviations are used to classify the multiplicity of the observed signals: s = singlet, d = doublet, t = triplet, q =quartet, quint = quintuplet, dd = doublet from doublet, dt = doublet from triplet, m = complex multiplet or broad signal. Positive mode electrospray ionization mass spectra (ESI-MS) were recorded on microTOF, Bruker Daltonics. All manipulations were conducted under an argon atmosphere unless otherwise stated. GC-MS analyses were performed using a GC-MS Agilent 7890A-5975C with EI detector; the GC contains Agilent HP-5ms (dimethylsiloxane, 5%phenyl), #19091S-433, 30x0.25x0.32 I.D column. GC measurements were conducted using the following method: 45 °C hold for the first 2.25 min, ramp to 300 °C at 40 °C/min and hold for 8 min.

2 SYNTHESIS OF IMIDAZOLIUM SALTS

1-benzyl-3-(2-bromoethyl)-1H-imidazol-3-ium bromide (Precursor):

Precursor was synthesized according to the procedure reported in literature and all data correspond to previously reported material.² A mixture of 1-

benzylimidazole (3 g, 0.037 mmol) and 1,2-dibromobutane (40 mL, excess) was heated overnight at 85 °C. After this time a white solid is formed in the solution. Then the excess of 1,2-dibromobutane was distilled of under reduced pressure, and the solid residue was taken in 40 mL of CH_2Cl_2 . The resulting suspension was filtered over Celite and the solvent was removed *under vaccuo* to give off-white solid.Yield: 98%. ¹H NMR (300MHz, DMSO) : δ 9.4 (s, 1H, CH_{imid}), 7.87 (m, 2H, CH_{imid}), 7.4 (m, 5H, CH_{benz}), 5.48 (s, 2H, CH₂), 4.64 (t, *J*=6 Hz, 2H, NCH₂), 3.96 (t, *J*=6 Hz, 2H, CH₂Br) ppm.

S-functionalized imidazolium (a-l)

Figure S1. Imidazolium synthesis

Procedure A:

1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (1 equiv) was dissolved in dry acetonitrile. Then a slight excess of the appropriate thiolate salts (1.5 equiv) was added, and the resulting mixture was stirred for 15-48 hours at ambient temperature under argon. After this time, the solvent is removed *under vaccuo*. The solid residue was suspended in CH_2Cl_2 (15 mL) and filtered over celite. Finally the resulting solution is concentrated to 1-2 mL and pass through a silica plug. First elution is conducted with DCM (to eradicate the remaining trace of unreacted thiol) and the resulting filtrate is removed, then the second elution use a mixture of DCM/MeOH (90/10), then the resulting filtrate is concentrate under reduce pressure to afford the resulting compound in orange sticky oil.

Procedure B:

Appropriate thiol (1.50 equiv) was dissolved in dry acetonitrile. Sodium hydroxide (1.50 equiv) in water was added, and the resulting mixture was stirred for 30 min at ambient temperature. Then, the bromine precursor (1 equiv) was added, and the resulting mixture was stirred at room temperature for 15-48 h. After this time, the solvent was removed under reduced pressure. The solid residue was suspended in dichloromethane and filtered over celite. Finally the resulting solution is concentrated to 1-2 mL and pass through a silica plug. First elution is conducted with DCM (to eradicate the remaining trace of unreacted thiol) and the resulting filtrate is removed, then the second elution use a mixture of DCM/MeOH (90/10), then the resulting filtrate is concentrate under reduce pressure to afford the resulting compound in orange sticky oil.

1-benzyl-3-(2-(ethylthio)ethyl)-1*H*-imidazol-3-ium bromide (a)

This imidazolium was synthesized according to the procedure reported in literature and all data correspond to previously reported material.³

Procedure A 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (2 g, 5.8 mmol, 1 equiv) was dissolved into a solution of sodium ethanethiolate (0.5 g, 5.8 mmol, 1 equiv) and dry acetonitrile (70 mL). Yield: 99%. ¹H NMR (300MHz, DMSO) : δ 9.34 (s, 1H, CH_{imid}), 7.84 (s, 1H, CH_{imid}), 7.83 (s, 1H, CH_{imid}), 7.42 (m, 5H, CH_{benz}), 5.46 (s, 2H, CH₂), 4.37 (t, *J* = 6 Hz, 2H, NCH₂), 2.98 (t, *J* = 6 Hz, 2H, CH₂S), 2.5 (t, *J* = 7 Hz, 2H, CH₂), 1.14 (t, *J* = 7 Hz, 3H, CH₃) ppm.

1-benzyl-3-(2-(cyclohexylthio)ethyl)-1*H*-imidazol-3-ium bromide (b)

This imidazolium was synthesized according to the procedure reported in

literature and all data correspond to previously reported material.³

Procedure B cyclohexanethiol (0.1 g, 0.86 mmol, 1.5 equiv), dry acetonitrile (7 mL), sodium hydroxide (37 mg, 0.9 mmol, 1.5 equiv) and 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (0.2g, 0.58 mmol, 1 equiv). Yield: 99%. ¹H NMR (300MHz, DMSO) : δ 9.34 (s, 1H, CH_{imid}), 7.84 (s, 1H, CH_{imid}), 7.83 (s, 1H, CH_{imid}), 5.45 (s, 2H, PhCH₂), 4.35 (t, *J* = 7 Hz, 2H, NCH₂), 2.99 (t, *J* = 7 Hz, 2H, CH₂S), 2.64 (m, 1H, SCH), 1.86-1.1 (m, 10H, CH₂) ppm.

1-benzyl-3-(2-(tert-butylthio)ethyl)-1H-imidazol-3-ium bromide (c)

This imidazolium was synthesized according to the procedure reported in literature and all data correspond to previously reported material.³

1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (2 g, 5.8 mmol, 1 equiv) was dissolved into a solution of sodium 2-methylpropane-2-thiolate (0.972 g, 8.66 mmol, 1.5 equiv) and dry acetonitrile (60 mL). Yield: 98%. ¹H NMR (300MHz, CDCl₃) : δ 10.79 (s, 1H, CH_{imid}), 7.45-7.39 (m, 6H, CH_{imid}, CH_{benz}), 7.2 (s, 1H, CH_{imid}), 5.56 (s, 2H, CH₂), 4.57 (t, *J* = 6 Hz, 2H, NCH₂), 3.09 (t, *J* = 6 Hz, 2H, CH₂S), 1.28 (s, 9H, CH₃) ppm.

3-(2-(((1*R***,3***s***)-adamantan-1-yl)thio)ethyl)-1-benzyl-1***H***-imidazol-3-ium bromide (d)**

This imidazolium was synthesized according to the procedure reported in literature and all data correspond to previously reported material.³

(3s,5s,7s)-Adamantane-1-thiol (0.73 g, 4.34 mmol, 1.5 equiv) was dissolved into

a solution of sodium hydroxide (0.17g, 4.34 mmol, 1.5 equiv) and dry acetnonitrile (30 mL) was added, and the resulting mixture was stirred for 30 minutes at ambient temperature under argon. Then 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (1 g, 2.9 mmol, 1 equiv) was added, and stirring was continued for 48 hours at ambient temperature under argon. After this time, the volatiles were removed under reduced pressure. The solid residue was suspended in CH₂Cl₂ (15 ml) and filtered. The solvent was removed under reduced pressure. Yield: 99%. ¹H NMR (300MHz, CDCl₃) : δ 10.75 (s, 1H, CH_{imid}), 7.45-7.39 (m, 6H, CH_{benz}, CH_{imid}), 7.11 (s, 1H, CH_{imid}), 5.56 (s, 2H, PhCH₂), 4.56 (t, *J* = 6 Hz, 2H, NCH₂), 3.07 (t, *J* = 6 Hz, 2H, CH₂S), 2-1.6 (m, 15H, H_{Ad}) ppm.

1-benzyl-3-(2-(octylthio)ethyl)-1*H*-imidazol-3-ium bromide (e)

Procedure B: octane-1-thiol (0.32 g, 2.2 mmol, 1.4 equiv), sodium hydroxide (87 mg, 2.2 mmol, 1.4 equiv), dry acetonitrile (7 mL) and 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (0.5 g, 1.4 mmol, 1 equiv). Yield: 99%. ¹H NMR (300MHz, CDCl₃) : δ 10.74 (s, 1H, CH_{imid}), 7.47-7.38 (m, 6H, CH_{imid}, CH_{benz}), 7.16 (m, 1H, CH_{imid}), 5.54 (s, 2H, PhCH₂), 4.60 (t, *J* = 6 Hz, 2H, NCH₂), 3.04 (t, *J* = 6 Hz, 2H, CH₂S), 2.55 (t, *J* = 7 Hz, 2*H*, SCH₂), 1.53 (m, 2H, CH₂), 1.35-1.17 (m, 10H, CH₂), 0.87 (t, *J* = 7 Hz, 3H, CH₃) ppm. ¹³C NMR (75MHz, CDCl₃) : δ 137.6 (CH_{imid}), 133 (C_{benz}), 129.6 (CH_{benz}), 129.57 (2xCH_{benz}), 129 (2xCH_{benz}), 122.9 (CH_{imid}), 121.5 (CH_{imid}), 53.6 (PhCH₂), 49.6 (NCH₂), 32.5 (CH₂S), 32.4 (SCH₂), 31.9 (CH₂), 29.6 (CH₂), 29.3 (2xCH₂), 28.8 (CH₂), 22.7 (CH₂), 14.2 (CH₃). FTIR: v max(pure, diamond orbit)/cm⁻¹: 2918s, 2850m, 1554s, 1464s, 1365w, 1175m, 1143vs, 1085w, 745s, 716vs, 640vs, 475m. MS (ESI): m/z, calcd for [C₂₀H₃₁N₂S]⁺ calculated 331.22, found 331.22.

1-benzyl-3-(2-(phenylthio)ethyl)-1H-imidazol-3-ium chloride (f)

This imidazolium was synthesized according to the procedure reported in literature and all data correspond to previously reported material.⁴ Benzylimidazole (1.43 g, 9.06 mmol, 1 equiv) and 2-chloroethyl phenyl sulfide (1.34 ml, 9.06 mmol, 1 equiv). Yield: 99% ¹H NMR (300MHz, DMSO) : δ 9.32 (m, 1H, CH_{imid}), 7.81 (m, 1H, CH_{imid}), 7.77 (m, 1H, H_{imid}), 7.43-7.23 (m, 10H, CH_{benz}), 5.4 (s, 2H, CH₂), 4,39 (t, *J* =7 Hz, 2H, NCH₂), 3.5 (t, *J* =7 Hz, 2H, SCH₂) ppm.

1-benzyl-3-(2-(*p*-tolylthio)ethyl)-1*H*-imidazol-3-ium bromide (g)

Procedure B: 4-methylbenzenethiol (0.27 g, 2.2 mmol, 1.4 equiv), sodium hydroxide (87 mg, 2.2 mmol, 1.4 equiv), dried acetonitrile (7 mL) and 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (0.5 g, 1.4 mmol, 1 equiv). Yield: 86%. ¹H NMR (300MHz, CDCl₃) : δ 10.92 (s, 1H, CH_{imid}), 7.43 (m, 5H, CH_{benz}), 7.25 (m, 2H, CH_{aro}), 7.22 (m, 1H, CH_{imid}), 7.11 (m, 2H, CH_{aro}), 6.99 (m, 2H, CH_{imid}), 5.49 (s, 2H, PhCH₂), 4.53 (t, *J* = 6 Hz, 2H, NCH₂), 3.47 (t, *J* = 6 Hz, 2H, CH₂S) ppm. ¹³C NMR (75MHz, CDCl₃) : δ 137.8 (CH_{imid}), 137.4 (C_{benz}), 132.9 (C_{Ar}), 131.2 (2xCH_{benz}), 130.4 (2xCH_{benz}), 129.7 (C_{Ar}), 129.6 (2xCH_{Ar}), 129.5 (CH_{benz}), 129.2 (2xCH_{Ar}), 123 (CH_{imid}), 121.5 (CH_{imid}), 53.6 (PhCH₂), 49.3 (NCH₂), 35.1 (SCH₂), 21.2 (PhCH₃) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 2950m, 1552m, 1493m, 1452m, 1404m, 1173m, 1148s, 842w, 815s, 747s, 718vs, 635s, 502s, 475m. MS (ESI): m/z, calcd for [C₁₉H₂₁N₂S]⁺ calculated 309.14.

1-benzyl-3-(2-((4-bromophenyl)thio)ethyl)-1*H*-imidazol-3-ium bromide (h)

Procedure B: 4-bromobenzenethiol (0.41 g, 2.2 mmol, 1.6 equiv), sodium hydroxide (87 mg, 2.2 mmol, 1.6 equiv), dried acetonitrile (7 mL) and 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (0.5 g, 1.4 mmol, 1 equiv). Yield:70%. ¹H NMR (300 MHz, CDCl₃) δ 10.75 (s, 1H, CH_{imid}), 7.47-7.38 (m, 5H), 7.33 (d, J = 8.8 Hz, 2H), 7.29 (t, J = 1.7 Hz, 1H, CH_{imid}), 7.08 (t, J = 1.7 Hz, 1H, CH_{imid}), 6.84 (d, J = 8.8 Hz, 2H), 5.53 (s, 2H, PhCH₂), 4.49 (t, J = 6.2Hz, 2H, NCH₂), 3.79 (s, 3H, OMe), 3.38 (m, 2H, t, J = 5.9 Hz, SCH₂) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 159.82 (*C*-OMe), 137.54 (CH_{imid}), 134.09 (2xCH_{Ar}), 132.82(C_{Benz}), 129.73 (CH_{benz}), 129.63 (2xCH_{benz}), 129.19 (2xCH_{benz}), 123.31 (C-S), 122.84 (CH_{imid}), 121.46 (CH_{imid}), 115.30 (2xCH_{Ar}), 55.57 (OMe)., 53.58 (PhCH₂), 49.32 (NCH₂), 36.23(CH₂-S) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 1589m, 1552m, 1493s, 1246s, 1176s, 1147s, 1029s, 824s, 720s, 638s, 529m, 474m. MS (ESI): m/z, [M]⁺ 325.14 (81), 139.0 (100).

1-benzyl-3-(2-((4-bromophenyl)thio)ethyl)-1*H*-imidazol-3-ium bromide (i)

Procedure B: 4-bromobenzenethiol (0.41 g, 2.2 mmol, 1.6 equiv), sodium hydroxide (87 mg, 2.2 mmol, 1.6 equiv), dried acetonitrile (7 mL) and 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (0.5 g, 1.4 mmol, 1 equiv). Yield:70%. ¹H NMR (300MHz, CDCl₃) : δ 10.97 (s, 1H, CH_{imid}), 7.42 (m, 5H, CH_{benz}), 7.39 (m, 2H, CH_{aro}), 7.25 (m, 2H, CH_{Ar}), 7.22 (m, 1H, CH_{imid}), 6.98 (m, 2H, CH_{imid}), 5.49 (s, 2H, PhCH₂), 4.62 (t, *J* = 6 Hz, 2H, NCH₂), 3.57 (t, *J* = 6 Hz, 2H, CH₂S) ppm. ¹³C NMR (75MHz, CDCl₃) : δ 138.1 (CH_{imid}), 132.8 (S-C_{Ar}), 132.6 (2 x CH_{Ar}), 131.9 (2 x CH_{Ar}), 129.8 (CH_{benz}), 129.7 (2 x CH_{benz}), 129.2 (2 x CH_{benz}), 123 (CH_{imid}), 121.4 (Br-C_{Ar}), 121.2 (CH_{imid}), 53.7 (PhCH₂),

49.6 (NCH₂), 34.5 (SCH₂) ppm. FTIR: $v \max(\text{pure, diamond orbit})/\text{cm}^{-1}$: 3000br, 1552s, 1457s, 1148s, 1088m, 818vs, 750s, 718vs, 635vs, 506s, 485m. MS (ESI): m/z, calcd for [C₁₈H₁₈N₂SBr]⁺ calculated 373.04, found 373.04.

1-benzyl-3-(2-((4-nitrophenyl)thio)ethyl)-1*H*-imidazol-3-ium bromide (j)

Procedure B: 4-nitrobenzenethiol (0.33g, 2 mmol, 1.4 equiv), sodium hydroxide (85 mg, 2 mmol, 1.4 equiv), dried acetonitrile (7 mL) and 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (0.5 g, 1.4 mmol, 1 equiv). Yield: 76%. ¹H NMR (300HMz, CDCl₃) : δ 10.99 (s, 1H, CH_{imid}), 8.11 (m, 2H, CH_{aro}), 7.47 (m, 2H, CH_{Ar}), 7.4 (m, 5H, CH_{benz}), 7.32 (m, 1H, CH_{imid}), 7 (m, 2H, CH_{imid}), 5.44 (s, 2H, PhCH₂), 4.71 (t, *J* = 6 Hz, 2H, NCH₂), 3.78 (t, *J* = 6 Hz, 2H, CH₂S) ppm. ¹³C NMR (75MHz, CDCl₃) : δ 153.05 (CH_{imid}) 145.88 (NO₂-CH_{Ar}), 145.53 (S-C_{Ar}), 136.74 (C_{Ar}), 131.5 (C_{benz}), 128.94 (2 x CH_{benz}), 128.05 (CH_{benz}), 128.00 (2 x CH_{benz}), 126.7 (2 x CH_{Ar}), 124.2 (2 x CH_{Ar}), 110.99 (CH_{imid}), 110.45 (CH_{imid}), 47.3 (PhCH₂), 43.5 (NCH₂), 31.0 (SCH₂).ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 2980br, 1596m, 1554m, 1515vs, 1450m, 1340vs, 1170m, 1105m, 852s, 837s, 718vs, 635vs, 523m. MS (ESI): m/z, calcd for [C₁₈H₁₈N₃O₂S]⁺ calculated 340.11, found 340.11.

1-benzyl-3-(2-((4-(trifluoromethyl)phenyl)thio)ethyl)-1H-imidazol-3-ium bromide (k)

Procedure B: 4-(trifluoromethyl)benzenethiol (0.154 g, 0.86 mmol, 1.5 equiv), sodium hydroxide (35 mg, 086 mmol, 1.5 equiv), dried acetonitrile (8 mL) and 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (0.2 g, 0.577 mmol, 1 equiv). Yield: 97%. ¹H NMR (300 MHz, CDCl₃) δ 11.06 (s, 1H, CH_{imid}), 7.53 (d, *J* = 8.4 Hz, 2H), 7.49-7.36 (m, 7H), 7.20 (t, *J* = 1.7 Hz, 1H, CH_{imid}), 6.93 (t, *J* = 1.7 Hz, 1H, CH_{imid}), 5.43 (s, 2H, PhCH₂), 4.66 (t, *J* =6.1 Hz, 2H, NCH₂), 3.70

(m, 2H, t, J = 6. Hz, SCH₂) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 139.05 (*C*-S), 137.72 (CH_{imid}), 132.54 (C_{benz}), 129.85(CH_{benz}), 129.69 (2xCH_{Ar}), 129.13 (2xCH_{benz}), 128.85 (2xCH_{benz}), 128.80 (q, ²*J*_{CF} = 32.7 Hz, C_{Ar}), 126.27 (q, ³*J*_{CF} = 3.7 Hz, 2xCH_{Ar}), 123.98 (d, ¹*J*_{CF} = 272.0 Hz, CF₃), 123.16 (CH_{imid}), 121.23 (CH_{imid}), 53.74 (PhCH₂), 49.50 (NCH₂), 33.23 (SCH₂) ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.57 ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 1604m, 1557m, 1497w, 1401w, 1326s, 11154s, 1120s, 1107s, 1091s, 1060s, 1011m, 833m, 711s, 646ms, 591w, 472wm. MS (ESI): m/z, [M]⁺ 363.11 (100), 205.03 (18).

1-benzyl-3-(2-((3,5-bis(trifluoromethyl)phenyl)thio)ethyl)-1H-imidazol-3ium bromide (l)

Procedure B: 3,5-bis(trifluoromethyl) benzene thiol (0.213 g, 0.86 mmol, 1.5 equiv), sodium hydroxide (35 mg, 086 mmol, 1.5 equiv), dried acetonitrile (8 mL) and 1-benzyl-3-(2-bromoethyl)-1*H*-imidazol-3-ium bromide (0.2 g, 0.577 mmol, 1 equiv)Yield:77%. ¹H NMR (300 MHz, CDCl₃) δ 10.86 (s, 1H), 7.71 (s, 3H), 7.41 (s, J = 13.7 Hz, 5H), 7.37 (s, 1H), 7.09 (s, 1H), 5.48 (s, 2H), 4.75 (t, J = 6.2 Hz, 2H, NCH₂), 3.75 (t, J = 6.1 Hz, 2H, SCH₂) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 138.06 (*C*-S), 138.03 (CH_{imid}), 132.75 (q, ²*J*_{CF} = 33.6 Hz, C_{Ar}), 132.39 (C_{benz}), 129.92 (s), 129.73 (CH_{benz}), 129.12 (2xCH_{benz}), 128.91 (2xCH_{benz}), 128.78 (m, 2xCH_{Ar}), 122.97 (CH_{imid}), 122.90 (q, ^{*1*}*J*_{CF} = 272.0 Hz, 2 x CF₃), 121.34 (CH_{imid}), 53.92 (PhCH₂), 49.17 (NCH₂), 33.98 (SCH₂). ppm ¹⁹F NMR (282 MHz, CDCl₃) δ -62.94 ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 1551w, 1349m, 1276s, 1168m, 1119s, 879m, 843m, 819m, 711s, 696ms, 679, 472wm. MS (ESI): m/z, [M]⁺ 431.10 (100).

3 SYNTHESIS OF [(NHC)Ru(*p*-cym)Cl][PF₆] COMPLEXES

General procedure

Figure S2. Ruthenium NHCs complexes synthesis

A solution of appropriate imidazolium (2 equiv) in CH₂Cl₂ was treated with a slight excess of Ag₂O (1.3 equiv). The resulting suspension was stirred in the dark (flask wrapped with aluminum foil) for 15 h under argon to generate the silver carbene intermediate. After this time, the solution was filtered over a pad of celite to remove residual solids and concentrated to 2-4 mL. This silver solution is then added to a solution of $[RuCl_2(\eta^6-p-cymene)]_2$ (1 equiv) in CH₂Cl₂. A precipitate is directly formed and the resulting red mixture is stirred for 5 h in the dark, at room temperature, under argon. After this time, the solution is filtered through celite and concentrate to 2-4mL, and then excess of KPF₆ was added and the solution stirred for 15 min. Finally, the solution is deposited on a silica column for chromatographic separation using a DCM/Acetone (1/1). Filtrate containing the complex is evaporated to dryness and retaken in DCM. The resulting suspension was filtered over Celite and the solution was removed *under vaccuo* to give desired compound as red to orange solids.

Complex 1a :

The general procedure was used with imidazolium **a** (0.1 g, 2 equiv), Ag₂O (0.035 g, 1.3 equiv) and $[Ru(p-cym)Cl_2)_2]$ (0.089 g, 1 equiv). Yield: 90% (135mg). ¹H NMR (400MHz, CDCl₃) : δ 7.30-7.43 (m, 5H), 7.19 (d, J = 2 Hz, 1H, CH_{imid}), 6.90 (d, J

= 2 Hz, 1H, CH_{imid}), 5.77 (d, J = 6 Hz, 1H, CH_{cym}), 5.68 (d, J = 15 Hz, 1H, NCH₂), 5.59 (d, J = 6 Hz, 1H, CH_{cym}), 5.52 (d, J = 6 Hz, 1H, CH_{cym}), 5.38-5.46 (m, 2H, NCH₂ + CH_{cym}), 4.47-4.55 (m, 1H, NCH₂), 3.75 (t, J = 13 Hz, 1H, NCH₂), 3.26 (br, 1H, SCH₂), 2.90 (br, 1H, SCH₂CH₃), 2.70-2.82 (m, 1H, CHMe₂), 2.46 (br, 1H, SCH₂CH₃), 2.09 (br, 1H, SCH₂), 2.04 (s, 3H, CH_{3cym}),

1.20-1.34 (m, 6H, 2 x CH₃) and 1.14 (d, J = 7 Hz, 3H, CH_{3cym}) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 168.8 (Ru-C), 136.2 (C_{Ar}), 129.3 (2 x CH_{Ar}), 128.67 (CH_{Ar}), 128.08 (2 x CH_{Ar}), 124.3 (CH_{imid}), 123.1 (CH_{imid}), 113.5 (C_{cym}), C_{cym} around 100 ppm not observed, 89.62 and 88.57 (4 x CH_{cym}), 54.4 (NCH₂), 48.5 (NCH₂CH₂), 32.1 (SCH₂), 30.81 (CHMe₂), 30.17 (SCH₂CH₃), 23.8 (CH_{3cym}), 20.9 (CH_{3cym}), 18.2 (CH_{3cym}) and 12.4 (CH₃CH₂S) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 1456w, 1418w, 1238w, 1160w, 1052w, 1032w, 831s, 724m, 692m, 555s. HRMS (ESI): m/z calcd for [C₂₄H₃₂ClN₂RuS]⁺ calculated 517.0994, found 517.1015.

Complex 1b :

The general procedure was used with imidazolium **b** (0.1 g, 2 equiv), Ag₂O (0.037 g, 1.3 equiv) and $[Ru(p-cym)Cl_2)_2]$ (0.080 g, 1 equiv). Yield: 60% (112 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.28 (m, 1H), 7.18 (d, J = 2.0 Hz, 1H, CH_{imid}), 6.89 (d, J

= 2.0 Hz, 1H, CH_{imid}), 5.77-5.58 (m, 3H, PhCH₂, CH_{cym}), 5.58-5.35 (m, 3H, PhCH₂, CH_{cym}), 4.60-4.47 (m, 1H, NCH₂), 3.81-3.60 (m, 1H, NCH₂), 3.32-3.11 (m, 2H, CH₂S + CH_{cym}), 2.68 (m, 1H, CH_{3cym}), 2.21-2.18 (m, 1H, CH₂S) 2.12 (s, 3H,CH_{3cym}), 1.79 (m,3H, CH₂Cy), 1.50-1.23 (m, 7H, CH₂Cy), 1.21 (d, J = 6.9 Hz, 1H), 1.09 (d, J = 6.9 Hz, 1H) ppm. ¹³C NMR (400MHz, CDCl₃) : 168.3 (Ru-C), 136.1 (C_{benz}), 129.4 (2xCH_{benz}), 128.7 (CH_{benz}), 128 (2xCH_{benz}), 124.3 (CH_{imid}), 123.1 (CH_{imid}), 111.8 (C_{cym}), 104.3 (C_{cym}), 90 (CH_{cym}), 89.4 (CH_{cym}), 88.7 (CH_{cym}), 87.5 (CH_{cym}), 54.5 (PhCH₂), 48.3 (NCH₂), 44.6 (CH₂S), 44.3 (CH_{cy}), 31.5 (CH₂Cy), 30.7 (CH(CH₃)₂), 30.3 (CH₂Cy), 29.4 (CH₂Cy), 25.7 (CH₂Cy), 25.6(CH₂Cy), 23.9 (CH(CH₃)₂), 21.3 (CH(CH₃)₂), 18.1 (CH₃) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 3000br, 1447m, 1406m, 1236m, 1053m, 912m, 832vs, 723vs, 643w. HRMS (ESI): m/z calcd for [C₂₈H₃₉ClN₂RuS-H]⁺ calculated 571.1566, found 571.1514.

Complex 1c :

The general procedure was used with imidazolium **c** (0.1g, 2 equiv), Ag₂O (0.033 g, 1 equiv) and $[\text{Ru}(p\text{-cym})\text{Cl}_2)_2]$ (0.086 g, 1 equiv). Yield: 82% (159 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.14 (m, CH_{benz}, 5H) overlap with CDCl₃ pick, 6.90 (d,

J = 1.9 Hz, 1H, CH_{imid}), 5.77-5.59 (m, 3H, PhCH₂, CH_{cym}), 5.44- 5.32 (m, 3H, PhCH₂, CH_{cym}), 4.59 (d, J = 15.2 Hz, 1H, NCH₂), 3.78-3.57 (m, 1H, NCH₂), 3.09 (dd, J = 11.8, 3.5 Hz, 1H, CH₂S), 2.71 (dt, J = 13.7, 6.8 Hz, 1H, CH_{cym}(CH₂)₂), 2.39 (t, J = 12.1 Hz, 1H, CH₂S), 2.09 (s, 3H, CH_{3cym}), 1.46 (s, 9H, St-Bu), 1.20 (d, J = 6.9 Hz, 3H, CH_{3cym}), 1.09 (d, J = 6.8 Hz, 3H, CH_{3cym}) ppm. ¹³C NMR (400MHz, CDCl₃) : 168.1 (Ru-C), 136.4 (C_{benz}), 129.3 (2xCH_{benz}), 128.56 (CH_{benz}), 127.9 (2xCH_{benz}), 124.5 (CH_{imid}), 123.4 (CH_{imid}), 113.5 (C_{cym}), 104 (C_{cym}), 90 (CH_{cym}), 89.7 (CH_{cym}), 89 (CH_{cym}), 87.7 (CH_{cym}), 54.3 (PhCH₂), 52.2 (S-C (CH₃)₃), 48.3 (NCH₂), 30.7 (CH(CH₃)₂), 29.6 (3xCH₃), 27.6 (CH₂S), 23.6 (CH(CH₃)₂), 21.2 (CH(CH₃)₂), 18.0 (CH₃) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 1456m, 1406m, 1366w, 1236m, 1161m, 1057w, 1032w, 728s, 694s. HRMS (ESI): m/z calcd for [C₃₀H₄₄ClN₂RuS]⁺ calculated 545.1331, found 545.1329.

Complex 1d :

The general procedure was used with imidazolium **d** (0.1g, 2 equiv), Ag₂O (0.027 g, 1 equiv) and $[Ru(p-cym)Cl_2)_2]$ (0.071 g, 1 equiv). Yield: 45% (115 mg). ¹H NMR (400MHz, CDCl₃) : δ 7.46-7.27 (m, 5H, CH_{benz}), 7.24 (d, *J* = 1.9 Hz, CH_{imd}), 6.95 (d,

J = 1.9 Hz, 1H, CH_{imid}), 5.71-5.59 (m, 3H, CH_{cym} + PhCH₂), 5.48-5.30 (m, 3H, CH_{cym} + PhCH₂), 4.63-4.60 (m, 1H, NCH₂), 3.83-3.72 (m, 1H, NCH₂), 3.03 (dd, J = 11.6, 3.3 Hz, 1H, CH₂S), 2.76 (m, 1H, C_{cym}H(CH₂)₂), 2.45 (m, 1H, CH₂S), 2.11 (m, 12H, CH_{3cym} + CH_{2Ad}), 1.76-1.62 (m, 6H, CH₃, CH_{Ad}), 1.22 (d, J = 7Hz, 3H, C_{cym}H(CH₂)₂), 1.14 (d, J = 7Hz, 3H, C_{cym}H(CH₂)₂) ppm. ¹³C NMR (400MHz, CDCl₃) : 165 (Ru-C), 136.3 (C_{benz}), 129.3 (2xCH_{benz}), 128.5 (CH_{benz}), 127.7 (2xCH_{benz}), 124.4 (CH_{imid}), 123.2 (CH_{imid}), 113.4 (C_{cym}), undetected (C_{cym}), 96 (CH_{cym}), 89.7 (CH_{cym}), 88.8 (CH_{cym}), 87.2 (CH_{cym}), 54.9 (PhCH₂), 48.2 (SC_{Ad}), 41.4 (NCH₂), 35.9 (CH_{2Ad}), 30.4 (CH₂C_{Ad}), 30.3 (CH₂C_{Ad}), 24.8 (CH(CH₃)₂), 23.4 (CH₂S), 21.2 (CH(CH₃)₂), 17.9 (CH₃) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 2908m, 2852m, 1455m 1408m, 1231m, 1034s, 832vs, 694vs, 575w. MS (ESI): m/z, calcd for [C₃₂H₄₃ClN₂RuS]⁺ calculated 624.21, found 623.18.

Complex 1e :

The general procedure was used with imidazolium **e** (0.1g, 2 equiv), Ag₂O (0.028 g, 1 equiv) and $[Ru(p-cym)Cl_2)_2]$ (0.074 g, 1 equiv). Yield: 64% (116 mg). ¹H NMR (400MHz, CDCl₃) : δ

7.43-7.31 (m, 5H, CH_{benz}), 7.20 (d, J = 1.8 Hz, 1H, CH_{imd}), 6.92 (d, J = 1.7 Hz, 1H, CH_{imid}), 5.77 (d, J = 6.0 Hz, 1H, CH_{cym}), 5.67 (d, J = 14.9 Hz, 1H, CH_{cym}), 5.52 (s, 2H, PhCH₂), 5.48-5.40 (m, 2H, CH_{cym}), 4.52 (d, J = 15.9 Hz, 1H, NCH₂), 3.79 (t (br), J = 13.5 Hz, 1H, NCH₂), 3.28 (br, 1H, CH₂S), 2.96- 2.72 (m, 2H), 2.36 (br, 1H, CH₂S), 2.04 (s, 3H, CH_{3cym}), 1.71 (br, 1H, CH₂), 1.48-1.19 (m, 14H, CH_{3cym} + CH₂), 1.24 (d, J = 7Hz, 3H, C_{cym}H(CH₂)₂), 1.16 (d, J = 6.8 Hz, 3H, CH_{3cym}), 0.88 (t, J = 6.7 Hz, 3H, CH₃) ppm. ¹³C NMR (400MHz, CDCl₃) : 168.9 (Ru-C), 136.2 (C_{benz}), 129.4 (2xCH_{benz}), 128.7 (CH_{benz}), 128.0 (2xCH_{benz}), 124.3 (CH_{imid}), 123.1 (CH_{imid}), 113.9 (C_{cym}), 104.9 (C_{cym}), 90.3 (CH_{cym}), 89.4 (CH_{cym}), 88.8 (CH_{cym}), 87.1 (CH_{cym}), 54.5 (PhCH₂), 48.7 (NCH₂), 32.6 (CH₂S), 31.9 (CH₂), 30.81 (CH), 29.22 (CH₂), 29.19 (CH₂), 28,7 (CH₂ x 2) 27,4 (CH₂S), 23.8 (CH(CH₃)₂), 22.8 (CH₂CH₃), 21.1 (CH(CH₃)₂), 18.2 (CH₃), 14.2 (CH₂CH₃) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 2950m, 2800m, 1457m, 1406m, 1231m, 1073m, 832vs, 720vs, 575w. HRMS (ESI): m/z calcd for [C₃₀H₄₄ClN₂RuS]⁺ calculated 601.1957, found 601.1956.

Complex 1f :

The general procedure was used with imidazolium **f** (0.1 g, 2 equiv), Ag₂O (0.038 g, 1.3 equiv) and $[Ru(p-cym)Cl_2)_2]$ (0.078 g, 1 equiv). Yield: 73% (132 mg). ¹H NMR (400MHz, CDCl₃) : δ ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.45 (m, 5H),

7.44-7.35 (m, 3H), 7.33-7.27 (m, 3H), 6.99 (d, J = 2 Hz, 1H, CH_{imid}), 5.68 (d, J = 15 Hz, 1H, NCH₂), 5.50 (d, J = 15 Hz, 1H, NCH₂), 5.44 (d, J = 6 Hz, 1H, CH_{cym}), 5.29 (d, J = 6 Hz, 1H, CH_{cym}), 5.12 (d, J = 5.5 Hz, 1H, CH_{cym}), 5.05 (br, 1H, CH_{cym}), 4.77 (dt, J = 15, 3 Hz, 1H, NCH₂), 4.28 (t, J = 13 Hz, 1H, NCH₂), 3.53 (d, J = 14 Hz, 1H, SCH₂), 2.93-2.73 (m, 2H, SCH₂ + CHMe₂), 1.97 (s, 3H, CH₃), 1.19 (d, J = 7 Hz, 3H, CH₃) and 1.03 (d, J = 7 Hz, 3H, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 169.4 (Ru-C), 136.2 (C_{Bn}), not observed (S- C_{Ar}), 130.8 (2 x CH_{Ar}), 130.3 (CH_{Ar}), 130.2 (2 x CH_{Ar}), 129.4 (2 x CH_{Ar}), 128.8 (CH_{Ar}), 127.96 (2 x CH_{Ar}), 124.1 (CH_{imid}), 123.7 (<u>C</u>H_{imid}), 115.7 (C_{cym}), 101.4 (C_{cym}), 90.9, 89.9, 87.7 and 84.3 (4 x CH_{cym}), 54.6 (N-CH₂), 50.6 (N-CH₂CH₂), 35.5 (S-CH₂), 30.7 (CHMe₂), 23.9 (CH₃), 20.4 (CH₃), and 18.2 (CH₃) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 3000w, 1456m, 1237m, 1152m, 1082m, 832s, 721s, 686m, 555s. HRMS (ESI): m/z calcd for [C₂₈H₃₂ClN₂RuS]⁺ calculated 565.1035, found 565.1016.

Complex 1g :

The general procedure was used with imidazolium **g** (0.1 g, 2 equiv), Ag₂O (0.037 g, 1.3 equiv) and [Ru(*p*-cym)Cl₂)₂] (0.074 g, 1 equiv). Yield: 95% (167 mg). ¹H NMR (400 MHz, CDCl₃) : δ ¹H NMR (400 MHz, CDCl₃)

δ 7.26-7.47 (m, 11H), 6.96 (d, J = 2 Hz, 1H, CH_{imid}), 5.69 (d, J = 15 Hz, 1H, NCH₂), 5.48 (d, J = 15 Hz, 1H, NCH₂), 5.42 (d, J = 6.2 Hz, 1H, CH_{cym}), 5.24 (d, J = 5 Hz, 1H, CH_{cym}), 5.16 (d, J = 6 Hz, 1H, CH_{cym}), 5.04 (br, 1H, CH_{cym}), 4.74 (d, J = 15 Hz, 1H, NCH₂), 4.24 (t, J = 14 Hz, 1H, NCH₂), 3.44 (d, J = 14 Hz, 1H, SCH₂), 2.71-2.90 (m, 2H, SCH₂ + CHMe₂), 2.38 (s, 3H, CH₃), 1.95 (s, 3H, CH₃cym), 1.19 (d, J = 7 Hz, 1H, CH_{3cym}) and 1.03 (d, J = 7 Hz, 1H, CH_{3cym}) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 169.3 (Ru-C), 141.3 (C_{Ar}-Me), 136.2 (C_{Bn}), 130.87 (2 x CH_{Ar}), 130.21 (2 x CH_{Ar}), 129.30 (2 x CH_{Ar}), 128.71 (CH_{Ar}), 128.08 (2 x CH_{Ar}), 124.1 (CH_{imid}), 123.6 (CH_{imid}), 115.5 (C_{cym}), 101.2 (C_{cym}), 90.9, 89.9, 87.8 and 84.4 (4 x CH_{cym}), 54.6 (N-CH₂), 50.5 (N-CH₂CH₂), 35.7 (S-CH₂), 30.7 (CHMe₂), 23.9 (CH_{3cym}), 21.5 (CH₃), 20.3 (CH_{3cym}) and 18.2 (CH_{3cym}) ppm; not observed (S-C_{Ar}). FTIR: v max(pure, diamond orbit)/cm⁻¹: 1456m, 1419m, 1236m, 1151w, 1050w, 832s, 727m, 693m, 555s. HRMS (ESI): m/z calcd for [C₂₉H₃₄ClN₂RuS]⁺ calculated 579.1205, found 579.1173.

Complex 1h :

The general procedure was used with imidazolium **h** (0.1 g, 2 equiv), Ag₂O (0.034 g, 1.3 equiv) and [Ru(*p*-cym)Cl₂)₂] (0.069 g, 1 equiv). Yield: 96% (165 mg). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.19 (d, *J* = 9 Hz, 2H), 7.42-

7.36 (m, 5H), 7.30 (d, J = 2 Hz, 1H, CH_{imid}), 7.28- 7.21 (m, 2H), 7.04 (d, J = 2 Hz, 1H, CH_{imid}), 5.69 (d, J = 15 Hz, 1H, NCH_2), 5.60-5.57 (m, 2H, CH_{cym}), 5.42 (d, J = 6 Hz, 1H, CH_{cym}), 5.38 (d, J = 6 Hz, 1H, CH_{cym}), 5.33 (d, J = 15 Hz, 1H, NCH_2), 4.70 (dt, J = 15, 3 Hz, 1H, NCH_2), 4.10-4.00 (m, 1H, NCH_2), 3.66 (dt, J = 13, 2 Hz, 1H, SCH_2), 2.89-2.72 (m, 2H, $SCH_2 + CHMe_2$), 2.03 (s, 3H, CH_{3cym}), 1.22 (d, J = 7 Hz, 3H, CH_{3cym}) and 1.08 (d, J = 7 Hz, 3H, CH_{3cym}) ppm. ¹³C NMR (101 MHz, CD_2Cl_2) $\delta = 169.4$ (Ru-*C*), 149.1 (C_{Ar} -NO₂), 136.6 (C_{Bn}), 132.6 (2 x CH_{Ar-NO2}), 129.8 (2 x CH_{Ar}), 129.3 (CH_{Ar}), 128.4 (2 x CH_{Ar}), 124.7 (CH_{imid}), 124.5 (2 x CH_{Ar-NO2}), 124.3 (CH_{imid}), 116.0 (C_{cym}), 103.7 (C_{cym}), 91.21,

89.6, 89.2 and 86.3 (4 x CH_{cym}), 55.0 (N- CH_2), 49.5 (N- CH_2CH_2), 35.5(S- CH_2), 31.5 ($CHMe_2$), 23.8 (CH_{3cym}), 21.2 (CH_{3cym}) and 18.7 (CH_{3cym}) ppm; not observed (S- C_{Ar}). FTIR: v max(pure, diamond orbit)/cm⁻¹: 1517m, 1454w, 1416w, 1344m, 1229w, 1214w, 1153w, 1055w, 831s, 721s, 690m, 555s. HRMS (ESI): m/z calcd for [$C_{28}H_{31}CIN_2RuS$]⁺ calculated 610.0810, found 610.0867.

Complex 1i :

The general procedure was used with imidazolium **i** (0.1 g, 2 equiv), Ag₂O (0.025 g, 1.3 equiv) and [Ru(*p*-cym)Cl₂)₂] (0.064 g, 1 equiv). Yield: 97% (160 mg). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.59 (d, *J* = 8 Hz, 2H), 7.46-

7.36 (m, 3H), 7.31-7.28 (m, 3H, $CH_{Ar} + CH_{imid}$), 7.22 (br, 2H), 7.04 (d, J = 2 Hz, 1H, CH_{imid}), 5.73 (d, J = 15 Hz, 1H, NCH₂), 5.52 (d, J = 6 Hz, 1H, CH_{cym}), 5.39 (d, J = 15 Hz, 1H, NCH₂), 5.28 (d, J = 5 Hz, 1H, CH_{cym}), other CH_{cym} signals are overlap by solvent peak, 4.69 (dt, J = 15, 3 Hz, 1H, NCH₂), 4.08 (t, J = 14 Hz, 1H, NCH₂), 3.54 (dt, J = 14, 3 Hz, 1H, SCH₂), 2.83-2.75 (m, 2H, SCH₂ + $CHMe_2$), 2.01 (s, 3H, CH_{3cym}), 1.23 (d, J = 7 Hz, 3H) and 1.07 (d, J = 7 Hz, 3H, CH_{3cym}) ppm. ¹³C NMR (101 MHz, CD_2Cl_2) $\delta = 169.8$ (Ru-C), 136.7 (C_{Ar}), 133.2 (2 x CH_{Ar}), 132.9 (S- C_{Ar}), 129.7 (2 x CH_{Ar}), 129.2 (CH_{Ar}), 128.4 (2 x CH_{Ar}), 125.5 (2 x CH_{Ar} ou C-Br), 124.6 (CH_{imid}), 124.1 (CH_{imid}), 115.8 (C_{cym}), 103.0 (C_{cym}), 91.1, 90.1, 88.9 and 85.8 (4 x CH_{cym}), 55.0 (N-CH₂), other N-CH₂ signal overlap by solvent peak, 36.0 (S-CH₂), 31.4 (CH_{3cym}), 23.9 (CH_{cym}), 20.9 (CH_{3cym}), 18.7 (CH_{3cym}) ppm; signal (Br- C_{Ar} ou CH_{Ar}) not observed. FTIR: v max(pure, diamond orbit)/cm⁻¹: 1455w, 1419w, 1405w, 1419w, 1234w, 1151w, 1070w, 1007m, 834s, 728m, 693m, 555s. HRMS (ESI): m/z calcd for [$C_{28}H_{31}BrClN_2RuS$]⁺ calculated 645.0069, found 645.0108.

Complex 1j :

The general procedure was used with imidazolium **j** (0.1 g, 2 equiv), Ag₂O (0.035 g, 1.2 equiv) and [Ru(*p*-cym)Cl₂)₂] (0.076 g, 1 equiv). Yield: 87% (159 mg). ¹H NMR (500MHz, CDCl₃) : δ ¹H NMR (500 MHz, CDCl₃)

δ 7.53-7.35 (m, 5H), 7.33-7.28 (m, 2H), 7.26 (overlap by CDCl₃, 2H), 7.02 (d, J

= 7.8 Hz, 1H, CH_{imid}), 6.99 (d, J = 2.0 Hz, 1H, CH_{imid}), 5.67 (d, J = 15.1 Hz, 1H, NCH₂), 5.52 (d, J = 15.1 Hz, 1H, NCH₂), 5.44 (d, J = 6.2 Hz, 1H, CH_{cym}), 5.31 (d, J = 5.3 Hz, 1H, CH_{cym}), 5.19-4.98 (m broad, 2H, CH_{cym}), 4.77-4.68 (m, 1H, NCH₂), 4.29 (t, J = 12.8 Hz, 1H, NCH₂), 3.85 (s, 2H, OCH₃), 3.46 (d, J = 13.9 Hz, 1H, SCH₂), 2.86-2.75 (m, 2H, NCH₂ + CHMe₂), 1.97 (s, 3H, CH_{3cym}), 1.20 (d, J = 7.0 Hz, 3H, CH_{3cym}), 1.04 (d, J = 6.8 Hz, 2H, CH_{3cym}) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 169.84 (Ru-C), 161.52 (O-C_{Ar}), 136.25 (2 x CH_{Ar}), 132.17 (C_{Bn}), 129.40 (2 x CH_{Ar}), 128.80 (CH_{Ar}), 127.87 (2 x CH_{Ar}), 124.01(CH_{imid}), 123.65 (CH_{imid}), 115.67 (2 x CH_{Ar}), 115.47 (C_{cym}), 101.18 (C_{cym}), 91.09, 90.21, 87.58 and 84.10 (4 x CH_{cym}), 55.76 (OCH₃), 54.66 (N-CH₂), 50.64 (N-CH₂CH₂), 36.40 (S-CH₂), 30.76 (CHMe₂), 23.96 (CH_{3cym}), 20.3 (CH_{3cym}), and 18.2 (CH_{3cym}) ppm; not observed (S-C_{Ar}). FTIR: v max(pure, diamond orbit)/cm⁻¹: 1495m, 1456m, 1417w, 1251m, 1177w, 1025w, 829s, 725m, 693m, 555s. HRMS (ESI): m/z calcd for [C₂₉H₃₄ClN₂ORuS]⁺ calculated 595.1122, found 595.1119.

Complex 1k :

The general procedure was used with imidazolium **k** (0.05 g, 2 equiv), Ag₂O (0.016 g, 1.3 equiv) and [Ru(*p*-cym)Cl₂)₂] (0.033 g, 1 equiv). Yield: 88% (73 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H, CH_{Ar}), 7.303-7.58 (m, 5H, CH_{Ar}), 7.27 aromatic proton

overlap with CDCl₃ pick, 7.32 (d, J = 2.0 Hz, 1H, CH_{imid}), 7.03 (d, J = 2.0 Hz, 1H, CH_{imid}), 5.67 (d, J = 15.1 Hz, 1H, NCH₂), 5.53 (d, J = 6.2 Hz, 1H, CH_{cvm}), 5.48 (d, J = 15.1 Hz, 1H, NCH₂), 5.45 (d, J = 5.7 Hz, 1H, CH_{cym}), 5.34 (br, 1H, CH_{cvm}), 5.17 (d, J = 5.7 Hz, 1H, CH_{cvm}), 4.77 (dt, J = 15.2, 3.0 Hz, 1H, NCH_2), 4.24 (t, J = 13.1 Hz, 1H, NCH₂), 3.66 (dt, J = 13.4, 2.3 Hz, 1H, SCH₂), 2.73-2.92 (m, 2H, $SCH_2 + CHMe_2$), 2.02 (s, 3H, CH_3), 1.22 (d, J = 7.0 Hz, 3H, CH_3), 1.07 (d, J = 6.8 Hz, 3H, CH₃).ppm. ¹³C NMR (126 MHz, CDCl₃) δ 169.35 (C-Ru), 136.08 (C_{Bn}), 132.54 (q, ${}^{2}J_{C-F}$ = 30.9 Hz, C_{Ar}) 131.42 (2 x CH_{Ar}), 129.46 (2 x CH_{Ar}), 128.95 (CH_{Ar}), 127.78 (2 x CH_{Ar}), 126.71 (d, ${}^{3}J_{C-F} = 3.7$ Hz, 2 x CH_{Ar}), 124.21 (CH_{imid}), 123.85 (CH_{imid}), 123.49 (q, ${}^{I}J_{C-F} = 271.0$ Hz, CF₃), 115.87 (C_{cvm}), 102.40 (C_{cvm}), 90.59 (CH_{cvm}), 90.07 (CH_{cvm}), 87.80 (CH_{cvm}), 84.73 (CH_{cvm}), 54.60 (N-CH₂), 50.03 (N-CH₂CH₂), 35.53 (CHMe₂), 30.85 (S-CH₂), 23.68 (CH₃), 20.78 (CH₃), 18.29 (CH₃) ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.06 (CF₃), -72.32 (d, J_{P-F} = 713 Hz, PF₆) ppm FTIR: v max(pure, diamond orbit)/cm⁻¹: 142w, 1324m, 1235m, 1167m, 1127m, 1062m, 827s, 730s, 692m, 555s. HRMS (ESI): m/z calcd for $[C_{29}H_{31}ClF_3N_2RuS]^+$ calculated 633.0891, found 633.0873.

Complex 11 :

The general procedure was used with imidazolium I (0.028 g, 2 equiv), Ag₂O (0.008 g, 1.3 equiv) and [Ru(*p*-cym)Cl₂)₂] (0.016 g, 1 equiv). Yield: 90% (40 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.41-7.35 (m,

4H), 7.32 (s, 2H), 7.25-7.22 (m, 2H, $CH_{imid} + CH_{Ar}$), 7.01 (d, J = 2.0 Hz, 1H, CH_{imid}), 5.93 (d, J = 6.0 Hz, 1H, CH_{cym}), 5.73-5.63 (m, 3H, 2 x CH_{cym +} CH_{2Bn}), 5.45 (dd, J = 6.2, 1.0 Hz, 1H, CH_{cvm}), 5.33 (d, J = 14.8 Hz, 1H, CH_{2Bn}), 4.75 (dt, J = 15.4, 3.0 Hz, 1H, NCH₂), 4.08 (ddd, J = 15.3, 12.7, 2.5 Hz, 1H, NCH₂), 3.86 $(dt, J = 13.0, 2.6 Hz, 1H, SCH_2), 2.86 (dt, J = 13.8, 6.9 Hz, 1H, CH_{cvm}), 2.72 (td, J = 13.8, 6.9 Hz), 2.72 (td$ $J = 12.9, 3.3 \text{ Hz}, 1\text{H}, \text{SC}H_2$, 2.06 (s, 3H, CH₃), 1.25 (d, $J = 7.0 \text{ Hz}, 3\text{H}, \text{CH}_3$), 1.15 (d, J = 6.9 Hz, 3H, CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 169.02 (Ru-C), 135.82 (S-C_{Ar}), 132.55 (C_{Ar}), 132.14 (q, ${}^{2}J_{CF} = 34.0$ Hz, 2 x C-CF₃), 132.09 (CH_{Ar}), 129.37 (2 x CH_{Ar}), 128.88 (CH_{Ar}), 128.02 (2 x CH_{Ar}), 124.43 (CH_{imid}), 123.96 (CH_{imid}), 122.62 (q, ${}^{I}J_{CF} = 274.3$ Hz, 2 x CF₃), 115.99 (C_{cvm}), 103.87 (C_{cym}), 92.36 (CH_{cym}), 89.57 (CH_{cym}), 87.81 (CH_{cym}), 85.24 (CH_{cym}), 54.44 (N-CH₂), 48.75 (N-CH₂CH₂), 36.34 (S-CH₂), 30.97 (CH_{cvm}), 23.21 (CH₃), 21.43 (CH₃), 18.47 (CH₃).ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.98 (CF₃), -72.34 (d, $J_{P-F} = 713$ Hz, PF₆) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 1406w, 1351m, 1276s, 1236w, 1182m, 1133s, 1096m, 829s, 726m, 695m, 680m, 556s. HRMS (ESI): m/z calcd for $[C_{30}H_{30}ClF_6N_2RuS]^+$ calculated 701.0765, found 701.0717.

Complex 4 :

The general procedure was used with appropriate imidazolium (0.1 g, 2 equiv), Ag₂O (0.051 g, 1.3 equiv) and [Ru(*p*-cym)Cl₂)₂] (0.104 g, 1 equiv). Yield: 82% (180 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 2.0 Hz, 1H, CH_{imid}), 7.12 (d, *J* = 2.0 Hz, 1H, CH_{imid}), 5.80-5.72 (m, 2H, CH_{cym}),

5.50 (dd, J = 6.1, 1.3 Hz, 1H, CH_{cym}), 5.42 (dd, J = 6.2, 1.2 Hz, 1H, CH_{cym}), 4.57 (ddd, J = 15.2, 4.1, 2.4 Hz, 1H, NCH₂), 3.95 (s, 1H, NCH₃), 3.70 (ddd, J = 15.0, 12.5, 1.3 Hz, 1H, NCH₂), 3.08 (ddd, J = 11.9, 4.1, 1.4 Hz, 1H, SCH₂), 2.79 – 2.69 (m, 1H, CH_{cym}), 2.36 (td, J = 12.3, 2.4 Hz, 1H, NCH₂), 2.14 (s, 1H, CH_{3cym}), 1.43 (s, 9H, S-tBu), 1.25 (d, J = 6.9 Hz, 3H, CH_{3cym}), 1.10 (d, J = 6.9 Hz, 3H, CH_{3cym}) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 167.16 (Ru-*C*), 124.50 (CH_{imid}), 124.19 (CH_{imid}), 113.23 (C_{cym}), 104.87 (C_{cym}), 90.54 (CH_{cym}), 89.67

(CH_{cym}), 88.88 (CH_{cym}), 87.21 (CH_{cym}), 52.21 (C_{tBu}), 48.24 (N-CH₂), 38.82 (N-CH₃), 30.67 (CH_{cym}), 29.63 (CH_{3tBu}), 27.57 (S-CH₂), 23.60 (CH_{3cym}), 21.19 (CH_{3cym}), 18.16 (CH_{3cym}) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 2961w, 1462m, 1240m, 1161m, 1083m, 872s, 732s, 687m, 567s. HRMS (ESI): m/z calcd for [C₂₀H₃₂ClN₂RuS]⁺ calculated 469.1018, found 469.1000.

Complex 5 :

The general procedure was used with appropriate benzimidazolium (0.1 g, 2 equiv), Ag₂O (0.051 g, 1.3 equiv) and [Ru(*p*-cym)Cl₂)₂] (0.104 g, 1 equiv). Yield: 82% (180 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.53 (m, 1H, CH_{Benzimid}), 7.51-7.46 (m, 1H, CH_{Benzimid}), 7.43-7.36 (m, 2H, CH_{Benzimid}), 5.86 (d, *J* = 6.1 Hz, 1H, CH_{cym}), 5.81 (d, *J* = 6.1

Hz, 1H, CH_{cym}), 5.66 (d, J = 6.0 Hz, 1H, CH_{cym}), 5.55 (d, J = 6.1 Hz, 1H, CH_{cym}), 5.01-5.04 (m, 1H, NCH₂), 4.15 (s, 3H, NCH₃), 3.87-3.77 (m, 1H, NCH₂), 3.29 (dd, J = 11.9, 3.6 Hz, 1H, SCH₂), 2.88-2.77 (m, 1H, CH_{cym}), 2.33 (dd, J = 12.0, 10.1 Hz, 1H, SCH₂), 2.13 (s, 3H, CH_{3cym}), 1.41 (s, 9H, S-*t*Bu), 1.26 (d, J = 6.9 Hz, 3H, CH_{3cym}), 1.08 (d, J = 6.9 Hz, 3H, CH_{3cym}) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 183.12 (Ru-C), 135.64 (C_{Ar}), 134.16 (C_{Ar}), 124.38 (CH_{Ar}), 124.27 (CH_{Ar}), 114.76 (C_{cym}), 110.65 (CH_{Ar}), 110.10 (CH_{Ar}), 105.46 (C_{cym}), 90.99 (CH_{cym}), 90.02 (CH_{cym}), 89.85 (CH_{cym}), 88.17 (CH_{cym}), 52.50 (C_{1Bu}), 44.03 (N-CH₂), 35.79 (N-CH₃), 30.69 (CH_{cym}), 29.56 (CH_{3tBu}), 27.49 (S-CH₂), 23.40 (CH_{3cym}), 21.42 (CH_{3cym}), 18.27(CH_{3cym}) ppm. FTIR: v max(pure, diamond orbit)/cm⁻¹: 2930w, 1456m, 1396m, 1203m, 1162m, 1092w, 830s, 745s, 556s. HRMS (ESI): m/z calcd for [C₂₄H₃₄ClN₂RuS]⁺ calculated 519.1172, found 519.1154.

4 VARIABLE TEMPERATURE H¹-NMR EXPERIMENTS

Procedure:

In a NMR tube 5 mg of complex **1c** were dissolved in the desired deuterated solvent. Then variable temperature NMR experiments were conducted on a Spectromètre Bruker Avance III – 600 MHz. Then one ¹H NMR spectra were recorded every ± 10 °C.

Figure S3. Variable temperature (VT) ¹H-NMR spectra of complex 1c in Dichloromethane d_2 , expanded spectra in between 2.2-4.8 ppm (with lowering the temperature)

Figure S4. Variable temperature (VT) ¹H-NMR spectra of complex 1c in 1,2-Dichlorobenzene- d_4 , expanded spectra in between 2.2-4.8 ppm (with rising the temperature).

Figure S5. Variable temperature (VT) ¹H-NMR spectra of complex 1f in Dichloromethane- d_2 , expanded spectra in between 2.6-5.2 ppm (with lowering the temperature).

Figure S6. Variable temperature (VT) ¹H-NMR spectra of complex 1f in Dichloromethane- d_2 , expanded spectra in between 0.9 -2.2 ppm (with lowering the temperature).

Figure S7. ¹H-NMR spectra of complex 1f in Dichloromethane- d_2 , recorded at 193 K.

Figure S8. Variable temperature (VT) ¹H-NMR spectra of complex **11** in Dichloromethane- d_2 , expanded spectra in between 2.5 -4.9 ppm (with lowering the temperature).

5 GENERAL PROCEDURE FOR AMINE DEHYDROGENATION CATALYSED BY [Ru(*NHC*)Cl][PF₆]

The amine (0.2 mmol) was added into an 10 mL oven-dried schlenck tube under argon containing a solution of complex **1c** (2.5 mol%, 0.0025 mmol) in dry 1,2-dichlorobenzene (0.2 mL). The schlenck tube was then capped with a Rotilabo®-stoppers made of natural rubber, and the schlenck valve is opened to the Schlenk line, and then heated to 110 °C.

After 24-48 h, a 0.005 mL aliquot was diluted with 1 mL Toluene, and the product(s) ratio was determined by GC-MS analysis. After cooling to ambient temperature, the product is purified by silica gel chromatography (h : 10 cm; \emptyset :1 cm) using first 60 mL of pentane (to remove the 1,2-dichlorobenzene) followed by either a pentane:diethyl ether (80:20) or (90:10) mixture to afford the corresponding nitrile as the isolated product in 30-80% yield. The identity of the nitrile product was confirmed by comparison to the reported NMR spectra of known compounds and by GC-MS analysis. Benzylamine derivatives always generated a mixture of nitrile and imine. The latter is hydrolysed into benzaldehyde derivatives during the purification on column chromatography. Unfortunately, those by-products are difficult to separate from the desired products(very close retention value), which lower the isolated yields.

Most of the present prepared nitriles are commercially available and they are identified with authentic nitrile compounds.

6 DATAS OF NITRILES COMPOUNDS

Hexanenitrile(6):

Any attempts to purify the product by chromatography gave the compound with a significant amount of ODCB solvent.

Octanenitrile (7): Colorless oil : 80% (20 mg)

¹H NMR (300 MHz, CDCl₃) δ 2.33 (t, *J* = 7.1 Hz, 2H), 1.59-1.72 (m, 2H), 1.39-1.50 (m, 2H), 1.20-1.37 (m, 6H), 0.88 (d, *J* = 6.9 Hz, 2H) ppm. Spectroscopic data are consistent with those reported in the literature.⁵

Dodecanenitrile (8): Yellowish oil : 65% (23 mg)

¹H NMR (300 MHz, CDCl₃) δ 2.33 (t, *J* = 7.1 Hz, 2H), 1.57-1.72 (m, 2H), 1.39-1.49 (m, 2H), 1.20-1.37 (s, 14H), 0.88 (t, *J* = 6.7 Hz, 3H) ppm. Spectroscopic data are consistent with those reported in the literature.⁶

Tetradecanenitrile (9): Colorless oil : 71% (30 mg)

¹H NMR (300 MHz, CDCl₃) δ 2.33 (t, *J* = 7.1 Hz, 2H), 1.57-1.72 (m, 2H), 1.38-1.51 (m, 2H), 1.26 (s, 18H), 0.88 (t, *J* = 6.6 Hz, 3H) ppm. Spectroscopic data are consistent with those reported in the literature.⁵

Stearonitrile (10): soft white solid 50% (26 mg)

¹H NMR (300 MHz, CDCl₃) δ 2.33 (t, *J* = 7.1 Hz, 2H), 1.57-1.73 (m, 2H), 1.36-1.51 (m, 2H), 1.23-1.30 (br, 32H), 0.88 (t, *J* = 6.6 Hz, 3H) ppm. Spectroscopic

data are consistent with those reported in the literature.⁷

2-ethylhexanenitrile (11): colorless oil (7.5 mg, 30 %), as a purification on SiO_2 (Et₂O : pentane = 30:70).

¹H NMR (300 MHz, CDCl₃) δ 2.53-2.38 (m, 1H), 1.71-1.19 (m, 8H), 1.08 (t, *J* = 7.4 Hz, 1H), 0.92 (t, *J* = 7.1 Hz, 1H). Spectroscopic data are consistent with those reported in the literature.⁸

GeranyInitrile (12): colorless oil (17 mg, 56 %), E/Z=6/1, as a purification on SiO₂ (Et₂O : pentane = 20:80).

¹H NMR (300 MHz, CDCl₃) δ 5.10 (d, J = 1.0 Hz, CH minor + Major , 1.12 H), 5.00-5.04 (m, CH minor + Major 1,13 H), 2.39-2.47 (m, CH₂ minor, 0.39 H), 2.09-2.25 (m, 4H, CH₂ Major), 2.05 (s, CH₃ Major, 3H), 1.91 (d, J = 1.4 Hz, CH₃ minor, 0.39H), 1.69 (s, CH₃ minor + Major, 3.55 H), 1.60 (s, CH₃ minor + Major, 3.32 H) ppm. Spectroscopic data are consistent with those reported in the literature.⁹

Oleonitrile/9-Octadecenenitrile (13). Yellowish oil (32 mg, 60%)

¹H NMR (300 MHz, CDCl₃) δ 5.24-5.46 (m, 2H), 2.33 (t, *J* = 7.1 Hz, 2H), 1.92-2.06 (m, 4H), 1.61-1.70 (m, 2H), 1.23-1.37 (m, 20 H), 0.88 (t, *J* = 6.6 Hz, 3H) ppm. Spectroscopic data are consistent with those reported in the literature.⁵

Benzonitrile (2): colorless oil 50% (10 mg)

¹H NMR (300 MHz, CDCl₃) δ 7.57-7.70 (m, 3H), 7.45-7.52 (m, 2H). Spectroscopic data are consistent with those reported in the literature.^{9a}

p-Chlorobenzonitrile (14): White solid 37% (10 mg);

¹H NMR (300 MHz, CDCl₃) : δ 7.61 (d, *J* = 8.5 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 1H) ppm. Spectroscopic data are consistent with those reported in the literature.⁵

4-(Trifluoromethyl)benzonitrile (15): Colorless oil 30% (10 mg)

¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 1H) ppm. ¹⁹F NMR (CDCl₃) δ -63.53 ppm. Spectroscopic data are consistent with those reported in the literature.¹⁰

p-Methoxybenzonitrile (16): White solid 45% (12 mg);

¹H NMR (300 MHz, CDCl₃) : δ 7.59 (d, J = 8.9 Hz, 1H), 6.95 (d, J = 8.8 Hz, 1H), 3.86 (s, 3H). Spectroscopic data are consistent with those reported in the

literature.⁵

N-(Phenylmethylene)benzenemethanamine (3): light yellow oil (4 mg, 15%)

¹H NMR (300 MHz, CDCl₃) δ 8.42 (s, 1H), 7.81 (m, 2H), 7.48-7.39 (m, 3H), 7.40-7.33 (m, 4H), 7.30 (m, 1H), 4.85 (s, 2H) ppm. Spectroscopic data are consistent with those reported in the literature.¹¹

7 OPTIMISATION CONDITIONS

Table S1 Evaluation of benzylamine oxidation under varying conditions.^a

NH ₂	2.5 to 5 mol% 1 110 °C, 24 h, A 1,2-dichlorobenze	r ene	CN + 2	3			Ph N N N 1c		
Entry	Additive	Solvent	Volum	Т	Conv	Sele	ectivity (%) ^[b]		
	(10%)		e mL	(C °)	(%) ^[b]	2	3		
1		Neat	-	110	65%	22	78		
2		ODCB	0.2	110	5%< ^c				
3		ODCB	1	110	70	44	56		
4		tol ^d	0.2	110	80	35	65		
5		CH ₃ CN	0.2	110	5				
6		<i>i</i> -PrOH	0.2	110	0	-	-		
7		Anisole	0.2	110	100 ^e	54	46		
8		Anisole ^g	0.2	110	72 ^e	50	50		
9		ODCB ^g	0.2	110	90	58	42		
10		ODCB ^g	0.2	130	100	55	45		
11	КОН	ODCB ^g	0.2	110	90	50	50		
12	<i>t</i> BuOK	ODCB ^g	0.2	110	100	56	44		
13	Cs ₂ CO ₃	ODCB ^g	0.2	110	100	68	32		
14	K ₂ CO ₃	ODCB ^g	0.2	110	95	63	37		
15	CsCl	ODCB ^g	0.2	110	95	56	44		
16	CsOAc	ODCB ^g	0.2	110	84	37	63		

17	HMTA	ODCB	0.2	110	100 ^h	70	30
1/	(5%)	ODCD	0.2	110	100	70	50

[a] Reaction conditions: benzylamine (0.2 mmol), 5 mol% [Ru], 24h, open vessel under argon atmosphere; [b] Conversion and selectivity were determined by ¹H RMN, internal reference hexadecane; [c] Closed system under argon atmosphere; [d] catalyst is not soluble; [e] presence of aldehyde, imine/aldehyde ratio 1/1.5, [g] 2.5mol% [Ru]; [h] presence of aldehyde (5%), amide (5%) and new imine (4%).

8 REPRESENTATIVE ¹H NMR SPECTRA OF CRUDE REACTION MIXTURES:

Figure S9. ¹H-NMR spectra of the crude reaction mixture after 26h for benzylamine substrate, (2.5 mol% of **1c**, conv 98%)

236 233 231 231 <0.89 0.88 0.88

Figure S10. ¹H-NMR spectra of the crude reaction mixture after 30h for *n*-octylamine substrate (2.5 mol% of complex 1c, 100% conv).

Figure S11. Representative GC chromatogram of benzylamine dehydrogenation catalysed by $[Ru(p-cym)Cl_2]_2$. : benzonitrile (4.69 min), benzylamine (4.90 min), 1,2-dichlorobenzene (4.94 min) and. hexadecane (**Std**, 7.0 min) and benzylidenebenzylamine (7.5 min).

Figure S12. GC chromatogram of pure benzylidenebenzylamine product (7.5 min).

10 EVALUATION OF THE LABILITY OF THE THIOETHER MOIETY AND THE ROBUSTNESS OF THE COMPLEX 1C

Procedure:

Benzylamine (2.0 equiv, 28.4 mmol) was added dropwise to a Schleck tube containing a solution of complex **1c** (1 equiv 14.49 mmol) in dry 1,2-dichlorobenzene (ODCB, 0.1 mL) under argon. The solution was heated at 110 °C and ¹H NMR spectra of aliquots were the recorded over time. Addition of extra benzylamine (8.0 equiv, 115.92 mmol) to the ODCB solution was done after 18 hours, the system was again put at 110 °C and ¹H NMR spectra of aliquots were the recorded over time.

Figure S13. ¹H-NMR spectra of lability experiment between the benzylamine and complex 1c

Procedure:

Complex 1c (5 mg) was put into a NMR tube and dissolves in a 1/1 mixture of dmso- d_6/D_2O (0.5 mL in total). ¹H NMR spectra were the recorded over time at room temperature

Figure S14. ¹H-NMR spectra of complex 1c stability in a 1/1 mixture of dmso- d_6/D_2O
11 GAS PHASE CALCULATIONS WITH SOLVENT

DFT calculations were run with Gaussian 09.¹² Ru, S and Cl centers were described with the Stuttgart RECPs¹³ and associated basis sets with additional *f*-polarization function for Ru ($\zeta = 1.235$) and *d*-polarization functions for S ($\zeta = 0.503$) and Cl ($\zeta = 0.640$),¹⁴ and 6-31G** basis sets¹⁵ were used for all other atoms. Initial B3PW91¹⁶ optimizations were performed with all stationary points being fully characterized via analytical frequency calculations as either minima (all positive eigenvalues) or transition states (one negative eigenvalue). IRC calculations and subsequent geometry optimizations were used to confirm the minima linked by each transition state. Single point solvent calculations at the SCRF method¹⁷ (dicholomethane) were run at the M06L/def2TZVP level of theory.¹⁸

All energies are ΔH solvent corrected energies in kcal·mol⁻¹. In all figures hydrogens atoms have been removed for clarity except for CH(CH₃)₂ and CH₃ on the *p*-cymene substituent, the substituent in the sulphur atom and the aryl moiety of the carbene.

Figure S15. Reaction energy profiles computed for direct inversion of the sulphur atom (in blue) and for the coordination-discoordination of the Ru–S bond (in black) of complex 1c. The Δ H solvent corrected energies are given in kcal·mol-1.

Figure S16. Reaction energy profiles computed for direct inversion of the sulphur atom (in blue) and for the coordination-discoordination of the Ru–S bond (in black) of complex **11**. The Δ H solvent corrected energies are given in kcal·mol-1.

Figure S17. Reaction energy profiles computed for direct inversion of the sulphur atom (in blue) and for the coordination-discoordination of the Ru–S bond (in black) with S-CF₃ thioether group. The Δ H solvent corrected energies are given in kcal·mol-1.

Atomic coordinates of the optimized species

Table	S2.	Atomic	coordinates	of the	optimized	species	derived	from	complex
1c . ^a									

$1c - R_{Ru}/R_S$	$1c - R_{Ru}/S_S$				
E (SCF) = -1241.70497 E (SCF; solvent = DCM) = -2075.59121564 Zero-point correction = 0.569576 Thermal correction to Enthalpy = 0.603008 Thermal correction to Gibbs Free Energy = 0.50843	E (SCF) = -1241.71176 E (SCF; solvent = DCM) = -2075.59379153 Zero-point correction = 0.570827 Thermal correction to Enthalpy = 0.603810 Thermal correction to Gibbs Free Energy = 0.51108				
C -0.662910 0.359059 -0.905269	C -0.567055 0.314072 -0.967959				
L - 2.586036 0.583000 - 2.066481	L -2.540250 0.4/3883 -2.063544				
Н -3.652055 0.682936 -2.194810	H -3.610703 0.563464 -2.155223				
C -1.584667 0.481553 -2.972543	C -1.574323 0.325690 -2.999009				

Η	-1.601190	0.489281	-4.051274	Н	-1.631438	0.272756	-4.075004
С	-2.784939	0.663075	0.433032	С	-2.654142	0.649794	0.430514
Н	-2.167655	0.239331	1.226577	Η	-2.026322	0.225561	1.214871
Н	-2.920371	1.735815	0.611206	Η	-2.771675	1.725937	0.600072
С	-4.126173	-0.022761	0.368022	С	-4.007464	-0.015566	0.411392
С	-5.300102	0.728611	0.257620	С	-5.172315	0.751223	0.309857
Н	-5.246105	1.815034	0.222782	Н	-5.103019	1.835653	0.249706
С	-6.542033	0.095777	0.204810	С	-6.424320	0.136477	0.296355
Н	-7.448444	0.688688	0.124952	Н	-7.323230	0.741417	0.222300
С	-6.615934	-1.294242	0.259936	С	-6.517946	-1.250785	0.382433
Н	-7.582044	-1.789002	0.221819	Н	-7.491946	-1.731226	0.374210
С	-5.447616	-2.049984	0.372167	С	-5.358989	-2.021874	0.487434
Н	-5.504402	-3.133428	0.425303	Н	-5.430982	-3.102921	0.565043
С	-4.207641	-1.419804	0.427647	С	-4.109136	-1.409408	0.503804
Н	-3.297470	-2.005294	0.528010	Н	-3.205794	-2.006413	0.597590
С	0.920199	0.259609	-2.819495	С	0.908266	0.039901	-2.969676
Н	1.540820	1.023474	-2.346684	Н	1.566162	0.885400	-2.743619
Н	0.844135	0.496096	-3.884394	Н	0.725412	0.047635	-4.047156
С	1.560498	-1.108335	-2.642428	С	1.553374	-1.279005	-2.578157
Н	2.613421	-1.048712	-2.928619	Н	2.370548	-1.512370	-3.265132
Н	1.067889	-1.856667	-3.268145	Н	0.812295	-2.080156	-2.608783
С	3.025773	-2.605340	-0.613647	С	2.612269	-2.956948	-0.438887
С	3.052597	-3.750535	-1.630890	С	3.021954	-2.920098	1.032132
Н	3.151091	-3.396039	-2.661284	Н	2.189850	-2.615759	1.670612
Н	2.156604	-4.373066	-1.557350	Н	3.876135	-2.253903	1.194519
Н	3.921531	-4.384510	-1.423027	Η	3.332295	-3.927141	1.330817
С	4.254677	-1.714832	-0.755750	С	1.410072	-3.867627	-0.664781
Η	5.152895	-2.320070	-0.589189	Η	1.665279	-4.866005	-0.290763
Η	4.257514	-0.909375	-0.019549	Η	1.170609	-3.983916	-1.725832
Н	4.348701	-1.276928	-1.754215	Η	0.529599	-3.514674	-0.126834
С	2.901104	-3.165345	0.804390	С	3.797511	-3.375195	-1.313787
Н	2.017498	-3.800111	0.909686	Н	4.664873	-2.725427	-1.166057
Η	2.834917	-2.371968	1.552715	Н	3.546349	-3.389867	-2.378596
Н	3.787727	-3.769872	1.023903	Н	4.088085	-4.395359	-1.038708
С	1.628648	0.589539	2.665415	С	1.554543	0.757392	2.650316
С	2.689472	0.596640	1.753589	С	2.665047	0.838624	1.800104
Н	3.550100	-0.038096	1.935679	Н	3.554767	0.257356	2.018672
С	2.630101	1.388403	0.560711	С	2.610138	1.618421	0.601614
Н	3.458598	1.349502	-0.140666	Н	3.465521	1.604647	-0.068339
С	1.572737	2.298733	0.315456	С	1.500043	2.434647	0.272759
C	0.466409	2.244974	1.222036	С	0.360947	2.324200	1.132532
H	-0.416571	2.843919	1.028997	H	-0.548755	2.861184	0.888073
C	0.472688	1.382530	2.336860	C	0.372365	1.482324	2.262783
H	-0.404962	1.320648	2.971828	H	-0.527408	1.375854	2.860283
C	1.629950	-0.261817	3.895452	C	1.544908	-0.090637	3.882840
H	2.55/961	-0.829062	3.991188	Н	0.738659	-0.829318	3.824140
H	0.790037	-0.964047	3.864457	H	1.3/126/	0.5354//	4.764594
	1.51666/	0.30/132	4./04051 0.701407	H C	2.49228/ 1.502750		4.U14/81
	1.091930	3.337582	-U./0149/ 1 600007	С П	1.592/50	3.429543	-U.00/924
	2.20005U 252002	2.0003003 1516017	-1.00033/ 0.241200	П С	2.210941 2212761	2.704402 1670777	-1.040044 0.267977
L Ц	2.320002 2.010211	4.31024/ 5.004154	-0.241290	с ц	2.342/01 1 702226	4.0/023/ 5 175676	-0.30/0//
п	2.010341	5 261681	-1 025782	п Ц	2 468120	5 201600	-1 185111
Н	3 512355	4 190814	0 104526	Н	3 335360	4 429216	0.018703
	5.516000				5.5555500		01010/00

С	0.359606	3.841488	-1.340640	С	0.249060	3.821521	-1.484323
Н	-0.282892	3.027002	-1.686339	Н	-0.330186	2.951910	-1.806853
Η	0.543568	4.507825	-2.188029	Η	0.416574	4.457212	-2.358264
Η	-0.193908	4.424185	-0.596554	Η	-0.361209	4.403067	-0.784781
Ν	-2.008403	0.506884	-0.812069	Ν	-1.913324	0.463414	-0.831951
Ν	-0.414656	0.348960	-2.246631	Ν	-0.375294	0.233342	-2.313726
S	1.398497	-1.688794	-0.903069	S	2.266787	-1.139710	-0.898612
Ru	0.781437	0.182785	0.529939	Ru	0.871795	0.275436	0.484213
Cl	-0.518369	-1.585721	1.511225	Cl	-0.331723	-1.603026	1.369354

1c - intermediate	1c – TS-inversion				
E (SCF) = -1241.67804	E (SCF) = -1241.69261				
E (SCF; solvent = DCM) = -2075.57076100	E (SCF; solvent = DCM) = -2075.57651265				
Zero-point correction = 0.567333	Zero-point correction = 0.567933				
Thermal correction to Enthalpy = 0.600013	Thermal correction to Enthalpy = 0.600372				
Thermal correction to Gibbs Free Energy =	Thermal correction to Gibbs Free Energy =				
0.50386	0.50745				
C 0.310426 -0.627292 -1.101776	C -0.620485 0.287337 -0.945110				
C 0.339835 -2.639288 -2.118172	C -2.550510 0.293564 -2.119752				
H 0.781295 -3.499555 -2.597041	H -3.619288 0.333904 -2.256322				
C -0.953598 -2.337207 -1.851568	C -1.543315 0.130416 -3.008637				
Н -1.859588 -2.884214 -2.058415	H -1.557054 0.012242 -4.080938				
C 2.549676 -1.493464 -1.816647	C -2.757932 0.643129 0.354968				
Н 2.789252 -0.458844 -2.076748	Н -2.142213 0.293845 1.185045				
Н 2.802365 -2.099981 -2.693313	Н -2.906059 1.725506 0.440751				
C 3.356530 -1.944429 -0.616733	C -4.091838 -0.059811 0.343642				
C 4.670264 -1.479352 -0.481443	C -5.272332 0.665529 0.156172				
Н 5.079414 -0.792990 -1.220712	Н -5.228793 1.744496 0.020973				
C 5.467376 -1.904945 0.579519	C -6.507380 0.017257 0.152997				
Н 6.486566 -1.540292 0.668593	Н -7.419030 0.590469 0.012261				
C 4.958796 -2.799852 1.520883	C -6.567852 -1.362523 0.335389				
Н 5.579223 -3.133710 2.347037	Н -7.528616 -1.869032 0.335978				
C 3.653867 -3.271631 1.388784	C -5.393003 -2.092227 0.525066				
Н 3.255747 -3.979425 2.110218	Н -5.439371 -3.166782 0.676993				
C 2.856799 -2.848971 0.323979	C -4.159936 -1.446253 0.531136				
Н 1.844531 -3.232230 0.227121	H -3.244448 -2.010153 0.689780				
C -2.163122 -0.366389 -0.849874	C 0.954964 0.021116 -2.878093				
Н -2.706273 -0.086831 -1.757370	H 1.570456 0.848142 -2.514828				
Н -1.826427 0.560850 -0.379248	H 0.834941 0.141969 -3.957901				
C -3.059953 -1.147053 0.109699	C 1.643980 -1.305744 -2.591775				
Н -2.464120 -1.562960 0.927327	Н 2.622802 -1.307358 -3.079290				
Н -3.554415 -1.986441 -0.387399	H 1.048579 -2.141662 -2.968520				
C -5.915294 -0.469217 -0.040404	C 2.969412 -2.914542 -0.413327				
C -5.763876 -0.273681 -1.548209	C 2.309874 -4.166547 -0.989874				
C -6.358068 -1.893845 0.293228	H 2.211457 -4.116253 -2.078546				
C -6.908866 0.546604 0.533495	H 1.322196 -4.331221 -0.553034				
C 2.318637 2.845128 0.246079	Н 2.939540 -5.034533 -0.762364				
C 1.020585 3.253487 0.581116	C 4.347301 -2.668145 -1.021675				
H 0.637386 4.197248 0.206878	Н 4.995251 -3.521089 -0.788217				
C 0.135340 2.352270 1.250444	H 4.813484 -1.767046 -0.614335				
Н -0.901802 2.646979 1.390419	Н 4.311353 -2.582480 -2.111893				

С	0.568886	1.098152	1.784931	С	3.034201	-2.982214	1.110385
С	1.868839	0.677712	1.425236	Н	2.039718	-3.071570	1.554310
Н	2.213086	-0.320434	1.670969	Н	3.530883	-2.103717	1.531368
С	2.690195	1.499229	0.600526	Η	3.623002	-3.862202	1.391256
Η	3.641133	1.101732	0.258922	С	1.503029	0.925015	2.667341
С	3.243439	3.708021	-0.555130	С	2.608604	0.908835	1.808429
Η	2.698671	4.476202	-1.106799	Η	3.477367	0.311816	2.064368
Η	3.822806	3.116227	-1.268026	С	2.577577	1.603844	0.556428
Η	3.950188	4.204557	0.120181	Η	3.430458	1.515515	-0.110363
С	-0.366597	0.296943	2.665420	С	1.501026	2.444940	0.182107
Η	-1.377528	0.415332	2.252031	С	0.352035	2.409951	1.033705
С	-0.369564	0.926300	4.071227	Η	-0.545098	2.947794	0.747614
Η	0.618991	0.851380	4.536391	С	0.334591	1.638670	2.218651
Η	-1.084861	0.402407	4.711728	Η	-0.572014	1.590888	2.813231
Η	-0.654145	1.982424	4.046009	С	1.472232	0.164380	3.954778
С	-0.040770	-1.193994	2.736173	Η	2.409648	-0.367349	4.128589
Н	0.013003	-1.650237	1.742962	Η	0.654852	-0.563981	3.937919
Η	-0.814531	-1.713734	3.308247	Η	1.302972	0.851522	4.790633
Н	0.910487	-1.375262	3.247596	С	1.628230	3.374932	-1.008678
Ν	1.101338	-1.581354	-1.654150	Η	2.243736	2.857345	-1.757205
Ν	-0.953082	-1.101770	-1.228660	С	2.405498	4.628700	-0.565684
S	-4.325551	-0.059169	0.860457	Η	1.852718	5.181586	0.201370
Cl	0.590664	1.914066	-2.616789	Η	2.556380	5.298148	-1.417740
Ru	0.858263	1.262297	-0.441639	Η	3.387864	4.374733	-0.156827
Η	-7.897093	0.375258	0.093544	С	0.301078	3.767384	-1.659597
Η	-7.004176	0.445627	1.619227	Η	-0.296297	2.896889	-1.944871
Η	-6.609998	1.573904	0.304185	Η	0.492762	4.354819	-2.561860
Η	-7.321698	-2.102707	-0.186217	Η	-0.301974	4.396815	-0.996395
Η	-5.647896	-2.643730	-0.071094	Ν	-1.971929	0.387826	-0.867627
Η	-6.473783	-2.029246	1.371708	Ν	-0.368117	0.133235	-2.277443
Η	-6.727003	-0.452016	-2.040750	S	1.831748	-1.453012	-0.786795
Н	-5.442587	0.743624	-1.788777	Ru	0.789229	0.330480	0.544699
Η	-5.048728	-0.979971	-1.984211	Cl	-0.435306	-1.467901	1.556030

1c - TS1-decoordination	1c – TS2-coordination				
E (SCF) = -1241.67303	E (SCF) = -1241.66375				
E (SCF; solvent = DCM) = -2075.56683994	E (SCF; solvent = DCM) = -2075.55792303				
Zero-point correction = 0.568026	Zero-point correction = 0.567551				
Thermal correction to Enthalpy = 0.599577	Thermal correction to Enthalpy = 0.600329				
Thermal correction to Gibbs Free Energy =	Thermal correction to Gibbs Free Energy =				
0.50875	0.50554				
C 0.405545 -0.634366 -1.343551	C 0.294194 -0.146003 -0.838048				
C 1.474310 -2.350483 -2.358387	C 2.220733 0.175249 -1.975939				
Н 2.318766 -2.895324 -2.751102	Н 3.270418 0.054496 -2.190809				
C 0.148962 -2.620637 -2.391027	C 1.266416 0.923767 -2.573326				
Н -0.390580 -3.455696 -2.810219	Н 1.321262 1.584961 -3.423590				
C 2.889688 -0.420991 -1.674364	C 2.340733 -1.455833 -0.094931				
Н 2.649734 0.640672 -1.592948	Н 1.759673 -1.593013 0.816813				
Н 3.355277 -0.553270 -2.658194	Н 2.355775 -2.403123 -0.644796				
C 3.858452 -0.844151 -0.588846	C 3.752115 -1.026847 0.219571				
C 4.959570 -0.015122 -0.336950	C 4.833275 -1.722721 -0.329354				

Н	5.083252	0.907689	-0.900927	Η	4.653356	-2.571367	-0.986244
С	5.910861	-0.369605	0.615760	С	6.142482	-1.344592	-0.032179
Η	6.760207	0.282210	0.797872	Η	6.974814	-1.895634	-0.459920
С	5.774794	-1.560268	1.330302	С	6.378036	-0.263513	0.813994
Н	6.517302	-1.839400	2.071661	Н	7.396503	0.031947	1.048388
С	4.684947	-2.391023	1.082581	С	5.302917	0.435942	1.365182
Н	4.575588	-3.323209	1.629218	Н	5.484608	1.274084	2.031843
C	3.730744	-2.036774	0.126656	C	3,995838	0.057391	1.072491
н	2 887665	-2 696542	-0.055803	н	3 1 5 8 6 3 3	0 594555	1 509613
C	-1 953321	-1 436482	-1 794501	C	-1 154085	1 335496	-2 338371
н	-2 274555	-1 808529	-2 772673	н	-1 765082	0 566111	-2 824035
н	-2 197193	-0 374455	-1 763049	н	-0.845719	2 025003	-3 125505
C II	-2.177175	-0.37 ++33	-1.703047	C II	-0.043717	2.023003	-3.123303
с ц	-2.004430	-2.214470	-0.070213	с ц	-2.032920	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-1.320002
и П	2 575576	-3.030203	-0.322903	н Ц	-2.010770	2 904626	1 056162
п	-3.3/33/0	-2.0/1004	-1.0/21/1	П	-2.549449	2.094020	-1.030103
С С	-4.912004	-0.761662	0.483969	С С	-0.643430	4.455724	-0.239105
L C	-5.0/3/95	-0.036221	-0.851228	L H	0.095560	4.884543	1.032///
L C	-5./9/199	-2.006978	0.550/1/	H	0.943957	4.226891	1.243990
C	-5.239838	0.179860	1.647581	H	-0.568166	4.884345	1.903060
С	0.634153	3.187746	0.316475	H	0.476594	5.903344	0.903628
С	-0.608188	2.900132	0.905383	С	0.315711	4.416394	-1.426826
Н	-1.451331	3.561194	0.733907	Н	0.740448	5.414440	-1.586788
С	-0.815132	1.653942	1.564229	Н	-0.198499	4.137140	-2.352674
Н	-1.818525	1.391724	1.885941	Η	1.140301	3.719671	-1.252861
С	0.240957	0.727257	1.824338	С	-1.824033	5.386683	-0.513850
С	1.481750	1.004199	1.208804	Η	-2.502692	5.429829	0.342009
Η	2.290870	0.283458	1.259131	Η	-2.398342	5.078893	-1.394162
С	1.652571	2.176506	0.413725	Η	-1.454100	6.400080	-0.710320
Н	2.596934	2.336768	-0.097601	С	-2.788734	-1.252403	2.007855
С	0.866981	4.432194	-0.481680	С	-3.195507	-0.681396	0.758992
Н	-0.070737	4.851631	-0.850060	Η	-3.775839	0.237506	0.775388
Η	1.516123	4.238214	-1.338766	С	-2.888605	-1.284758	-0.492799
Н	1.356278	5.181140	0.152313	Η	-3.273460	-0.846275	-1.407698
С	-0.005687	-0.462592	2.726091	С	-2.014624	-2.394126	-0.565526
Н	-1.069329	-0.712164	2.637883	С	-1.453612	-2.848772	0.669754
С	0.257743	-0.022109	4.178353	Н	-0.692295	-3.620974	0.661834
Н	1.310336	0.242589	4.325895	С	-1.897692	-2.335048	1.931468
Н	0.016387	-0.839358	4.864390	Н	-1.423837	-2.699096	2.837899
Н	-0.351527	0.842525	4.459127	C	-3.178142	-0.627759	3.312920
C	0.801894	-1.708862	2.370754	H	-2.416598	-0.800117	4.076079
H	0.632967	-2.012210	1.333269	Н	-4.122098	-1.060611	3.663415
н	0 500160	-2 537279	3 017974	н	-3 319697	0.450617	3 207662
н	1 877064	-1 561496	2 514411	C	-1 715521	-3 039757	-1 902301
N	1.616894	-1 134200	-1 716240	ч	-1 736428	-2 239495	-2 653906
N	-0.403674	-1.154200	-1.784069	C II	-2.856165	-4.022550	-2.055700
S IN	2 1 2 2 1 9 2	1 221021	-1.704009	с ц	2 201522	4.022330	1 105516
	-3.123100	-1.231031	0.792930	11	-2.091303	-4.037203	-1.495540
	-0.04400/	1.000000	-2.412009 0.2025/1	П U	-2.070230 2.022750	-4.4047/1	-3.213071 2.22100E
ки	-0.028330	1.100041	-0.303341	н С	-3.032/59	-3.329493	-2.231003
	-0.293362	0.4/38/3	1.371045	L T	-0.356962	-3./33634	-1.700413
	-5.080599	-0.3051/5	2.010050	H	0.459289	-3.0540/6	-1./28280
H	-4.63/642	1.093391	1.60/994	H	-0.188519	-4.08/591	-3.00/055
H	-6.847215	-1./18310	0.424686	H	-0.303/34	-4.610543	-1.332578
H	-5.566495	-2./24322	-0.243275	N	1.614411	-0.468538	-0.917820
H	-5.692940	-2.515980	1.512521	Ν	0.088429	0.714334	-1.876872

Н	-6.112975	0.293828	-0.965164	S	-1.274077	2.743954	0.197204
Η	-4.429626	0.846083	-0.910958	Ru	-1.049369	-0.763571	0.632130
Н	-4.853059	-0.686667	-1.703621	Cl	0.390945	0.002931	2.260511

 Table S3. Atomic coordinates of the optimized species derived from complex

 1f.^a

$1 f - R_{R_{H}}/R_{S}$	$1f - R_{R_{II}}/S_{S}$					
	itur 5					
E (SCF) = -1315.46298	E (SCF) = -1315.46449					
E(SCF; solvent = DCM) = -2149.40486696	E(SCF; solvent = DCM) = -2149.40230088					
Zero-point correction = 0.537952	Zero-point correction = 0.537463					
Thermal correction to Enthalpy = 0.570433	Thermal correction to Enthalpy = 0.569237					
Thermal correction to Gibbs Free Energy =	Thermal correction to Gibbs Free Energy =					
0.47665	0.47760					
C -0.736205 1.399971 -0.531482	C 0.439685 -0.668721 1.218337					
C -2.300650 2.998669 -0.878560	C 1.551751 -2.152348 2.519285					
H -3.254384 3.394797 -1.190540	Н 2.223205 -2.969784 2.730936					
C -1.211497 3.614179 -0.363453	C 0.785952 -1.398768 3.341014					
Н -1.025110 4.651329 -0.132221	Н 0.656902 -1.423407 4.411824					
C -2.939760 0.686287 -1.538338	C 1.979532 -2.315225 0.075511					
Н -2.342915 -0.104500 -1.996479	Н 1.296789 -2.199238 -0.768372					
Н -3.451412 1.198333 -2.361345	H 2.026366 -3.389918 0.285788					
C -3.957207 0.126382 -0.565764	C 3.363762 -1.792617 -0.249293					
C -4.624310 -1.052570 -0.923218	C 3.881483 -2.059575 -1.523541					
Н -4.385864 -1.540790 -1.866252	Н 3.280080 -2.610883 -2.243953					
C -5.601526 -1.596578 -0.092896	C 5.163485 -1.641018 -1.871980					
Н -6.111302 -2.509318 -0.387344	Н 5.550536 -1.858960 -2.863143					
C -5.924427 -0.970931 1.111339	C 5.947721 -0.946087 -0.951090					
Н -6.686171 -1.393551 1.759495	Н 6.947525 -0.619955 -1.221229					
C -5.268776 0.203841 1.472897	C 5.442581 -0.680292 0.319693					
Н -5.521967 0.703654 2.403662	Н 6.050752 -0.149458 1.046708					
C -4.292798 0.752214 0.638470	C 4.159060 -1.103269 0.670914					
Н -3.796275 1.672670 0.933083	Н 3.783483 -0.893178 1.668742					
C 1.078276 2.877466 0.331851	C -0.854060 0.461897 3.037359					
Н 1.253514 2.269136 1.223168	Н -0.535926 1.475496 2.772300					
Н 1.126445 3.929198 0.628319	Н -0.845443 0.391286 4.127745					
C 2.118681 2.601775 -0.741123	C -2.253697 0.174146 2.520428					
Н 3.108956 2.948326 -0.437458	H -3.001289 0.731808 3.090579					
Н 1.847943 3.105688 -1.673029	Н -2.476882 -0.892592 2.581639					
C 0.207867 -2.682232 -0.524276	C -0.031462 0.955982 -2.604362					
C 1.355912 -2.285301 0.174337	C -0.794373 1.946971 -1.967762					
Н 2.330210 -2.648087 -0.135809	Н -1.765856 2.220054 -2.366608					
C 1.266675 -1.336303 1.242085	C -0.333639 2.542828 -0.753016					
H 2.184482 -1.009959 1.722341	H -0.977138 3.260075 -0.249951					
C 0.029889 -0.842427 1.723694	C 0.938169 2.262471 -0.192939					
C -1.130031 -1.216930 0.974944	C 1.686334 1.223808 -0.827380					
Н -2.098021 -0.793899 1.221749	Н 2.623293 0.886590 -0.396878					
C -1.041801 -2.083264 -0.136831	C 1.204175 0.566325 -1.980414					

Н	-1.939172	-2.308271	-0.702967	Η	1.785604	-0.243826	-2.407012
С	0.264166	-3.628273	-1.681568	С	-0.497010	0.269634	-3.849148
Η	1.288115	-3.942110	-1.892787	Η	-1.483104	0.622182	-4.156738
Η	-0.143254	-3.151055	-2.578371	Η	-0.553220	-0.810828	-3.684932
Η	-0.334608	-4.518807	-1.461813	Η	0.211507	0.459887	-4.662652
С	-0.023842	-0.048343	3.013962	С	1.465860	3.102665	0.953829
Η	0.915376	0.518854	3.078190	Η	0.597753	3.385695	1.565346
С	-0.049556	-1.036162	4.194772	С	2.067558	4.398097	0.378940
Η	-0.959821	-1.644811	4.172991	Η	2.931412	4.178996	-0.257744
Η	-0.032690	-0.491706	5.143699	Η	2.405347	5.049979	1.190095
Η	0.809710	-1.713117	4.176957	Η	1.339292	4.953284	-0.219633
С	-1.189101	0.936636	3.110369	С	2.477289	2.391507	1.853291
Η	-1.211032	1.631264	2.265953	Η	2.083640	1.453971	2.256629
Н	-1.102414	1.522543	4.030055	Η	2.740203	3.038367	2.695270
Η	-2.153084	0.419422	3.150068	Η	3.406666	2.168884	1.319142
Ν	-1.999931	1.651706	-0.973157	Ν	1.334786	-1.696862	1.231236
Ν	-0.269293	2.622519	-0.152190	Ν	0.118409	-0.495729	2.531561
S	2.273793	0.820882	-1.178519	S	-2.383949	0.735674	0.778893
Cl	-0.055087	-0.392788	-2.852260	Cl	-1.082392	-1.752217	-1.139131
Ru	0.292235	-0.367815	-0.472268	Ru	-0.303176	0.374099	-0.376597
С	3.734410	0.331518	-0.242327	С	-3.840308	-0.159932	0.220544
С	4.060250	0.811260	1.030305	С	-4.857081	0.619575	-0.338884
С	5.233155	0.379322	1.648690	С	-6.025574	0.003631	-0.784616
С	6.069063	-0.537932	1.011656	С	-6.176944	-1.376197	-0.660342
С	5.738068	-1.016971	-0.254784	С	-5.158373	-2.145072	-0.096664
С	4.576403	-0.578499	-0.889838	С	-3.979955	-1.544774	0.339905
Н	3.418069	1.520453	1.543556	Η	-4.741515	1.697178	-0.412412
Н	5.491896	0.761379	2.631881	Η	-6.819447	0.605832	-1.215911
Н	6.980990	-0.869931	1.498171	Η	-7.090519	-1.854100	-1.001031
Н	6.393543	-1.717928	-0.762793	Η	-5.273797	-3.220995	-0.006886
Η	4.334301	-0.922480	-1.891671	Η	-3.176521	-2.151602	0.740278

1f - intermediate	1f – TS-inversion				
E (SCF) = -1315.43132 E (SCF; solvent = DCM) = -2149.38107347 Zero-point correction = 0.536866 Thermal correction to Enthalpy = 0.568386 Thermal correction to Gibbs Free Energy = 0.47498	E (SCF) = -1315.44528 E (SCF; solvent = DCM) = -2149.38465656 Zero-point correction = 0.537095 Thermal correction to Enthalpy = 0.568302 Thermal correction to Gibbs Free Energy = 0.47777				
C-0.5303910.061435-1.316581C-0.0011361.779112-2.675948H-0.1664332.691164-3.228130C1.1002771.000066-2.559108H2.0825121.110487-2.988299C-2.3639301.684505-1.850288H-3.0222530.813188-1.802361	C-0.6208811.029447-0.992877C-1.8440292.104792-2.563276H-2.5993992.205789-3.326852C-0.9599363.000310-2.066780H-0.7911574.038367-2.307047C-2.412127-0.289134-2.180848H-1.746937-1.143318-2.038489				
H-2.5626502.169540-2.812558C-2.6577212.639651-0.712128C-3.9886742.810842-0.311965H-4.7789882.248353-0.806117C-4.3147353.7134470.698128	H-2.651260-0.257555-3.249730C-3.682550-0.429674-1.368164C-4.275198-1.696569-1.289782H-3.805887-2.541646-1.789823C-5.467241-1.881697-0.592983				

C -3.312033 4.455099 1.322937 C -6.083086 -0.802021 0.040316 H -3.566406 5.159717 2.109495 H -7.012671 0.944769 0.582990 C -1.986018 4.293274 0.926019 C -5.502373 0.462095 -0.035814 H -1.659273 3.392252 0.088381 C -4.310585 0.443789 C 1.659327 3.322522 0.088381 C 4.310585 0.49107 0.738817 H 0.6521961 3.281092 -0.391780 H -3.875874 1.6463385 -0.797465 C 1.599583 -1.221744 C 0.826406 2.968308 -0.316177 H 1.473221 -1.915695 -2.311763 H 2.906308 -0.07199 H 3.5510615 -0.454530 -2.176403 H 2.960326 -1.747470 C -3.01737 1.851113 C 0.0966348 -1.704770 0.755828 -2.4174379	Н	-5.351909	3.839450	0.994764	Η	-5.915677	-2.869821	-0.545552	
H -3.564601 5.159717 2.109495 H -7.012671 -0.944769 0.58290 C -1.986018 4.293274 0.926019 C -5.502373 0.442095 -0.035814 H -1.200840 4.874494 1.400801 H -5.981964 1.310785 0.4423789 C 1.659327 3.392522 -0.088381 C -4.310585 0.642107 -0.738817 H 0.621061 3.281092 -0.391780 H 3.357874 1.643385 -0.797465 C 1.598538 -1.222847 -1.472349 C 0.82503 2.759070 0.739622 H 1.473221 -1.916695 -2.31163 H 0.635203 2.759070 0.739622 H 1.351615 -0.454530 2.176403 H 2.961869 Ju6118 0.075199 H 3.53467 -1.867195 -1.126769 H 2.444333 2.600264 -1.047470 C -2.311453 3.996498 1.017804 H 1.985817 -2.096981 2.075822 L -1.064733<	C	-3.312033	4.455099	1.322937	С	-6.083086	-0.802021	0.040316	
C -1.986018 4.293274 0.926019 C -5.502373 0.462095 -0.035814 H -1.200840 4.874494 1.400801 H -5.981964 1.310785 0.443789 C -1.659327 3.392252 -0.088381 C -4.310585 0.649107 -0.738817 H 0.621961 3.281092 -0.391780 H -3.875874 1.643385 -0.797465 C 1.596858 -1.222474 1.472349 C 0.826406 2.966308 -0.316177 H 1.473221 -1.915695 -2.3176403 H 0.635203 2.759070 0.739622 H 3.510615 -0.454530 -2.176403 H 2.96042 0.20879 -2.09032 -1.747470 C -3.41633 -3.964948 1.017804 H 1.985817 -2.09081 2.075828 C -0.902379 -2.915658 1.763790 H 1.469644 0.21441 2.814593 C -0.922379 -2.915655	Н	-3.564601	5.159717	2.109495	Η	-7.012671	-0.944769	0.582990	
H -1.200840 4.874494 1.400801 H -5.981964 1.310785 0.649107 -0.738817 H -0.621961 3.281029 -0.088381 C -4.310585 0.649107 -0.738817 H -0.621961 3.281029 -0.391780 H -3.875874 1.643385 -0.797465 C 1.598538 -1.222847 -1.472349 C 0.826406 2.968308 -0.316177 H 1.473221 -1.915695 -2.311963 H 0.635203 2.759070 0.739622 H 1.329442 -1.710304 -0.580767 H 2.93088 2.046118 -0.075199 H 3.593467 -1.867195 -1.126769 H 2.444333 2.690326 -1.747470 C -3.411035 -2.147431 0.851113 C 0.0286516 -0.368508 2.349301 H -2.31453 -3.996498 1.017804 H 1.98517 -2.096981 2.075828 C -1.08473 -2.297724 1.614395 C 0.68516 0.366510 2.214761	C	-1.986018	4.293274	0.926019	С	-5.502373	0.462095	-0.035814	
C -1.659327 3.392252 -0.008381 C -4.310585 0.649107 -0.737465 H -0.621961 3.281092 -0.391780 H -3.875874 1.643385 -0.797465 C 1.595538 1.222847 -1.472349 C 0.826406 2.968308 -0.316177 H 1.473221 -1.915695 -2.311963 H 0.635203 2.759070 0.739622 H 1.192424 -1.71044 -0.580767 H 0.739079 4.047323 2.609326 -1.747470 C -3.311055 -1.25769 H 2.44433 2.609326 -1.747470 C -3.30021 -2.926942 1.200873 C 0.089348 1.701863 1.927088 H -2.300221 -2.926949 1.077804 H 1.98617 -0.20183 1.271883 C -1.084733 -2.297724 1.614395 C 0.607850 0.202437 2.20107 C -2.03033 0.71268 1.55067 H 2.515497 0.322613 1.216691 H -2.02233 <td>Н</td> <td>-1.200840</td> <td>4.874494</td> <td>1.400801</td> <td>Н</td> <td>-5.981964</td> <td>1.310785</td> <td>0.443789</td> <td></td>	Н	-1.200840	4.874494	1.400801	Н	-5.981964	1.310785	0.443789	
H -0.621961 3281092 -0.391780 H -3.875874 1.643385 -0.797465 C 1.598538 -1.222847 -1.472349 C 0.826406 2.968308 -0.316177 H 1.473221 -1.915695 -2.311963 H 0.635203 2.759070 0.739622 H 1.192842 -1.710304 -0.580767 H 0.733097 4.047322 -0.668937 H 3.510615 -0.454530 -2.176403 H 2.961869 3.046118 -0.075199 H 3.593467 -1.867195 -1.126769 H 2.444333 2.690326 -1.747470 C -3.411035 -2.076942 1.200873 C 0.986348 -1.71083 1.242546 C -1.08473 -2.29724 1.614395 C 0.6683516 0.366350 2.349301 H -0.202879 -2.915658 1.763790 H 1.469644 0.219414 2.814593 C -0.902521 -0.897126 1.556056 H -2.51897 -0.132281 1.216691 C -2.	C	-1.659327	3.392252	-0.088381	С	-4.310585	0.649107	-0.738817	
C 1.598538 -1.222847 -1.472349 C 0.8826406 2.968308 -0.316177 H 1.473221 -1.915695 -2.311963 H 0.635203 2.759070 0.739622 H 1.122842 -1.710304 -0.580767 H 0.739077 4.047322 -0.466867 C 3.076254 -0.916982 -1.284850 C 2.230838 2.515028 -0.689937 H 3.5316615 -0.454530 -2.176403 H 2.461633 2.690326 -1.747470 C -3.411035 -2.147431 0.851113 C 0.029855 2.465335 1.242546 C -2.300221 -2.926949 1.077804 H 1.985817 -2.09681 2.075828 C -1.084733 -2.297724 1.614395 C 0.6083516 0.202437 2.210107 C -2.020533 0.971268 1.556056 H 2.51897 0.132281 1.216691 C -2.05333 0.971268 1.556056 <td>Н</td> <td>-0.621961</td> <td>3.281092</td> <td>-0.391780</td> <td>Н</td> <td>-3.875874</td> <td>1.643385</td> <td>-0.797465</td> <td></td>	Н	-0.621961	3.281092	-0.391780	Н	-3.875874	1.643385	-0.797465	
H 1.473221 -1.915695 -2.311963 H 0.635203 2.759070 0.739622 H 1.192842 -1.710304 -0.580767 H 0.739097 4.047322 -0.666667 S 0.76524 -0.916982 -1.284850 C 2.230838 2.515028 -0.6689937 H 3.510615 -0.454530 -2.176403 H 2.961869 3.046118 -0.075199 H 3.510615 -1.067195 -1.126769 H 2.444333 2.690326 -1.747470 C -3.311653 -3.996498 1.200873 C 0.0986348 -1.701863 1.927088 C -1.084733 -2.927724 1.614395 C 0.6607850 0.202437 2.220107 C -2.03033 0.971268 1.55056 H -2.518897 -0.132281 1.216691 H -2.05033 0.971268 1.55056 H -2.518897 -0.322811 0.346561 C -3.251602 0.517141 0.926684 H -3.656451 -2.46494 -2.748046 0.294601 C <	C	1.598538	-1.222847	-1.472349	C	0.826406	2.968308	-0.316177	
H 1.192842 -1.710304 -0.580767 H 0.739097 4.047322 -0.466867 C 3.076254 -0.916982 -1.284850 C 2.230838 2.515028 -0.689937 H 3.510615 -0.454530 -2.174403 H 2.96169 3.046118 -0.075199 H 3.593467 -1.867195 -1.126769 H 2.444333 2.690326 -1.747470 C -3.411035 -2.147431 0.851113 C 0.029855 -2.465335 1.242546 C -2.30127 -2.96494 1.200873 C 0.986348 +.701863 1.927088 H -2.31453 -3.996498 1.017804 H 1.985817 -2.096981 2.075828 C -1.084733 -2.297724 1.614395 C 0.6683516 -0.368580 2.349301 H -0.20233 0.97120 1.891762 C -0.607850 0.202437 2.20107 C -3.251602 -0.717401 0.926934 C -1.231759 1.837759 0.950633 H -4.047	Н	1.473221	-1.915695	-2.311963	Н	0.635203	2.759070	0.739622	
C 3.076254 -0.916982 -1.284850 C 2.230838 2.515028 -0.689937 H 3.510615 -0.454530 -2.176403 H 2.961869 3.046118 -0.075199 C -3.411035 -2.147431 0.851113 C 0.028655 -2.465335 1.242546 C -3.300221 -2.926942 1.200873 C 0.986348 -1.701863 1.2927088 H -2.311453 -3.966498 1.017804 H 1.965817 -2.06991 2.075228 C -1.084733 -2.297724 1.6114395 C 0.6683516 -0.368580 2.349301 H -0.202879 -2.915658 1.763790 H 1.469644 0.219414 2.814593 C -0.3033 0.971268 1.556056 H -2.518897 -0.132281 1.216691 C -3.251602 -0.717401 0.92688 H 1.353381 +1.34451 0.946203 H -4.64494 -2.748046 0.294601 C 0.320115 -3.345481 0.745934 L -5	Н	1.192842	-1.710304	-0.580767	Н	0.739097	4.047322	-0.466867	
H3.510615 0.454530 -2.176403 H 2.561869 3.046118 -0.075199 H 3.593467 -1.867195 -1.126769 H 2.444333 2.690326 -1.77470 C -3.411035 -2.174747 0.651113 C 0.02655 2.465355 1.242546 C -2.300221 -2.926942 1.200873 C 0.026355 2.465355 1.242546 C -2.300221 -2.926942 1.200873 C 0.026355 2.465380 2.349301 H -0.202879 -2.915658 1.763790 H 1.469644 0.219414 2.814593 C -0.992521 -0.897120 1.891762 C -0.607850 0.202437 2.20107 C -2.03033 0.971268 1.556056 H -2.518897 -0.132281 1.216691 C -3.251602 -0.717401 0.926934 C -1.231759 -1.837759 0.950633 H -4.46754 0.076133 0.560462 H -1.9646441 -2.361471 0.3465611 C -2.748046 0.294601 C 0.320115 -3.845481 0.745934 H -4.489252 -3.753179 -0.092688 H 1.353381 -1.136434 0.322907 H -5.420399 -2.809466 1.086257 H -0.345192 -4.560865 1.242000 C 0.261744 -0.341079 2.531370 C -0.9942266 1.5691502 2.911000 C	C	3.076254	-0.916982	-1.284850	C	2.230838	2.515028	-0.689937	
H 3.593467 -1.867195 -1.126769 H 2.444333 2.690326 -1.747470 C -3.411035 -2.147431 0.851113 C 0.029855 -2.465335 1.242546 C -2.300221 -2.926942 1.200873 C 0.986348 -1.701863 1.927088 H -2.21453 -3.996498 1.017804 H 1.985817 -2.096981 2.075828 C -1.084733 -2.2915658 1.763790 H 1.469644 0.219414 2.814593 C -0.902521 -0.897120 1.891762 C -0.607850 0.202437 2.220107 C -2.103589 -0.117711 1.926934 C -1.23759 1.837759 0.950633 H -4.047654 -0.076133 0.560462 H -1.964641 -2.361471 0.346561 C -3.23170 -0.92688 H 1.335381 -4.134451 0.946203 H -5.43399 -2.134569 -0.512198 H 0.148604 -3903643 -0.332907 H -5.420399	н	3 510615	-0.454530	-2 176403	н	2 961869	3 046118	-0.075199	
C -3.411035 -2.147431 0.851113 C 0.029855 -2.465335 1.242546 C -2.300221 -2.926942 1.200873 C 0.986348 -1.701863 1.927088 H -2.311453 -3.996498 1.017804 H 1.985817 -2.096981 2.075828 C -1.084733 -2.297724 1.614395 C 0.683516 -0.365880 2.349301 H -0.202879 -2.915658 1.763790 H 1.469644 0.219414 2.814593 C -0.992521 -0.897120 1.891762 C -0.607850 0.202437 2.20107 C -2.13059 -0.117011 0.926934 C -1.231759 -1.837759 0.950633 H -4.04764 -0.07133 0.560462 H -2.916641 -2.361471 0.346561 C -3.251602 -0.174806 0.294601 C 0.320115 -3.845481 0.745934 H -4.49252 -3.75179 -0.092688 H 1.353381 -4.134451 0.946203 H -5	н	3 593467	-1 867195	-1 126769	н	2 444333	2 690326	-1 747470	
C -2.30221 -2.926942 1.200873 C 0.986348 -1.701863 1.927088 H -2.311453 -3.996498 1.017804 H 1.985817 -2.096981 2.075828 C -1.084733 -2.297724 1.614395 C 0.683516 -0.368580 2.349301 H -0.202879 -2.915658 1.763790 H 1.469644 0.219414 2.814593 C -0.992521 -0.897120 1.891762 C -0.607850 0.202437 2.220107 C -2.103589 -0.110731 1.513884 C -1.550407 -0.555422 1.461671 H -2.050333 0.971268 1.550566 H -2.518897 -0.132281 1.216691 C -3.251602 -0.717401 0.926934 C -1.231759 -1.837759 0.950633 H -4.48944 -2.748466 0.294601 C 0.32115 3.845481 0.745934 H -4.489252 -3.753179 -0.092688 H 1.353381 -4.134451 0.946203 H	C	-3 411035	-2 147431	0.851113	C	0.029855	-2 465335	1 242546	
C 1.200712 1.200713 1.99549 1.017804 H -2.311453 -2.997724 1.614395 C 0.683516 -0.366580 2.349301 H -0.202879 -2.91724 1.614395 C 0.607850 0.202437 2.220107 C -0.902521 -0.897120 1.891762 C 0.607850 0.202437 2.220107 C -2.103589 -0.110731 1.513884 C -1.550407 -0.555422 1.461671 H -2.050333 0.971268 1.556056 H -2.518897 -0.32281 1.216691 C -3.251602 -0.717401 0.926934 C -1.231759 -1.837759 0.950633 H -4.480252 -3.75179 -0.092688 H 1.353381 -4.134541 0.946203 H -5.420399 -2.809466 1.086257 H -0.345192 -4.560865 1.242000 C 0.261744 -0.341079 2.531370 C -0.942266 1.508150 2.913754 H 1.18294 -0.840988 2.059370 <	C	-2 300221	-2 926942	1 200873	c	0.986348	-1 701863	1 927088	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	н	-2 311453	-3 996498	1.017804	н	1 985817	-2 096981	2 075828	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-1 084733	-2 297724	1.614395	C	0.683516	-0.368580	2349301	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н	-0 202879	-2 915658	1 763790	н Н	1 469644	0.300300	2.91/501	
$ \begin{array}{c} 6 & -0.37251 \\ c & -2.103589 & -0.110731 & 1.513884 \\ c & -1.550407 & -0.555422 & 1.461671 \\ H & -2.050333 & 0.971268 & 1.556056 \\ H & -2.518897 & -0.132281 & 1.216691 \\ c & -3.251602 & -0.717401 & 0.926934 \\ c & -1.231759 & -1.837759 & 0.950633 \\ H & -4.047654 & -0.076133 & 0.560462 \\ H & -1.964641 & -2.361471 & 0.346561 \\ c & -4.664494 & -2.748046 & 0.294601 \\ c & 0.320115 & -3.845481 & 0.745934 \\ H & -4.489252 & -3.753179 & -0.092688 \\ H & 1.353381 & -4.134451 & 0.946203 \\ H & -5.07367 & -2.134569 & -0.512198 \\ H & 0.148604 & -3.903643 & -0.332907 \\ H & -5.420399 & -2.809466 & 1.086257 \\ H & -0.345192 & -4.560865 & 1.242000 \\ c & 0.261744 & -0.341079 & 2.531370 \\ c & 0.254644 & -0.726020 & 4.022845 \\ H & -0.1290719 & 1.208514 & 4.383345 \\ H & -0.584151 & -0.254600 & 4.545824 \\ H & -0.477806 & 0.685061 & 4.895171 \\ c & 0.441693 & 1.164743 & 2.356925 \\ c & -2.059931 & 2.312504 & 2.248768 \\ H & 0.431276 & 1.457728 & 1.303630 \\ H & -1.856841 & 2.50578 & 1.191392 \\ H & 1.406098 & 1.467121 & 2.773072 \\ H & -1.85641 & 2.50578 & 1.191392 \\ H & 1.406098 & 1.467121 & 2.773072 \\ H & -1.623222 & 0.911479 & -1.897798 \\ N & 0.7991970 & 1.189680 & -1.910212 \\ N & -1.629322 & 0.911479 & -1.897798 \\ N & 0.79897 & -0.046324 & -1.721525 \\ N & -0.223533 & 2.331169 & -1.104471 \\ S & 3.35539 & 0.171065 & 0.171086 \\ S & 2.310569 & 0.725927 & -0.341804 \\ C & -1.853370 & -2.447194 & -2.227807 \\ C & 1.627778 & -1.613734 & -1.831069 \\ Ru & -1.597088 & -1.35292 & -0.234255 \\ Ru & 0.231195 & -0.410126 & 0.206989 \\ C & 5.149229 & 0.220812 & 0.191202 \\ C & 4.009198 & 0.187393 & -0.342169 \\ C & 5.879295 & -0.817262 & 0.780698 \\ C & 5.879295 & -0.817262 & 0.780698 \\ C & 5.879295 & -0.817262 & 0.780698 \\ C & 5.872925 & -0.817262 & 0.780698 \\ C & 5.87294 & 1.327967 & -0.347491 \\ C & 7.204520 & 1.388909 & -0.305017 \\ C & 5.764860 & -1.078900 & -1.393188 \\ C & 5.812594 & 1.327967 & -0.34$		-0.202077	-0.897120	1.703750	C II	-0.607850	0.217414	2.014373	
G 1210303 0.971268 1.556056 H -2.518897 -0.132281 1.216691 C -3.251602 -0.717401 0.926934 C -1.231759 -1.837759 0.950633 H -4.047654 -0.076133 0.560462 H -1.964641 -2.31471 0.346561 C -4.664494 -2.748046 0.294601 C 0.320115 -3.845481 0.745934 H -4.489252 -3.753179 -0.092688 H 1.353381 -4.134451 0.946203 H -5.073367 -2.134569 -0.512198 H 0.148604 -3.903643 -0.332907 H -5.420399 -2.809466 1.086257 H -0.345192 -4.560865 1.242000 C 0.261744 -0.341079 2.513370 C -0.942266 1.508150 2.913754 H 1.118294 -0.840988 2.059370 H -0.026274 2.115692 2.911000 C 0.254604 -0.726020 4.022845 C -1.290719 1.208514 4.383345 H <t< td=""><td>C</td><td>-2 103589</td><td>-0.110731</td><td>1 513884</td><td>C</td><td>-1 550407</td><td>-0 555422</td><td>1 461671</td><td></td></t<>	C	-2 103589	-0.110731	1 513884	C	-1 550407	-0 555422	1 461671	
In1.5050351.510031.510031.510031.51003C-3.251602-0.7174010.926934C-1.231759-1.8377590.950633H-4.047654-0.0761330.560462H-1.964641-2.3614710.346561C-4.664494-2.7480460.294601C0.320115-3.8454810.745934H-4.489252-3.753179-0.092688H1.0353381-4.134510.946203H-5.420399-2.8094661.086257H-0.345192-4.5608651.242000C0.261744-0.3410792.531370C-0.9422661.5081502.913754H1.118294-0.8409882.059370H-0.0262742.1156922.911000C0.254644-0.7260204.022845C-1.2907191.2085144.38345H-0.584151-0.2546004.545824H-2.1894350.5863814.451490H1.180355-0.3873624.496740H-1.4855572.1403244.922667H0.179804-1.8079684.168964H-0.4778060.6850614.895171C0.4416931.1647432.356925C-2.059312.315042.248768H0.4312761.4577281.303630H-1.8568412.5058781.191392H1.4060981.4671212.773072H-2.1734173.2757382.754396H0.335151.7305242.885026H<	н	-2.103307	0.971268	1.515001	н	-2 518897	-0.132281	1 216691	
G 5.25160 6.7753 6.7554 6.07613 0.560462 H 1.964641 -2.361471 0.346551 C -4.664494 -2.748046 0.294601 C 0.320115 -3.845481 0.745934 H -4.489252 -3.753179 -0.092688 H 1.353381 -4.134451 0.946203 H -5.420399 -2.809466 1.086257 H 0.0345192 -4.560865 1.242000 C 0.261744 -0.341079 2.531370 C -0.942266 1.508150 2.913754 H 1.118294 -0.840988 2.059370 H -0.026274 2.115692 2.911000 C 0.254644 -0.726020 4.022845 C -1.290719 1.208514 4.383345 H -0.584151 -0.254600 4.545824 H -2.189435 0.586381 4.451490 H 1.180355 -0.387362 4.496740 H -1.48557 2.140324 4.922667 H 0.431276 1.457728 1.303630 H -1.856841 2.505878 1.191392	C	-3 251602	-0 717401	0.926934	C	-1 231759	-1 837759	0.950633	
In -1.074011 -0.50171 -0.574301 In -1.074011 -2.501771 0.5745914 H -4.489252 -3.753179 -0.092688 H 1.353381 -4.134451 0.745934 H -5.073367 -2.134569 -0.512198 H 0.148604 -3.903643 -0.332907 H -5.420399 -2.809466 1.086257 H -0.345192 -4.560865 1.242000 C 0.261744 -0.341079 2.531370 C -0.942266 1.508150 2.913754 H 1.118294 -0.840988 2.059370 H -0.26274 2.115692 2.911000 C 0.254644 -0.726020 4.022845 C -1.290719 1.208514 4.383345 H -0.584151 -0.254600 4.545824 H -2.189435 0.586381 4.451490 H 1.180355 -0.387362 4.496740 H -1.485557 2.140324 4.922667 H 0.179804 -1.897798 4.168964 H -0.477806 0.685061 4.895171 C 0.441693 1.64743 2.356925 C -2.059931 2.312504 2.248768 H 0.431276 1.457728 1.303630 H -1.856841 2.505878 1.191392 H 1.460098 1.467121 2.773072 H -2.173417 3.275738 2.754396 N 0.99170 1.189680 -1910212 N -1629322 0.911479 -1.897798 </td <td>н Н</td> <td>-3.231002</td> <td>-0.777401</td> <td>0.560462</td> <td>с н</td> <td>-1.251757</td> <td>-2 361471</td> <td>0.346561</td> <td></td>	н Н	-3.231002	-0.777401	0.560462	с н	-1.251757	-2 361471	0.346561	
C -4.104975 -2.74070 0.027401 0.027401 H -5.073367 -2.134569 -0.512198 H 1.353381 -4.134451 0.946203 H -5.420399 -2.809466 1.086257 H -0.345192 -4.560865 1.242000 C 0.261744 -0.341079 2.531370 C -0.942266 1.508150 2.913754 H 1.118294 -0.840988 2.059370 H -0.026274 2.115692 2.911000 C 0.254644 -0.726020 4.022845 C -1.290719 1.208514 4.383345 H -0.584151 -0.254600 4.545824 H -2.189435 0.586381 4.451490 H 1.180355 -0.387362 4.496740 H -1.485557 2.140324 4.922667 H 0.179804 -1.807968 4.168964 H -0.477806 0.685061 4.895171 C 0.441693 1.164743 2.356925 C -2.059931 2.312504 2.248768 H 0.431276 1.457728 1.303630 H -1.856841 2.505878 1.191392 H 1.406098 1.467121 2.773072 H -2.173417 3.275738 2.754396 H -0.33515 1.730524 2.885026 H -3.024035 1.798391 2.319836 N 0.991970 1.189680 -1.910212 N -1629322 0.911479 -1.897798 N 0.759897 -0.046324 <t< td=""><td></td><td>-4.664494</td><td>-0.070133</td><td>0.300402</td><td>C II</td><td>0 320115</td><td>-2.501471</td><td>0.540501</td><td></td></t<>		-4.664494	-0.070133	0.300402	C II	0 320115	-2.501471	0.540501	
In1.333311.333311.333311.333311.3433311.343331In1.333311.333311.3433431.332907In1.333311.348041.333311.3433203In1.318294-0.8409882.059370In1.0345192-4.5608651.242000C0.254644-0.7260204.022845C-1.2907191.2085144.383345In-0.584151-0.2546004.545824In-0.12907191.2085144.383345In0.179804-1.8079684.168964In-0.4778060.6850614.895171C0.4416931.1647432.356925C-2.0599312.3125042.248768In0.4312761.4577281.303630In-1.8568412.5058781.191392In1.4060981.4671212.773072In-2.1734173.2757881.191392In1.4060981.4671212.773072In-3.2333120.754396In0.759897-0.046324-1.910212N-1.6293220.911479-1.897798N0.759897-0.046324-1.721525N-0.2235332.331169-1.104471S3.3553900.1710650.171086S2.31195-0.4101260.206989C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.282	с ц	-4.004494	-2.740040	-0.002688	с ц	1 252281	-3.043401	0.745954	
In -5.673309 -2.137309 -0.312170 In -0.140004 -0.345192 -0.363655 -0.322000 H -5.420399 -2.809466 1.086257 H -0.345192 -4.560865 1.242000 C 0.261744 -0.341079 2.531370 C -0.942266 1.508150 2.913754 H 1.118294 -0.840988 2.059370 H -0.026274 2.115692 2.911000 C 0.254644 -0.726020 4.022845 C -1.290719 1.208514 4.383345 H -0.584151 -0.254600 4.54824 H -2.189435 0.586381 4.451490 H 1.180355 -0.387362 4.496740 H -1.485557 2.140324 4.922667 H 0.179804 -1.807968 4.168964 H -0.477806 0.685061 4.895171 C 0.441693 1.164743 2.356925 C -2.059931 2.312504 2.248768 H 0.431276 1.457728 1.303630 H -1.856841 2.50878 1.191392 H 1.406098 1.467121 2.773072 H -2.173417 3.275738 2.754396 N 0.759897 -0.046324 -1.721525 N -0.223533 2.331169 -1.04471 S 3.355399 0.171086 S 2.310569 0.725927 -0.341804 C -1.853370 -2.447194 -2.227807 C 0.627778 -1.63734 -1.831069 <td>н Ц</td> <td>-4.409232</td> <td>-2 124560</td> <td>-0.512108</td> <td>и Ц</td> <td>0.148604</td> <td>-3.003643</td> <td>-0 222007</td> <td></td>	н Ц	-4.409232	-2 124560	-0.512108	и Ц	0.148604	-3.003643	-0 222007	
In -0.342059^{-1} -0.30405^{-1} -1.00625^{-1} -0.534107^{-1} -1.24206^{-1} -1.24206^{-1} -1.24206^{-1} C 0.261744^{-1} -0.341079^{-1} 2.531370^{-1} C -0.94226^{-1} 1.508150^{-1} 2.913754^{-1} H 1.118294^{-1} -0.840988^{-1} 2.059370^{-1} H -0.026274^{-1} 2.115692^{-1} 2.911000^{-1} C 0.254644^{-1} -0.726020^{-1} 4.022845^{-1} C -1.290719^{-1} 1.208514^{-1} 4.383345^{-1} H -0.584151^{-1} -0.254600^{-1} 4.545824^{-1} H -2.189435^{-1} 0.586381^{-1} 4.491490^{-1} H 1.180355^{-1} -0.387362^{-1} 4.496740^{-1} H -1.485557^{-1} 2.140324^{-1} 4.922667^{-1} H 0.179804^{-1} -1.807968^{-1} 4.168964^{-1} H -0.477806^{-1} 0.685061^{-1} 4.895171^{-1} C 0.441693^{-1} 1.164743^{-1} 2.356925^{-1} C -2.059931^{-1} 2.312504^{-1} 2.248768^{-1} H 0.431276^{-1} 1.457728^{-1} 1.303630^{-1} H -2.173417^{-1} 3.275738^{-2} 2.754396^{-1} H 1.46098^{-1} 1.467121^{-1} 2.773072^{-1} H -2.173417^{-1} 3.275738^{-2} 2.754396^{-1} N 0.759897^{-1} 0.046324^{-1} -1.721525^{-1} N $-0.223533^{-2}^{-2}^{-2}^{-2}^{-3}41804^{-1}$ N 0.759897^{-1} 0.046324^{-1} -1.721525^{-1} N -0.223533^{-2}^{-		5 420200	2,134303	1 096257	и П	0.140004	4 560865	1 2/2000	
G 0.201744 0.341077 2.31370 G 0.042204 1.30100 2.717374 H 1.118294 -0.840988 2.059370 H -0.026274 2.115692 2.911000 C 0.254644 -0.726020 4.022845 C -1.209719 1.208514 4.383345 H -0.584151 -0.254600 4.545824 H -2.189435 0.586381 4.451490 H 1.180355 -0.387362 4.496740 H -1.485557 2.140324 4.922667 H 0.179804 -1.807968 4.168964 H -0.477806 0.685061 4.895171 C 0.441693 1.164743 2.356925 C -2.059931 2.312504 2.248768 H 0.431276 1.457728 1.303630 H -1.856841 2.505878 1.191392 H 1.406098 1.467121 2.773072 H -2.173417 3.275738 2.754396 H -0.333515 1.730524 2.885026 H -3.024035 1.798391 2.319836 N 0.799170		0.261744	-2.009400	2 521270	C II	-0.942266	1 508150	2 012751	
In <td>ц Ц</td> <td>1 1 1 8 2 0 1</td> <td>-0.341077</td> <td>2.051370</td> <td>с ц</td> <td>-0.942200</td> <td>2 115602</td> <td>2.913734</td> <td></td>	ц Ц	1 1 1 8 2 0 1	-0.341077	2.051370	с ц	-0.942200	2 115602	2.913734	
C0.72343440.720323C 1.2203147 1.303373 H-0.584151-0.2546004.545824H -2.189435 0.586381 4.451490H1.180355-0.3873624.496740H -1.485557 2.140324 4.922667 H0.179804-1.807968 4.168964 H -0.477806 0.685061 4.895171 C 0.441693 1.164743 2.356925 C -2.059931 2.312504 2.248768 H 0.431276 1.457728 1.303630 H -1.856841 2.505878 1.191392 H 1.406098 1.467121 2.773072 H -2.173417 3.275738 2.754396 H -0.333515 1.730524 2.885026 H -3.024035 1.798391 2.319836 N -0.991970 1.189680 -1.910212 N -1.629322 0.911479 -1.897798 N 0.759897 -0.046324 -1.721525 N -0.223533 2.331169 -1.104471 S 3.355399 0.171065 0.171086 S 2.310569 0.725927 -0.341804 Cl -1.853370 -2.447194 -2.227807 Cl 0.627778 -1.613734 -1.831069 Ru -1.597088 -1.352929 -0.234255 Ru 0.231195 -0.410126 0.206989 C 5.149229 0.220812 0.191202 C 4.009198 0.187393 -0.342169 C 7.270618 -0.752487		0.254644	-0.726020	4 022845	C II	-0.020274	1 208514	4 383345	
In -0.507131 -0.257000 $+.53024$ In -2.16935 -0.3030301 $+.73170$ H 1.180355 -0.387362 4.496740 H -1.485557 2.140324 4.922667 H 0.179804 -1.807968 4.168964 H -0.477806 0.685061 4.895171 C 0.441693 1.164743 2.356925 C -2.059931 2.312504 2.248768 H 0.431276 1.457728 1.303630 H -1.856841 2.505878 1.191392 H 1.406098 1.467121 2.773072 H -2.173417 3.275738 2.754396 H -0.333515 1.730524 2.885026 H -3.024035 1.798391 2.319836 N -0.991970 1.189680 -1.910212 N -1.629322 0.911479 -1.897798 N 0.759897 -0.046324 -1.721525 N -0.223533 2.331169 -1.104471 S 3.355399 0.171065 0.171086 S 2.310569 0.725927 -0.341804 CI -1.853370 -2.447194 -2.227807 CI 0.627778 -1.613734 -1.831069 Ru -1.597088 -1.353292 -0.234255 Ru 0.231195 -0.410126 0.206989 C 5.149229 0.220812 0.191202 C 4.009198 0.187393 -0.342169 C 7.270618 -0.752487 0.812365 C 6.193139 0.112253 0.669740 <td>н Н</td> <td>-0 584151</td> <td>-0.720020</td> <td>4 545824</td> <td>с н</td> <td>-2 189435</td> <td>0 586381</td> <td>4.451490</td> <td></td>	н Н	-0 584151	-0.720020	4 545824	с н	-2 189435	0 586381	4.451490	
InIn 1003330.3013021.4790740InIn 1.4303372.1403244.722007H0.179804-1.8079684.168964H-0.4778060.6850614.895171C0.4416931.1647432.356925C-2.0599312.3125042.248768H0.4312761.4577281.303630H-1.8568412.5058781.191392H1.4060981.4671212.773072H-2.1734173.2757382.754396H-0.3335151.7305242.885026H-3.0240351.7983912.319836N-0.9919701.189680-1.910212N-1.6293220.911479-1.897798N0.759897-0.046324-1.721525N-0.2235332.331169-1.104471S3.3553990.1710650.171086S2.3105690.725927-0.341804Cl-1.853370-2.447194-2.227807Cl0.627778-1.613734-1.831069Ru-1.597088-1.353292-0.234255Ru0.231195-0.4101260.206989C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185 <td>и Ц</td> <td>1 180355</td> <td>-0.387362</td> <td>4.045024</td> <td>н</td> <td>-2.107455</td> <td>2 140324</td> <td>4.922667</td> <td></td>	и Ц	1 180355	-0.387362	4.045024	н	-2.107455	2 140324	4.922667	
In0.1779041.16079054.10079054.10079044.20179312.3125042.248768H0.4312761.4577281.303630H-1.8568412.5058781.191392HH1.4060981.4671212.773072H-2.1734173.2757382.754396H-0.3335151.7305242.885026H-3.0240351.7983912.319836N-0.9919701.189680-1.910212N-1.6293220.911479-1.897798N0.759897-0.046324-1.721525N-0.2235332.331169-1.104471S3.3553990.1710650.171086S2.3105690.725927-0.341804Cl-1.853370-2.447194-2.227807Cl0.627778-1.613734-1.831069Ru-1.597088-1.353292-0.234255Ru0.231195-0.4101260.206989C5.1492290.2208120.191202C 4.09198 0.187393-0.342169C5.879295-0.8172620.780698C 4.871924 0.5519470.697843C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.812594	н Ц	0.170804	-0.307302	1.168061	и Ц	-1.403337	0.685061	4.922007	
C 0.431276 1.457728 1.303630 H -1.856841 2.505878 1.191392 H 1.406098 1.467121 2.773072 H -2.173417 3.275738 2.754396 H -0.333515 1.730524 2.885026 H -3.024035 1.798391 2.319836 N -0.991970 1.189680 -1.910212 N -1.629322 0.911479 -1.897798 N 0.759897 -0.046324 -1.721525 N -0.223533 2.331169 -1.104471 S 3.355399 0.171065 0.171086 S 2.310569 0.725927 -0.341804 Cl -1.853370 -2.447194 -2.227807 Cl 0.627778 -1.613734 -1.831069 Ru -1.597088 -1.353292 -0.234255 Ru 0.231195 -0.410126 0.206989 C 5.149229 0.220812 0.191202 C 4.009198 0.187393 -0.342169 C 5.879295 -0.817262 0.786698 C 4.871924 0.551947 0.697843 C 7.270618 -0.752487 0.812365 C 6.637008 -0.704177 -0.371740 C 7.204520 1.388909 -0.305017 C 5.764860 -1.078900 -1.393188 C 5.812594 1.327967 -0.347491 C 4.444975 -0.630122 -1.390302 H 5.358185 -1.664366 1.217493 H 4.513856 1.170150 1.515763 </td <td></td> <td>0.17 9004</td> <td>1 164742</td> <td>2256025</td> <td>C II</td> <td>2 050021</td> <td>2 212504</td> <td>2 2 4 9 7 6 9</td> <td></td>		0.17 9004	1 164742	2256025	C II	2 050021	2 212504	2 2 4 9 7 6 9	
II0.4312761.4577261.303030II-1.8306412.303761.191392H1.4060981.4671212.773072H-2.1734173.2757382.754396H-0.3335151.7305242.885026H-3.0240351.7983912.319836N-0.9919701.189680-1.910212N-1.6293220.911479-1.897798N0.759897-0.046324-1.721525N-0.2235332.331169-1.104471S3.3553990.1710650.171086S2.3105690.725927-0.341804Cl-1.853370-2.447194-2.227807Cl0.627778-1.613734-1.831069Ru-1.597088-1.353292-0.234255Ru0.231195-0.4101260.206989C5.1492290.2208120.191202C4.0091980.187393-0.342169C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.017466 <t< td=""><td>с u</td><td>0.441095</td><td>1.104743</td><td>2.330923</td><td>с u</td><td>1 9569/1</td><td>2.312304</td><td>2.240700</td><td></td></t<>	с u	0.441095	1.104743	2.330923	с u	1 9569/1	2.312304	2.240700	
II1.400961.4071212.773072II-2.1734773.2737362.734396H-0.3335151.7305242.885026H-3.0240351.7983912.319836N-0.9919701.189680-1.910212N-1.6293220.911479-1.897798N0.759897-0.046324-1.721525N-0.2235332.331169-1.104471S3.3553990.1710650.171086S2.3105690.725927-0.341804Cl-1.853370-2.447194-2.227807Cl0.627778-1.613734-1.831069Ru-1.597088-1.353292-0.234255Ru0.231195-0.4101260.206989C5.1492290.2208120.191202C4.0091980.187393-0.342169C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.718723<	11 11	1 406008	1.437720	2 772072	и П	2 1 7 2 / 17	2.303070	2 754206	
N-0.333131.7303242.83020N-3.0240331.7983912.319330N-0.9919701.189680-1.910212N-1.6293220.911479-1.897798N0.759897-0.046324-1.721525N-0.2235332.331169-1.104471S3.3553990.1710650.171086S2.3105690.725927-0.341804Cl-1.853370-2.447194-2.227807Cl0.627778-1.613734-1.831069Ru-1.597088-1.353292-0.234255Ru0.231195-0.4101260.206989C5.1492290.2208120.191202C4.0091980.187393-0.342169C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H55<		0.222515	1.40/121	2.773072	н ц	-2.173417	3.273730	2.734390	
N -0.391970 1.189000 -1.910212 N -1.029322 0.911479 -1.097790 N 0.759897 -0.046324 -1.721525 N -0.223533 2.331169 -1.104471 S 3.355399 0.171065 0.171086 S 2.310569 0.725927 -0.341804 Cl -1.853370 -2.447194 -2.227807 Cl 0.627778 -1.613734 -1.831069 Ru -1.597088 -1.353292 -0.234255 Ru 0.231195 -0.410126 0.206989 C 5.149229 0.220812 0.191202 C 4.009198 0.187393 -0.342169 C 5.879295 -0.817262 0.780698 C 4.871924 0.551947 0.697843 C 7.270618 -0.752487 0.812365 C 6.637008 -0.704177 -0.371740 C 7.204520 1.388909 -0.305017 C 5.764860 -1.078900 -1.393188 C 5.812594 1.327967 -0.347491 C 4.444975 -0.630122 -1.390302 H	N N	-0.333313	1.730324	2.003020	II N	-3.024033	0.011/70	2.319030	
N0.739697-0.040324-1.721323N-0.2233332.331109-1.104471S3.3553990.1710650.171086S2.3105690.725927-0.341804Cl-1.853370-2.447194-2.227807Cl0.627778-1.613734-1.831069Ru-1.597088-1.353292-0.234255Ru0.231195-0.4101260.206989C5.1492290.2208120.191202C4.0091980.187393-0.342169C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.9330910.3490720.270652C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H5.2381812.136080-0.790579H3.753474-0.910576-2.177850	IN N	0.750807	1.109000	1.710212	IN NI	-1.029322	0.911479	-1.097790	
S 5.3333790.1710030.171000S 2.3103070.7237270.341004Cl-1.853370-2.447194-2.227807Cl0.627778-1.613734-1.831069Ru-1.597088-1.353292-0.234255Ru0.231195-0.4101260.206989C5.1492290.2208120.191202C4.0091980.187393-0.342169C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.9330910.3490720.270652C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H5.2381812.136080-0.790579H3.753474-0.910576-2.177850	S IN	2 255200	0.040324	-1.721323	S	2 210560	0.725027	-1.104471	
Ci-1.633370-2.477174-2.227007Ci0.027776-1.013734-1.031007Ru-1.597088-1.353292-0.234255Ru0.231195-0.4101260.206989C5.1492290.2208120.191202C4.0091980.187393-0.342169C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.9330910.3490720.270652C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H5.2381812.136080-0.790579H3.753474-0.910576-2.177850		-1 853370	-2 1171005	-2 227807	CI	0.627778	-1.613734	-1 821069	
Ku1.3370001.33329210.234233Ku0.23113310.4101200.200309C5.1492290.2208120.191202C4.0091980.187393-0.342169C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.9330910.3490720.270652C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H5.2381812.136080-0.790579H3.753474-0.910576-2.177850		-1 507088	-2.447174	-0.227007	Ru	0.027770	-0.410126	0 206080	
C5.1472270.2200120.1712020.1912020.1073730.342107C5.879295-0.8172620.780698C4.8719240.5519470.697843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.9330910.3490720.270652C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H5.2381812.136080-0.790579H3.753474-0.910576-2.177850	C	5 149229	0 220812	0.234233	C	4 009198	0.410120	-0.200909	
C3.879293-0.8172020.7800998C4.8719240.8319470.097843C7.270618-0.7524870.812365C6.1931390.1122530.669740C7.9330910.3490720.270652C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H5.2381812.136080-0.790579H3.753474-0.910576-2.177850		5 970205	0.220012	0.191202	C	4.009190	0.107393	0.607942	
C7.276016-0.7324070.3123030.3123030.1122330.007740C7.9330910.3490720.270652C6.637008-0.704177-0.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H5.2381812.136080-0.790579H3.753474-0.910576-2.177850		7 270618	-0.017202	0.700090	C	6 102120	0.331947	0.697043	
C7.3330310.3430720.2700320.2700320.0370000.037041770.371740C7.2045201.388909-0.305017C5.764860-1.078900-1.393188C5.8125941.327967-0.347491C4.444975-0.630122-1.390302H5.358185-1.6643661.217493H4.5138561.1701501.515763H7.836873-1.5590241.269032H6.8725040.3983091.467192H9.0174660.3989920.302543H7.666059-1.050807-0.384387H7.7187232.250232-0.721409H6.111693-1.715921-2.201266H5.2381812.136080-0.790579H3.753474-0.910576-2.177850		7 933091	0.752407	0.012505	C	6 6 3 7 0 0 8	-0 704177	-0371740	
C 5.812594 1.327967 -0.347491 C 4.444975 -0.630122 -1.390302 H 5.358185 -1.664366 1.217493 H 4.513856 1.170150 1.515763 H 7.836873 -1.559024 1.269032 H 6.872504 0.398309 1.467192 H 9.017466 0.398992 0.302543 H 7.666059 -1.050807 -0.384387 H 7.718723 2.250232 -0.721409 H 6.111693 -1.715921 -2.201266 H 5.238181 2.136080 -0.790579 H 3.753474 -0.910576 -2.177850		7 204520	1 388000	-0 305017	C C	5 764960	-1 078000	-1 202188	
H 5.358185 -1.664366 1.217493 H 4.513856 1.170150 1.515763 H 7.836873 -1.559024 1.269032 H 6.872504 0.398309 1.467192 H 9.017466 0.398992 0.302543 H 7.666059 -1.050807 -0.384387 H 7.718723 2.250232 -0.721409 H 6.111693 -1.715921 -2.201266 H 5.238181 2.136080 -0.790579 H 3.753474 -0.910576 -2.177850		5 812501	1 327067	-0.303017	C	1.704000 1.104000	-1.070900	-1.393100	
H 3.536103 -1.004300 1.217475 H 4.513030 1.170130 1.313703 H 7.836873 -1.559024 1.269032 H 6.872504 0.398309 1.467192 H 9.017466 0.398992 0.302543 H 7.666059 -1.050807 -0.384387 H 7.718723 2.250232 -0.721409 H 6.111693 -1.715921 -2.201266 H 5.238181 2.136080 -0.790579 H 3.753474 -0.910576 -2.177850	- С Ц	5 252125	-1 664266	1 217/02	с И	4 512856		1 515762	
H 9.03030 - 1.357024 1.207032 H 0.372304 0.398309 1.407192 H 9.017466 0.398992 0.302543 H 7.666059 -1.050807 -0.384387 H 7.718723 2.250232 -0.721409 H 6.111693 -1.715921 -2.201266 H 5.238181 2.136080 -0.790579 H 3.753474 -0.910576 -2.177850	н Ц	7 826872	-1 550021	1 260022	н	513030 6872501	0 308300	1 467102	
H 7.718723 2.250232 -0.721409 H 5.238181 2.136080 -0.790579 H 3.753474 -0.910576 -2.177850	н Ц	9 017/66	0 2020024	0 302542	н	7 666050	-1 050207	-0 384387	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	н	7 71 8772	2 220222	-0 721400	н	6 111602	-1 715021	-2 201266	
	H	5.238181	2.136080	-0.790579	H	3.753474	-0.910576	-2.177850	

1f - TS1-decoordination	1f – TS2-coordination		
E (SCF) = -1315.42492 E (SCF; solvent = DCM) = -2149.37406906 Zero-point correction = 0.537011 Thermal correction to Enthalpy = 0.568657 Thermal correction to Gibbs Free Energy = 0.47480	E (SCF) = -1315.41893 E (SCF; solvent = DCM) = -2149.37277779 Zero-point correction = 0.538107 Thermal correction to Enthalpy = 0.570941 Thermal correction to Gibbs Free Energy = 0.47408		
C 0.792246 -0.422805 1.541314	C -0.042250 0.209680 0.746972		
C 1.651507 0.862813 3.197605	C 1.476670 1.486150 1.829897		
H 2.401997 1.449514 3.704194	H 2.004038 2.393154 2.078310		
C 0.407321 0.492254 3.576052	C 1.644998 0.212096 2.247319		
Н -0.148012 0.703177 4.476807	Н 2.352630 -0.214285 2.940592		
C 3.194415 0.311791 1.336728	C -0.066336 2.704760 0.289265		
Н 3.229047 -0.538025 0.655108	Н -0.630053 2.398716 -0.592237		
Н 3.915020 0.090687 2.133205	Н -0.755179 3.175589 0.999001		
C 3.593287 1.593355 0.633180	C 1.029776 3.673911 -0.078225		
C 4.744940 1.565374 -0.164577	C 1.175543 4.869667 0.631632		
Н 5.303403 0.637906 -0.277732	H 0.497053 5.098532 1.451095		
C 5.195178 2.718517 -0.801022	C 2.177523 5.777716 0.289480		
Н 6.090937 2.681007 -1.413849	H 2.278465 6.705916 0.844135		
C 4.500499 3.918819 -0.646744	C 3.042579 5.493168 -0.764582		
H 4.852601 4.820204 -1.139048	Н 3.821765 6.199949 -1.034468		
C 3.356760 3.954666 0.146538	C 2.901771 4.301656 -1.478197		
H 2.813498 4.886175 0.276665	H 3.568857 4.082555 -2.307017		
C 2.903863 2.798227 0.784924	C 1.900598 3.395883 -1.139503		
H 2.010247 2.843814 1.400262	Н 1.783186 2.473924 -1.702320		
C -1.359909 -1.033322 2.753540	C 0.603820 -1.989579 1.906153		
Н -1.433606 -1.239238 3.824912	Н -0.173643 -2.123036 2.668607		
Н -1.259465 -2.002595 2.259862	Н 1.556848 -2.243373 2.374796		
C -2.611130 -0.290412 2.298874	C 0.352017 -2.985517 0.776958		
Н -2.526842 0.783632 2.483318	Н -0.697288 -2.989532 0.476205		
Н -3.475018 -0.671824 2.849851	Н 0.570150 -3.980123 1.179431		
C 1.494296 -2.564854 -1.930495	C -3.208077 -1.099622 -1.935526		
C 0.110195 -2.517175 -2.186011	C -2.902484 -2.011868 -0.883292		
Н -0.447143 -3.439039 -2.314044	Н -2.607748 -3.025765 -1.142471		
C -0.586986 -1.284441 -2.087750	C -2.972767 -1.645405 0.492622		
Н -1.670406 -1.295150 -2.159069	Н -2.777263 -2.392117 1.256077		
C 0.067939 -0.028976 -1.891103	C -3.226675 -0.310180 0.879158		
C 1.451750 -0.080235 -1.615153	C -3.347850 0.647223 -0.176254		
Н 1.990077 0.823070 -1.348572	H -3.425697 1.703137 0.058205		
C 2.139135 -1.330952 -1.579452	C -3.394890 0.244000 -1.549615		
Н 3.192959 -1.355121 -1.320258	H -3.455551 1.011660 -2.315272		
C 2.253356 -3.854446 -1.925158	C -3.175583 -1.513574 -3.375463		
H 1.601607 -4.699281 -1.696555	H -2.773018 -0.716307 -4.004357		
Н 3.063249 -3.837433 -1.192535	H -4.190427 -1.743938 -3.718792		
Н 2.693570 -4.013956 -2.916810	H -2.560351 -2.404869 -3.518200		
C -0.722298 1.255694 -2.007989	C -3.365057 0.039234 2.346293		
H -1.753201 1.020570 -1.718482	H -2.703988 -0.641033 2.899399		
C -0.729561 1.682295 -3.487627	C -4.815129 -0.265048 2.769372		
Н 0.279898 1.932785 -3.831047	H -5.521760 0.381097 2.238136		
Н -1.359152 2.567611 -3.616726	Н -4.935626 -0.083963 3.841338		

Η	-1.122590	0.894138	-4.137145	Н	-5.090121	-1.304770	2.569146
С	-0.229112	2.384238	-1.106582	С	-2.983192	1.473315	2.710097
Н	-0.211984	2.073029	-0.057910	Η	-1.959186	1.710597	2.410523
Η	-0.898346	3.244689	-1.197211	Η	-3.052265	1.605040	3.793353
Н	0.773544	2.727663	-1.379850	Η	-3.661880	2.204579	2.258400
Ν	1.873330	0.297948	1.955663	Ν	0.447983	1.468319	0.910003
Ν	-0.100592	-0.305719	2.567768	Ν	0.707034	-0.562835	1.584452
S	-2.885244	-0.599748	0.513340	S	1.244372	-2.723438	-0.792114
Cl	0.494745	-3.399718	1.106547	Ru	-1.525870	-0.361916	-0.602280
Ru	0.509062	-1.507321	-0.229066	Cl	-0.218747	0.480662	-2.306329
С	-4.175841	0.580485	0.120041	С	2.951790	-2.681870	-0.242211
С	-5.417045	0.092604	-0.302326	С	3.693729	-1.510214	-0.420975
С	-6.427387	0.986581	-0.655700	С	5.039420	-1.481640	-0.054884
С	-6.208655	2.360613	-0.574560	С	5.639556	-2.610802	0.499572
С	-4.971885	2.845931	-0.148097	С	4.897872	-3.779815	0.674998
С	-3.950179	1.960710	0.187381	С	3.558801	-3.824139	0.293013
Η	-5.589486	-0.978748	-0.343053	Н	3.217092	-0.634237	-0.850292
Н	-7.390387	0.605473	-0.982529	Н	5.617418	-0.573901	-0.202843
Н	-7.000687	3.053678	-0.841854	Н	6.686934	-2.585209	0.785418
Н	-4.799106	3.916555	-0.085589	Н	5.367805	-4.666572	1.090534
Н	-2.981059	2.338627	0.500824	Η	2.993673	-4.746841	0.391682

Table S4. Atomic coordinates of the optimized species derived from complex $\mathbf{1}_{CF3}.^a$

1_{CF3} - R_{Ru}/R_S	1_{CF3} - R_{Ru}/S_S			
E (SCF) = -1421.38935	E(SCF) = -142138714			
E(SCF: solvent = DCM) = -2255.41977218	E (SCF: solvent = DCM) = -2255,41815166			
Zero-point correction = 0.461518	Zero-point correction = 0.463165			
Thermal correction to Enthalpy = 0.492176	Thermal correction to Enthalpy = 0.494394			
Thermal correction to Gibbs Free Energy =	Thermal correction to Gibbs Free Energy =			
0.40310	0.40361			
0.10010	0.10001			
C -0.660212 0.209757 -1.000439	C -0.710108 -0.817737 -0.654481			
C -2.618713 0.658386 -2.046500	C -2.594159 -1.610375 -1.654451			
Н -3.675764 0.860809 -2.112303	H -3.633862 -1.604621 -1.938290			
C -1.681082 0.504874 -3.005636	C -1.620019 -2.521481 -1.858108			
H -1.754926 0.549570 -4.081239	Н -1.636446 -3.473077 -2.365744			
C -2.724170 0.515878 0.445248	C -2.847214 0.559519 -0.495415			
H -2.123587 -0.049076 1.158475	Н -2.348160 0.976559 0.372366			
H -2.792310 1.560374 0.767804	H -2.848086 1.307916 -1.295405			
C -4.106636 -0.076405 0.332915	C -4.264219 0.181695 -0.139141			
C -5.234079 0.750283 0.346967	C -5.333784 0.663447 -0.898207			
H -5.114753 1.827822 0.442818	Н -5.143211 1.298800 -1.760525			
C -6.512854 0.201458 0.251458	C -6.646246 0.340574 -0.552565			
H -7.383161 0.850756 0.269190	Н -7.470860 0.722997 -1.146628			
C -6.669415 -1.178283 0.139116	C -6.895104 -0.470234 0.552137			
Н -7.664244 -1.608019 0.067357	Н -7.916139 -0.722287 0.822647			
C -5.547463 -2.008917 0.127116	C -5.830693 -0.956964 1.313469			
Н -5.669063 -3.085446 0.049572	Н -6.022749 -1.587158 2.176821			
C -4.270702 -1.463299 0.225598	C -4.521512 -0.631600 0.972156			

Η	-3.396092	-2.108911	0.228788	Η	-3.695295	-1.015454	1.566829
С	0.655683	-0.193571	-3.178311	С	0.740178	-2.819713	-1.199167
Η	0.779845	0.545836	-3.976211	Η	0.538779	-3.759147	-1.720195
Η	0.388662	-1.146859	-3.647734	Η	0.979824	-3.044478	-0.157556
С	1.984560	-0.346335	-2.466826	С	1.884850	-2.106398	-1.888607
Η	2.382114	0.603894	-2.108373	Η	1.598718	-1.737325	-2.876888
Η	2.691486	-0.805265	-3.163410	Η	2.756005	-2.755051	-2.004519
С	3.508762	-1.825224	-0.668390	С	3.749273	-1.456981	0.061253
F	3.998373	-2.593309	-1.638889	F	3.384229	-2.617222	0.587369
F	4.266194	-0.722044	-0.592430	F	4.787227	-1.674628	-0.752825
F	3.571477	-2.472632	0.488670	F	4.126195	-0.621947	1.026373
С	1.322381	0.151282	2.751060	С	0.541628	1.556033	2.341466
С	2.459884	0.342103	1.956526	С	1.889614	1.558103	1.877193
Н	3.335507	-0.276182	2.121719	Н	2.683057	1.207944	2.527429
С	2.454160	1.282849	0.876232	С	2.187022	1.973887	0.564842
Н	3.340651	1.370519	0.256723	Н	3.222028	1.942444	0.232646
С	1.357281	2.140941	0.625108	С	1.183436	2.379179	-0.369320
С	0.190199	1.919742	1.422716	С	-0.152523	2.298771	0.083211
Н	-0.708497	2.489917	1.218452	Н	-0.954893	2.561641	-0.595408
С	0.157527	0.932899	2.427786	С	-0.468101	1.928306	1.427987
Н	-0.762672	0.753473	2.974293	Η	-1.495632	1.936784	1.774211
С	1.270787	-0.864807	3.847584	С	0.217524	1.155754	3.744799
Н	2.196398	-1.440578	3.903019	Η	0.851113	0.329269	4.071801
Н	0.440691	-1.558389	3.681119	Н	-0.825200	0.850303	3.845484
Н	1.113860	-0.364765	4.809535	Η	0.394206	2.012876	4.406038
С	1.481331	3.270693	-0.378736	С	1.582459	2.893606	-1.737245
Н	2.107502	2.898607	-1.202151	Η	2.468148	2.320044	-2.043338
С	2.234451	4.438368	0.285049	С	2.003741	4.369053	-1.618642
Н	1.664952	4.840465	1.129707	Η	1.159869	4.994860	-1.309325
Η	2.382333	5.248508	-0.434984	Η	2.359124	4.736612	-2.585646
Н	3.216834	4.131690	0.655779	Η	2.810134	4.506167	-0.891678
С	0.153462	3.750872	-0.966344	С	0.506955	2.708602	-2.808155
Η	-0.423384	2.935535	-1.412157	Η	0.154842	1.672808	-2.854797
Η	0.344195	4.493107	-1.746412	Η	0.911781	2.972736	-3.788816
Η	-0.468115	4.242762	-0.210192	Η	-0.355993	3.361376	-2.636063
Ν	-1.986472	0.468932	-0.833963	Ν	-2.032271	-0.585894	-0.917733
Ν	-0.486687	0.226062	-2.359166	Ν	-0.484740	-2.033465	-1.242253
S	1.731314	-1.467033	-1.040581	S	2.415333	-0.631629	-0.945395
Ru	0.720317	-0.029345	0.520003	Ru	0.722384	0.290276	0.416143
Cl	-0.487447	-2.026518	1.062939	Cl	0.608877	-1.598247	1.880716

1 _{CF3} - intermediate	1 _{CF3} – TS-inversion		
E (SCF) = -1421.36889	E (SCF) = -1421.36134		
E (SCF; solvent = DCM) = -2255.41125092	E (SCF; solvent = DCM) = -2255.39418834		
Zero-point correction = 0.461426	Zero-point correction = 0.461739		
Thermal correction to Enthalpy = 0.491555	Thermal correction to Enthalpy = 0.492795		
Thermal correction to Gibbs Free Energy =	Thermal correction to Gibbs Free Energy =		
0.40175	0.40102		
C 0.076836 -0.225252 -1.277706	C -0.750318 -0.855971 -0.521566		
C 1.075321 1.122499 -2.786381	C -2.550859 -1.611777 -1.688019		
H 1.173155 1.978001 -3.436414	H -3.547753 -1.567461 -2.095522		

С	1.919989	0.094112	-2.541359	С	-1.625702	-2.592272	-1.704175
Н	2.900465	-0.110950	-2.939388	Н	-1.649037	-3.577018	-2.143939
С	-1.223030	1.775830	-2.057757	С	-2.844428	0.592754	-0.611440
Н	-2.104558	1.133882	-1.980308	Н	-2.367842	1.057965	0.245483
Н	-1.246743	2.208634	-3.063980	н	-2.841291	1.295474	-1.451567
C	-1.264099	2.874930	-1.016411	C	-4.262005	0.210196	-0.259863
C	-2 487507	3 511457	-0 773132	C	-5 324408	0.608841	-1 074945
н	-3 378057	3 199838	-1 316381	н	-5 130139	1 190583	-1 973651
C	-2 571528	4 558492	0 141808	C	-6 635708	0.272066	-0 738008
н	-3 525829	5 046469	0 316957	н	-7 455715	0 589383	-1 375238
C	-1 431776	4 980981	0.826589	C	-6 889219	-0.468523	0 413941
ч	-1 495019	5 798406	1 538434	н	-7 909367	-0.731213	0.677644
C II	-0.210782	4 354627	0 585282	C	-5 831280	-0.869930	1 222062
с ц	0.682821	4.685141	1 106776	с ц	-6.02771	-0.009930	2 1 2 2 0 6 5
C II	0.002021	4.003141	1.100770		-0.027714	-1.443393	2.133003
	-0.124303	3.307001	-0.333400		-4.323201	-0.331390	1 520024
П	0.035104	2.031031	-0.515521		-3.701252	-0.0400/3	1.339034
	1.793810	-2.033459	-1.212003		0.503995	-3.0/8124	-0.5/53/0
H	1.634523	-2./24823	-2.04/93/	H	0.218246	-4.051680	-0.9/94/5
H	1.164485	-2.3/41/9	-0.386368	H	0.497691	-3.141//1	0.516//1
	3.263237	-2.077443	-0.810434		1.895/50	-2./35563	-1.0/8966
H	3.928926	-1.668165	-1.5/3061	H	1.92/451	-2.589188	-2.160839
H	3.544493	-3.128251	-0.694467	H	2.593369	-3.521636	-0.781536
C	4.286695	0.329831	0.266912	C	4.169834	-1.198825	-0.135303
F	5.078724	0.263881	-0.811551	F	4.633740	-2.381833	0.258159
F	3.294670	1.191137	-0.034139	F	4.716846	-0.913661	-1.318451
F	4.974171	0.845401	1.284590	F	4.535354	-0.260862	0.742039
С	-3.481175	-1.302752	0.652545	C	0.604975	1.936531	2.180126
С	-2.725529	-2.343620	1.215377	C	1.922317	1.806682	1.686736
Н	-3.042265	-3.373008	1.084767	Н	2.732504	1.564854	2.365579
С	-1.444336	-2.067701	1.776155	C	2.173705	1.894332	0.291398
Н	-0.821769	-2.901804	2.089765	Н	3.187242	1.722026	-0.058155
С	-0.958629	-0.736413	1.985234	С	1.166548	2.174856	-0.672814
С	-1.714137	0.306942	1.407961	C	-0.153118	2.259237	-0.167214
Η	-1.336884	1.323204	1.406956	H	-0.970111	2.414703	-0.860280
С	-2.907427	0.017834	0.688236	С	-0.438920	2.132425	1.226068
Н	-3.417793	0.830518	0.180311	Н	-1.458655	2.212282	1.587207
С	-4.772831	-1.555764	-0.061033	C	0.305395	1.833172	3.640844
Η	-4.846883	-2.589975	-0.401575	Н	1.027428	1.192906	4.150070
Η	-4.885554	-0.897587	-0.925990	Н	-0.693312	1.430696	3.816875
Н	-5.606826	-1.356708	0.622430	Н	0.358711	2.836789	4.080675
С	0.299944	-0.524151	2.799038	С	1.532006	2.371854	-2.128978
Н	1.022750	-1.288580	2.484658	Н	2.387696	1.712753	-2.326501
С	-0.040468	-0.777698	4.280369	C	1.997686	3.822710	-2.342924
Н	-0.764442	-0.042726	4.647459	Н	1.183244	4.529342	-2.150322
Н	0.864857	-0.690665	4.887866	Н	2.327499	3.963759	-3.376331
Н	-0.458160	-1.775835	4.444086	Н	2.832817	4.083206	-1.685549
C	0.946894	0.845615	2.616284	C	0.415969	1.996768	-3.104458
H	1.202755	1.042455	1.572896	H	0.042914	0.984583	-2.919218
н	1 871155	0.892146	3 198739	н	0 792425	2 036078	-4 130200
Н	0.299112	1.651417	2.977901	н	-0.425454	2.696714	-3.050340
N	-0.046791	0 91 3 5 3 1	-2 005486	N	-2 013597	-0 571106	-0.954872
N	1 298465	-0 718088	-1 610737	N	-0 539492	-2 134105	-0.980695
5	3 693932	-1 308764	0 794572	2	2 346907	-1 214110	-0 205307
	-1.668496	-2.501470	-2.049100	Rii	0.622200	0.343123	0.559748
<u> </u>				- . .u	0.066600		01007110

Ru -1.401174 -1.202752 -0.182489

Cl 0.052067 -1.211292 2.286798

1 _{CF3} – TS1-decoordination	1 _{CF3} – TS2-coordination			
E (SCF) = -1421.35962 E (SCF; solvent = DCM) = -2255.40282726 Zero-point correction = 0.461319 Thermal correction to Enthalpy = 0.491655 Thermal correction to Gibbs Free Energy = 0.40141	E (SCF) = -1421.36623 E (SCF; solvent = DCM) = -2255.40574357 Zero-point correction = 0.461955 Thermal correction to Enthalpy = 0.491908 Thermal correction to Gibbs Free Energy = 0.40413			
C -0.324941 0.203050 1.586924	C 0.721712 -0.880049 0.172429			
C -1.383105 -1.090410 3.119077	C 2.351903 -2.120675 1.138774			
Н -2.227149 -1.550912 3.608669	Н 3.322986 -2.309490 1.567890			
C -0.064901 -1.107379 3.418027	C 1.331797 -2.957188 0.839707			
Н 0.470504 -1.597613 4.216368	Н 1.230996 -4.022695 0.977564			
C -2.844505 0.129226 1.534129	C 2.882275 0.286825 0.778921			
Н -2.697224 1.054440 0.977693	H 2.463725 1.033463 0.106008			
H -3.421739 0.400942 2.426001	H 2.879172 0.688398 1.797836			
C -3.618966 -0.885033 0.716882	C 4.288445 -0.066676 0.360140			
C -4.792916 -0.449803 0.087438	C 5.334597 -0.013937 1.284786			
Н -5.106967 0.588027 0.183136	Н 5.134739 0.277423 2.313813			
C -5.574649 -1.337446 -0.646219	C 6.637191 -0.324351 0.893316			
Н -6.482999 -0.985577 -1.126203	Н 7.444704 -0.276776 1.617739			
C -5.194856 -2.675504 -0.758810	C 6.898367 -0.692947 -0.424109			
Н -5.805839 -3.369974 -1.327307	Н 7.911890 -0.934383 -0.730184			
C -4.031574 -3.115671 -0.133186	C 5.856961 -0.748011 -1.352557			
Н -3.732093 -4.156827 -0.210514	Н 6.059592 -1.030798 -2.381327			
C -3.245616 -2.225776 0.602331	C 4.558141 -0.434572 -0.964278			
Н -2.341316 -2.586107 1.083536	Н 3.750046 -0.478328 -1.691491			
C 1.979136 0.058246 2.664428	C -0.840957 -2.816037 -0.342088			
H 2.169769 0.024817 3.740294	Н -0.537063 -3.803346 -0.704352			
H 2.097823 1.101024 2.361917	H -1.140531 -2.232965 -1.213032			
C 2.975284 -0.860988 1.964360	C -1.989157 -2.981689 0.645043			
Н 2.626935 -1.896318 1.956795	H -1.650961 -3.405471 1.594842			
Н 3.936689 -0.810356 2.480467	H -2.744931 -3.658602 0.238737			
C 3.921692 -1.810520 -0.468670	C -4.122961 -1.391278 -0.191127			
F 5.087867 -2.134355 0.090106	F -3.635584 -1.379236 -1.440223			
F 3.105493 -2.868219 -0.337279	F -4.942885 -2.437697 -0.091650			
F 4.112855 -1.584927 -1.774859	F -4.829768 -0.267091 -0.004933			
C -0.711116 2.939422 -1.482741	C -0.551574 2.670130 -1.635297			
C 0.590047 2.602733 -1.906547	C -1.845040 2.323416 -1.207164			
Н 1.350249 3.373031 -1.980731	Н -2.647127 2.235535 -1.932429			
C 0.955776 1.240607 -2.052744	C -2.072295 1.917649 0.137872			
H 1.995437 1.002954 -2.258172	H -3.058018 1.549076 0.403692			
C 0.023470 0.162203 -1.935727	C -1.071814 1.990292 1.152065			
C -1.276821 0.499126 -1.501639	C 0.232190 2.303058 0.712091			
Н -2.003011 -0.279419 -1.293080	H 1.053526 2.284443 1.417975			
C -1.618853 1.856700 -1.228114	C 0.503500 2.568963 -0.666022			
H -2.608511 2.092646 -0.849735	H 1.524715 2.751493 -0.988075			
C -1.115741 4.356006 -1.220328	C -0.254128 3.020807 -3.058536			
Н -0.255362 4.975941 -0.963093	Н -0.982184 2.577741 -3.739968			
Н -1.842078 4.419518 -0.407006	Н 0.741958 2.683523 -3.352476			

Н	-1.580846	4.766964	-2.124472	Н -0.292684 4.111075 -3.170599
С	0.451267	-1.241562	-2.302632	C -1.429219 1.745354 2.602296
Н	1.533316	-1.294044	-2.143556	Н -2.267609 1.038742 2.606983
С	0.189467	-1.442969	-3.807112	C -1.928956 3.067542 3.213132
Н	-0.882081	-1.400313	-4.029236	Н -1.132926 3.819637 3.227837
Н	0.560247	-2.423286	-4.120165	Н -2.255937 2.902959 4.243919
Н	0.692739	-0.684362	-4.414336	Н -2.774473 3.480068 2.654492
С	-0.201712	-2.343062	-1.471674	C -0.297753 1.142831 3.435246
Η	-0.036529	-2.185523	-0.402105	H 0.098800 0.230888 2.978048
Н	0.231298	-3.310202	-1.741245	Н -0.668530 0.887114 4.431591
Η	-1.279495	-2.409811	-1.649172	Н 0.526579 1.850602 3.577759
Ν	-1.527065	-0.288168	2.003358	N 1.967704 -0.862957 0.720415
Ν	0.569329	-0.300242	2.491091	N 0.351247 -2.195908 0.232103
S	3.212213	-0.293258	0.240310	S -2.814803 -1.408622 1.076694
Cl	0.815481	3.023611	1.464293	Ru -0.447069 0.676734 -0.596201
Ru	0.109378	1.433415	-0.060461	Cl -0.235319 -0.410362 -2.637133

12¹H, ¹⁹F and ¹³C NMR SPECTRA OF ALL COMPOUNDS.

S-Cy (b) ¹Η NMR (300 MHz) DMSO-*d*_δ

S-tBu (c) ¹H NMR (300 MHz) CDCl₃

S-Ad (d) ¹H NMR (300 MHz) CDCl₃

S-Oct (e) ¹H NMR (300 MHz) CDCl₃

S-p-Me (g) ¹H NMR (300 MHz) CDCl₃

S-p-Br (i) ¹H NMR (300 MHz) CDCl₃

p-CF₃ imidazoium (k) ¹H NMR (300 MHz) CDCl₃

¹³C NMR (125 MHz) CDCl₃

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

¹⁹F NMR (300 MHz) CDCl₃

Ru SEt (1a) ¹H NMR (400 MHz) CDCl₃

Ru SCy (1b)

Ru StAd (1d)

S69

Ru S-*Ph* (11) ¹H NMR (400 MHz) CDCl₃

Ru S-*p-OMe* **(1h)** ¹H NMR (400 MHz) CDCl₃

Ru S-*p-Br* **(1i)** ¹H NMR (400 MHz) CD₂Cl₂

¹⁹F NMR (471 MHz) CDCl₃

10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 f1 (ppm) **Ru S-3,5-CF₃ (11)** ¹H NMR (400 MHz) CDCl₃

¹⁹F NMR (282 MHz) CDCl₃

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 -145 f1 (ppm) Ru Benzimidazole (4)

¹H NMR (500 MHz) CDCl₃

Ru Benzimidazole (5) ¹H NMR (400 MHz) CDCl₃

Dodecanenitrile (8). ¹H NMR (300 MHz, CDCl₃)

 $\begin{array}{c} 2.36\\ \hline 2.33\\ 2.31\\ 2.31\\ \hline 2.33\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 0.08\\ 0.08\\ 0.08\\ 0.08\end{array}$

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 0.5 0.0 -0.5 1.0

Tetradecanenitrile (9) ¹H NMR (300 MHz, CDCl₃)

2-ethylhexanenitrile (11) ¹H NMR (300 MHz) CDCl₃

Geranylnitrile (12): ¹H NMR (300 MHz) CDCl₃

Oleonitrile (13) ¹H NMR (400 MHz) CDCl₃

Benzonitrile (2) ¹H NMR (300 MHz) CDCl₃

4-Chlorobenzonitrile (14) ¹H NMR (300 MHz) CDCl₃

9.0 8.5 7.5 6.5 6.0 5.5 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 -0.5 8.0 7.0 5.0 0.0

4-(Trifluoromethyl)benzonitrile (15)

4-Methoxybenzonitrile (16) ¹H NMR (300 MHz) CDCl₃

N-Benzylidenebenzylamine (3) ¹H NMR (300 MHz) CDCl₃

13 INHIBITION OF CELL PROLIFERATION

Samples were prepared by dissolution of the compounds in DMSO (except for Cisplatin that was dissolved in water since it rapidly decomposes in DMSO) at stock concentrations of 10 mM. MCF7, CT116 and PC3 cell lines were maintained as monolayers in RPMI 1640 medium supplemented with 10% fetal calf serum, in the presence of penicilline, streptomycine and fungizone in 75cm² flask under 5%CO₂, while MRC5 were grown in complete D-MEM medium. Cells were plated in 96-well tissue culture plates in 200µl complete medium at a density of 1000-2500 cells per well and treated 24h later with 2µl of compounds using a Biomek 3000 automation workstation (Beckman-Coulter). Controls received the same volume of the appropriate vehicle (DMSO, EtOH or water, 1% final volume). After 72h exposure, MTS reagent (CellTiter 96® Aqueous One, Promega) was added and incubated for 3h at 37°C: the absorbance was monitored at 90nm and results expressed as the inhibition of cell proliferation calculated as the ratio [(1-(OD490 reated/OD490 control))×100] in triplicate experiments after subtraction of the blank without cells. Positive controls (cells incubated with a reference drug at its IC50 concentration) were routinely added to check the responsiveness of cells. For IC50 determination [50% inhibition of cell proliferation], cells were incubated for 72 h following the same protocol with compound concentrations ranged 5nM to 100µM in separate duplicate experiments. At these concentrations, no interference with Pt complexes was noticed at 490nm. Values are given as means ± SD from at least three independent experiments performed in triplicate.

14 X-RAY DATA AND TABLES

Complex 1c

Table S5. Crystal data and structure refinement for sblta150414, complex 1c.

Identification code	sblta150414	
Empirical formula	C26 H36 Cl F6 N2 P Ru S	
Formula weight	690.12	
Temperature	173(2) K	
Wavelength	0.71073 A	
Crystal system, space group Monoclinic, P 2/c		
Unit cell dimensions b = 9 c = 1	a = 18.3465(10) A alpha = 90 deg. 0.5046(3) A beta = 115.491(2) deg. 8.6302(12) A gamma = 90 deg.	

Volume 2932.4(3) A^3
Z, Calculated density 4, 1.563 Mg/m ³
Absorption coefficient 0.809 mm^-1
F(000) 1408
Crystal size 0.36 x 0.10 x 0.06 mm
Theta range for data collection 1.230 to 27.456 deg.
Limiting indices -23<=h<=22, -9<=k<=12, -24<=l<=24
Reflections collected / unique $26064 / 6703 [R(int) = 0.1396]$
Completeness to theta = 25.242 99.9 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.90401 and 0.81264
Refinement method Full-matrix least-squares on F^2
Data / restraints / parameters 6703 / 0 / 351
Goodness-of-fit on F^2 1.059
Final R indices $[I>2sigma(I)]$ R1 = 0.0646, wR2 = 0.1395
R indices (all data) $R1 = 0.1620, wR2 = 0.2089$
Extinction coefficient n/a
Largest diff. peak and hole 0.928 and -1.970 e.A^-3

Table S6. Bond lengths [A] and angles [deg] for sblta150414, complex 1c

C(1) N(1)	1.260(0)
C(1)-N(1)	1.300(9)
C(1)-N(2)	1.373(9)
C(1)-Ru(1)	2.075(7)
C(2)-C(3)	1.334(11)
C(2)-N(1)	1.389(9)
C(2)-H(2)	0.9500
C(3)-N(2)	1.393(9)

C(3)-H(3)	0.9500
C(4)-N(1)	1.460(9)
C(4)-C(5)	1.497(10)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.400(10)
C(5)-C(10)	1.408(11)
C(6)-C(7)	1.373(11)
C(6)-H(6)	0.9500
C(7)-C(8)	1.365(12)
C(7)-H(7)	0.9500
C(8)-C(9)	1.374(13)
C(8)-H(8)	0.9500
C(9)-C(10)	1.372(12)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-N(2)	1.455(9)
C(11)-C(12)	1.508(10)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-S(1)	1.810(7)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(14)	1.510(11)
C(13)-C(15)	1.517(11)
C(13)-C(16)	1.520(10)
C(13)-S(1)	1.875(8)
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(18)	1.407(9)
C(17)-C(22)	1.416(10)
C(17)-C(23)	1.506(10)
C(17)-Ru(1)	2.283(7)
C(18)-C(19)	1.425(9)
C(18)-Ru(1)	2.244(6)
C(18)-H(18)	0.9500
C(19)-C(20)	1.427(9)
C(19)-Ru(1)	2.183(6)
C(19)-H(19)	0.9500

C(20)-C(21)	1.433(9)
C(20)-C(24)	1.514(9)
C(20)-Ru(1)	2.237(7)
C(21)-C(22)	1.399(10)
C(21)-Ru(1)	2.224(7)
C(21)-H(21)	0.9500
C(22)-Ru(1)	2.207(7)
C(22)-H(22)	0.9500
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-C(25)	1.528(10)
C(24)-C(26)	1.545(11)
C(24)-H(24)	1.0000
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
F(1)-P(1)	1.594(5)
F(2)-P(1)	1.584(5)
F(3)-P(1)	1.580(5)
F(4)-P(2)	1.578(5)
F(5)-P(2)	1.541(7)
F(6)-P(2)	1.525(9)
F(7)-P(2)	1.501(9)
P(1)-F(3)#1	1.580(5)
P(1)-F(2)#1	1.584(5)
P(1)-F(1)#1	1.594(5)
P(2)-F(5)#2	1.541(7)
P(2)-F(4)#2	1.578(5)
S(1)-Ru(1)	2.3982(18)
Cl(1)-Ru(1)	2.4068(18)
N(1)-C(1)-N(2)	105.0(6)
N(1)-C(1)-Ru(1)	131.0(5)
N(2)-C(1)-Ru(1)	124.0(5)
C(3)-C(2)-N(1)	109.3(7)
C(3)-C(2)-H(2)	125.4
N(1)-C(2)-H(2)	125.4
C(2)-C(3)-N(2)	105.6(6)
C(2)-C(3)-H(3)	127.2
N(2)-C(3)-H(3)	127.2
N(1)-C(4)-C(5)	114.3(6)
N(1)-C(4)-H(4A)	108.7

C(5)-C(4)-H(4A)	108.7
N(1)-C(4)-H(4B)	108.7
C(5)-C(4)-H(4B)	108.7
H(4A)-C(4)-H(4B)	107.6
C(6)-C(5)-C(10)	116.4(7)
C(6)-C(5)-C(4)	120.4(7)
C(10)-C(5)-C(4)	123.3(7)
C(7)-C(6)-C(5)	120.8(8)
C(7)-C(6)-H(6)	119.6
C(5)-C(6)-H(6)	119.6
C(8)-C(7)-C(6)	122.1(8)
C(8)-C(7)-H(7)	118.9
C(6)-C(7)-H(7)	118.9
C(7)-C(8)-C(9)	118.2(9)
C(7)-C(8)-H(8)	120.9
C(9)-C(8)-H(8)	120.9
C(10)-C(9)-C(8)	121.2(9)
C(10)-C(9)-H(9)	119.4
C(8)-C(9)-H(9)	119.4
C(9)-C(10)-C(5)	121.3(8)
C(9)-C(10)-H(10)	119.3
C(5)-C(10)-H(10)	119.3
N(2)-C(11)-C(12)	111.1(6)
N(2)-C(11)-H(11A)	109.4
C(12)-C(11)-H(11A)	109.4
N(2)-C(11)-H(11B)	109.4
C(12)-C(11)-H(11B)	109.4
H(11A)-C(11)-H(11B)	108.0
C(11)-C(12)-S(1)	110.0(5)
C(11)-C(12)-H(12A)	109.7
S(1)-C(12)-H(12A)	109.7
C(11)-C(12)-H(12B)	109.7
S(1)-C(12)-H(12B)	109.7
H(12A)-C(12)-H(12B)	108.2
C(14)-C(13)-C(15)	111.0(7)
C(14)-C(13)-C(16)	112.5(7)
C(15)-C(13)-C(16)	110.4(7)
C(14)-C(13)-S(1)	112.8(6)
C(15)-C(13)-S(1)	105.1(6)
C(16)-C(13)-S(1)	104.6(5)
C(13)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(13)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5

C(13)-C(15)-H(15A)	109.5
C(13)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(13)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(13)-C(16)-H(16A)	109.5
C(13)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(13)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(18)-C(17)-C(22)	1180(7)
C(18)-C(17)-C(23)	120.6(7)
C(22)-C(17)-C(23)	121.2(6)
C(18)-C(17)-Ru(1)	70.4(4)
C(22)-C(17)-Ru(1)	68 7(4)
C(22) - C(17) - Ru(1)	128.2(5)
C(17)- $C(18)$ - $C(19)$	120.2(5)
C(17)- $C(18)$ - $Ru(1)$	734(4)
C(19)-C(18)-Ru(1)	68 9(4)
C(17)- $C(18)$ - $H(18)$	119.9
C(19)-C(18)-H(18)	119.9
$R_{1}(1)-C(18)-H(18)$	130.3
C(18)-C(19)-C(20)	122 1(6)
C(18)-C(19)-Ru(1)	73 6(4)
C(20)-C(19)-Ru(1)	73 2(4)
C(18)-C(19)-H(19)	118.9
C(20)-C(19)-H(19)	118.9
$R_{u}(1)-C(19)-H(19)$	126.2
C(19)-C(20)-C(21)	116.3(6)
C(19)-C(20)-C(24)	119 3(6)
C(21)-C(20)-C(24)	124 2(6)
C(19)-C(20)-Ru(1)	69 1(4)
C(21)-C(20)-Ru(1)	70 8(4)
C(24)- $C(20)$ - $Ru(1)$	133 6(5)
C(22) - C(21) - C(20)	133.0(3) 121 1(7)
C(22)-C(21)-C(20)	71.0(4)
C(22)-C(21)-Ru(1)	71.0(4) 71.8(4)
C(20)-C(21)-Ku(1) C(22)-C(21)-H(21)	110 5
C(22)-C(21)-H(21)	119.5
$R_{1}(1)-C(21)-H(21)$	130.5
$C(21) - C(22) - \Gamma(21)$	122 0(6)
C(21) = C(22) = C(17) C(21) = C(22) = Ru(1)	72.0(0)
$C(21)^{-}C(22)^{-}Ru(1)$	74.2(7)
C(17) = C(22) = Ku(1) C(21) = C(22) = U(22)	110.0
$U(21) - U(22) - \Pi(22)$	117.0

C(17)-C(22)-H(22)	119.0
Ru(1)-C(22)-H(22)	126.2
C(17)-C(23)-H(23A)	109.5
C(17)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(17)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(20)-C(24)-C(25)	108.9(6)
C(20)-C(24)-C(26)	114.0(6)
C(25)-C(24)-C(26)	110.2(7)
C(20)-C(24)-H(24)	107.8
C(25)-C(24)-H(24)	107.8
C(26)-C(24)-H(24)	107.8
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(24)-C(26)-H(26A)	109.5
C(24)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(24)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(1)-N(1)-C(2)	109.2(6)
C(1)-N(1)-C(4)	127.1(6)
C(2)-N(1)-C(4)	123.7(6)
C(1)-N(2)-C(3)	110.8(6)
C(1)-N(2)-C(11)	126.2(6)
C(3)-N(2)-C(11)	122.7(6)
F(3)-P(1)-F(3)#1	90.1(4)
F(3)-P(1)-F(2)	90.0(3)
F(3)#1-P(1)-F(2)	90.8(3)
F(3)-P(1)-F(2)#1	90.8(3)
F(3)#1-P(1)-F(2)#1	90.0(3)
F(2)-P(1)-F(2)#1	178.9(4)
F(3)-P(1)-F(1)#1	179.1(3)
F(3)#1-P(1)-F(1)#1	89.8(3)
F(2)-P(1)-F(1)#1	91.0(3)
F(2)#1-P(1)-F(1)#1	88.3(3)
F(3)-P(1)-F(1)	89.8(3)
F(3)#1-P(1)-F(1)	179.1(3)
F(2)-P(1)-F(1)	88.3(3)
F(2)#1-P(1)-F(1)	91.0(3)
	· · ·

F(1)#1-P(1)-F(1)	90.4(4)
F(7)-P(2)-F(6)	180.0
F(7)-P(2)-F(5)#2	90.4(4)
F(6)-P(2)-F(5)#2	89.6(4)
F(7)-P(2)-F(5)	90.4(4)
F(6)-P(2)-F(5)	89.6(4)
F(5)#2-P(2)-F(5)	179.2(8)
F(7)-P(2)-F(4)	90.2(2)
F(6)-P(2)-F(4)	89.8(2)
F(5)#2-P(2)-F(4)	93.3(3)
F(5)-P(2)-F(4)	86.7(3)
F(7)-P(2)-F(4)#2	90.2(2)
F(6)-P(2)-F(4)#2	89.8(2)
F(5)#2-P(2)-F(4)#2	86.7(3)
F(5)-P(2)-F(4)#2	93.3(3)
F(4)-P(2)-F(4)#2	179.7(5)
C(12)-S(1)-C(13)	101.0(4)
C(12)-S(1)-Ru(1)	111.5(2)
C(13)-S(1)-Ru(1)	121.1(2)
C(1)-Ru(1)-C(19)	121.5(3)
C(1)-Ru(1)-C(22)	119.2(3)
C(19)-Ru(1)-C(22)	78.9(3)
C(1)-Ru(1)-C(21)	94.7(3)
C(19)-Ru(1)-C(21)	66.9(3)
C(22)-Ru(1)-C(21)	36.8(3)
C(1)-Ru(1)-C(20)	94.7(3)
C(19)-Ru(1)-C(20)	37.6(2)
C(22)-Ru(1)-C(20)	67.4(3)
C(21)-Ru(1)-C(20)	37.5(2)
C(1)- $Ru(1)$ - $C(18)$	159.0(3)
C(19)- $Ru(1)$ - $C(18)$	37.5(2)
C(22)-Ru(1)-C(18)	65.9(3)
C(21)- $Ru(1)$ - $C(18)$	78.3(3)
C(20)- $Ru(1)$ - $C(18)$	67.7(3)
C(1)- $Ru(1)$ - $C(17)$	155.6(3)
C(19)- $Ru(1)$ - $C(17)$	66.7(3)
C(22)-Ru(1)-C(17)	36.7(3)
C(21)- $Ru(1)$ - $C(17)$	66.2(3)
C(20)- $Ru(1)$ - $C(17)$	79.6(3)
C(18)- $Ru(1)$ - $C(17)$	36.2(2)
C(1)- $Ru(1)$ - $S(1)$	90.3(2)
C(19)- $Ru(1)$ - $S(1)$	84.77(19)
C(22)- $Ru(1)$ - $S(1)$	150.50(19)
C(21)- $Ru(1)$ - $S(1)$	149.39(18)
C(20)- $Ru(1)$ - $S(1)$	112.07(17)
C(18)- $Ru(1)$ - $S(1)$	86.26(18)

C(17)- $Ru(1)$ - $S(1)$	113.96(19)
C(1)-Ru(1)-Cl(1)	86.8(2)
C(19)- $Ru(1)$ - $Cl(1)$	151.65(19)
C(22)-Ru(1)-Cl(1)	88.0(2)
C(21)- $Ru(1)$ - $Cl(1)$	115.13(18)
C(20)- $Ru(1)$ - $Cl(1)$	152.59(17)
C(18)-Ru(1)-Cl(1)	114.13(19)
C(17)- $Ru(1)$ - $Cl(1)$	87.82(19)
S(1)-Ru(1)-Cl(1)	95.27(7)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2 #2 -x+2,y,-z+1/2

 Table S7.
 Torsion angles [deg] for sblta150414.;
 complex 1c

N(1)-C(2)-C(3)-N(2)	-1.5(11)
N(1)-C(4)-C(5)-C(6)	-131.8(7)
N(1)-C(4)-C(5)-C(10)	49.3(9)
C(10)-C(5)-C(6)-C(7)	-2.1(10)
C(4)-C(5)-C(6)-C(7)	178.9(6)
C(5)-C(6)-C(7)-C(8)	1.4(11)
C(6)-C(7)-C(8)-C(9)	-0.2(12)
C(7)-C(8)-C(9)-C(10)	-0.3(13)
C(8)-C(9)-C(10)-C(5)	-0.4(13)
C(6)-C(5)-C(10)-C(9)	1.6(11)
C(4)-C(5)-C(10)-C(9)	-179.5(7)
N(2)-C(11)-C(12)-S(1)	-75.2(7)
C(22)-C(17)-C(18)-C(19)	1.3(10)
C(23)-C(17)-C(18)-C(19)	176.1(6)
Ru(1)-C(17)-C(18)-C(19)	52.6(6)
C(22)-C(17)-C(18)-Ru(1)	-51.3(6)
C(23)-C(17)-C(18)-Ru(1)	123.5(6)
C(17)-C(18)-C(19)-C(20)	2.7(10)
Ru(1)-C(18)-C(19)-C(20)	57.3(6)
C(17)-C(18)-C(19)-Ru(1)	-54.6(6)
C(18)-C(19)-C(20)-C(21)	-3.1(10)
Ru(1)-C(19)-C(20)-C(21)	54.4(5)
C(18)-C(19)-C(20)-C(24)	173.3(6)
Ru(1)-C(19)-C(20)-C(24)	-129.3(6)
C(18)-C(19)-C(20)-Ru(1)	-57.5(6)
C(19)-C(20)-C(21)-C(22)	-0.4(10)
C(24)-C(20)-C(21)-C(22)	-176.6(6)
Ru(1)-C(20)-C(21)-C(22)	53.1(6)
C(19)-C(20)-C(21)-Ru(1)	-53.6(5)

C(24)-C(20)-C(21)-Ru(1)	130.3(6)
C(20)-C(21)-C(22)-C(17)	4.4(11)
Ru(1)-C(21)-C(22)-C(17)	57.9(6)
C(20)-C(21)-C(22)-Ru(1)	-53.5(6)
C(18)-C(17)-C(22)-C(21)	-4.8(10)
C(23)-C(17)-C(22)-C(21)	-179.6(7)
Ru(1)-C(17)-C(22)-C(21)	-56.9(6)
C(18)-C(17)-C(22)-Ru(1)	52.0(6)
C(23)-C(17)-C(22)-Ru(1)	-122.7(6)
C(19)-C(20)-C(24)-C(25)	-77.9(8)
C(21)-C(20)-C(24)-C(25)	98.2(8)
Ru(1)-C(20)-C(24)-C(25)	-166.2(6)
C(19)-C(20)-C(24)-C(26)	158.6(7)
C(21)-C(20)-C(24)-C(26)	-25.4(10)
Ru(1)-C(20)-C(24)-C(26)	70.3(9)
N(2)-C(1)-N(1)-C(2)	2.8(9)
Ru(1)-C(1)-N(1)-C(2)	-174.9(6)
N(2)-C(1)-N(1)-C(4)	-176.2(7)
Ru(1)-C(1)-N(1)-C(4)	6.0(12)
C(3)-C(2)-N(1)-C(1)	-0.9(11)
C(3)-C(2)-N(1)-C(4)	178.2(8)
C(5)-C(4)-N(1)-C(1)	91.7(9)
C(5)-C(4)-N(1)-C(2)	-87.2(9)
N(1)-C(1)-N(2)-C(3)	-3.8(9)
Ru(1)-C(1)-N(2)-C(3)	174.1(6)
N(1)-C(1)-N(2)-C(11)	-177.4(7)
Ru(1)-C(1)-N(2)-C(11)	0.6(10)
C(2)-C(3)-N(2)-C(1)	3.4(11)
C(2)-C(3)-N(2)-C(11)	177.2(8)
C(12)-C(11)-N(2)-C(1)	65.2(10)
C(12)-C(11)-N(2)-C(3)	-107.6(8)
C(11)-C(12)-S(1)-C(13)	160.6(5)
C(11)-C(12)-S(1)-Ru(1)	30.6(6)
C(14)-C(13)-S(1)-C(12)	-56.3(6)
C(15)-C(13)-S(1)-C(12)	64.8(6)
C(16)-C(13)-S(1)-C(12)	-178.9(5)
C(14)-C(13)-S(1)-Ru(1)	67.2(6)
C(15)-C(13)-S(1)-Ru(1)	-171.7(5)
C(16)-C(13)-S(1)-Ru(1)	-55.4(6)

Complex 1i

Table S8. Crystal data and structure refinement for sblta151104, complex 1i

Identification code	sblta151104	
Empirical formula	C28 H31 Br Cl F6 N2 P Ru S	
Formula weight	789.01	
Temperature	173(2) K	
Wavelength	0.71073 A	
Crystal system, space group Monoclinic, P c		
Unit cell dimensions $a = 10.3883(10) \text{ A}$ alpha = 90 deg b = 19.6463(19) A beta = 95.526(2) deg. c = 14.7966(14) A gamma = 90 deg.		
Volume	3005.8(5) A^3	

Z, Calculated density 4, 1.744 Mg/m ³		
Absorption coefficient 2.122 mm^-1		
F(000) 1576		
Crystal size 0.250 x 0.120 x 0.100 mm		
Theta range for data collection 1.728 to 28.040 deg.		
Limiting indices -13<=h<=13, -25<=k<=25, -19<=l<=19		
Reflections collected / unique $35513 / 13689 [R(int) = 0.0593]$		
Completeness to theta = 25.242 99.9 %		
Absorption correction Semi-empirical from equivalents		
Max. and min. transmission 0.7456 and 0.6500		
Refinement method Full-matrix least-squares on F^2		
Data / restraints / parameters 13689 / 2 / 664		
Goodness-of-fit on F ² 1.013		
Final R indices [I>2sigma(I)] $R1 = 0.0734$, wR2 = 0.1693		
R indices (all data) $R1 = 0.1122$, wR2 = 0.1906		
Absolute structure parameter 0.55(2)		
Extinction coefficient n/a		
Largest diff. peak and hole 4.796 and -1.394 e.A^-3		

Table S9. Bond lengths [A] and angles [deg] for sblta151104, complex 1i

C(1)-N(1)	1.315(19)
C(1)-N(2)	1.354(17)
C(1)-Ru(1)	2.050(15)
C(2)-C(3)	1.35(2)
C(2)-N(1)	1.411(18)
C(2)-H(2)	0.9500

C(3)-N(2)	1.361(19)
C(3)-H(3)	0.9500
C(4)-N(1)	1.473(17)
C(4)-C(5)	1.511(19)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.393(19)
C(5)-C(10)	1.41(2)
C(6)-C(7)	1.41(2)
C(6)-H(6)	0.9500
C(7)-C(8)	1.38(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.36(3)
C(8)-H(8)	0.9500
C(9)-C(10)	1.37(2)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-N(2)	1.491(19)
C(11)-C(12)	1.52(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-S(1)	1.809(15)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(18)	1.37(2)
C(13)-C(14)	1.402(18)
C(13)-S(1)	1.775(14)
C(14)-C(15)	1.385(19)
C(14)-H(14)	0.9500
C(15)-C(16)	1.35(2)
C(15)-H(15)	0.9500
C(16)-C(17)	1.40(2)
C(16)-Br(1)	1.893(14)
C(17)-C(18)	1.40(2)
C(17)-H(17)	0.9500
C(18)-H(18)	0.9500
C(19)-C(24)	1.41(2)
C(19)-C(20)	1.46(2)
C(19)-C(25)	1.50(2)
C(19)-Ru(1)	2.274(16)
C(20)-C(21)	1.37(2)
C(20)-Ru(1)	2.225(18)
C(20)-H(20)	0.9500
C(21)-C(22)	1.43(2)
C(21)-Ru(1)	2.215(16)
C(21)-H(21)	0.9500

C(22)-C(23)	1.43(2)
C(22)-C(26)	1.510(19)
C(22)-Ru(1)	2.236(13)
C(23)-C(24)	1.40(2)
C(23)-Ru(1)	2.184(13)
C(23)-H(23)	0.9500
C(24)-Ru(1)	2.236(15)
C(24)-H(24)	0.9500
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(26)-C(27)	1.48(2)
C(26)-C(28)	1.515(17)
C(26)-H(26)	1.0000
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
C(29)-N(3)	1.4200
C(29)-N(4)	1.4200
C(29)-Ru(2)	2.054(8)
N(3)-C(30)	1.4200
N(3)-C(32)	1.45(2)
C(30)-C(31)	1.4200
C(30)-H(30)	0.9500
C(31)-N(4)	1.4200
C(31)-H(31)	0.9500
N(4)-C(39)	1.40(2)
C(32)-C(33)	1.52(2)
C(32)-H(32A)	0.9900
C(32)-H(32B)	0.9900
C(33)-C(34)	1.3900
C(33)-C(38)	1.3900
C(34)-C(35)	1.3900
C(34)-H(34)	0.9500
C(35)-C(36)	1.3900
C(35)-H(35)	0.9500
C(36)-C(37)	1.3900
C(36)-H(36)	0.9500
C(37)-C(38)	1.3900
C(37)-H(37)	0.9500
C(38)-H(38)	0.9500
C(39)-C(40)	1.44(2)
C(39)-H(39A)	0.9900
C(39)-H(39B)	0.9900
--------------	-----------
C(40)-S(2)	1.758(16)
C(40)-H(40A)	0.9900
C(40)-H(40B)	0.9900
C(41)-C(46)	1.38(3)
C(41)-C(42)	1.41(3)
C(41)-S(2)	1.72(2)
C(42)-C(43)	1.38(2)
C(42)-H(42)	0.9500
C(43)-C(44)	1.35(3)
C(43)-H(43)	0.9500
C(44)-C(45)	1.37(3)
C(44)-Br(2)	1.893(19)
C(45)-C(46)	1.49(3)
C(45)-H(45)	0.9500
C(46)-H(46)	0.9500
C(47)-C(52)	1.39(3)
C(47)-C(48)	1.45(2)
C(47)-C(53)	1.50(2)
C(47)-Ru(2)	2.265(15)
C(48)-C(49)	1.40(2)
C(48)-Ru(2)	2.198(14)
C(48)-H(48)	0.9500
C(49)-C(50)	1.40(2)
C(49)-Ru(2)	2.216(16)
C(49)-H(49)	0.9500
C(50)-C(51)	1.43(2)
C(50)-C(54)	1.52(2)
C(50)-Ru(2)	2.283(15)
C(51)-C(52)	1.39(2)
C(51)-Ru(2)	2.243(15)
C(51)-H(51)	0.9500
C(52)-Ru(2)	2.222(18)
C(52)-H(52)	0.9500
C(53)-H(53A)	0.9800
C(53)-H(53B)	0.9800
C(53)-H(53C)	0.9800
C(54)-C(55)	1.48(2)
C(54)-C(56)	1.54(2)
C(54)-H(54)	1.0000
C(55)-H(55A)	0.9800
C(55)-H(55B)	0.9800
C(55)-H(55C)	0.9800
C(56)-H(56A)	0.9800
C(56)-H(56B)	0.9800
C(56)-H(56C)	0.9800

F(1)-P(1)	1.596(11)
F(2)-P(1)	1.575(11)
F(3)-P(1)	1.609(10)
F(4)-P(1)	1.567(12)
F(5)-P(1)	1.588(12)
F(6)-P(1)	1.599(11)
F(7)-P(2)	1.570(13)
F(8)-P(2)	1.513(13)
F(9)-P(2)	1.591(11)
F(10)-P(2)	1.566(13)
F(11)-P(2)	1.589(13)
F(12)-P(2)	1.597(10)
S(1)-Ru(1)	2.384(3)
S(2)-Ru(2)	2.401(5)
Cl(1)-Ru(1)	2.395(3)
Cl(2)-Ru(2)	2.392(4)
(_)=(_)	
N(1)-C(1)-N(2)	103.9(12)
N(1)-C(1)-Ru(1)	130.3(10)
N(2)-C(1)-Ru(1)	125.1(11)
C(3)-C(2)-N(1)	104.5(12)
C(3)-C(2)-H(2)	127.7
N(1)-C(2)-H(2)	127.7
C(2)-C(3)-N(2)	106.9(12)
C(2)-C(3)-H(3)	126.5
N(2)-C(3)-H(3)	126.5
N(1)-C(4)-C(5)	113.0(12)
N(1)-C(4)-H(4A)	109.0
C(5)-C(4)-H(4A)	109.0
N(1)-C(4)-H(4B)	109.0
C(5)-C(4)-H(4B)	109.0
H(4A)-C(4)-H(4B)	107.8
C(6)-C(5)-C(10)	118.6(13)
C(6)-C(5)-C(4)	120.4(13)
C(10)-C(5)-C(4)	120.8(13)
C(5)-C(6)-C(7)	120.0(14)
C(5)-C(6)-H(6)	120.0
C(7)-C(6)-H(6)	120.0
C(8)-C(7)-C(6)	120.2(16)
C(8)-C(7)-H(7)	119.9
C(6)-C(7)-H(7)	119.9
C(9)-C(8)-C(7)	118.9(16)
C(9)-C(8)-H(8)	120.5
C(7)-C(8)-H(8)	120.5
C(8)-C(9)-C(10)	122.3(17)
C(8)-C(9)-H(9)	118.8

C(10)-C(9)-H(9)	118.8
C(9)-C(10)-C(5)	119.3(15)
C(9)-C(10)-H(10)	120.3
C(5)-C(10)-H(10)	120.3
N(2)-C(11)-C(12)	110.2(11)
N(2)-C(11)-H(11A)	109.6
C(12)-C(11)-H(11A)	109.6
N(2)-C(11)-H(11B)	109.6
C(12)-C(11)-H(11B)	109.6
H(11A)-C(11)-H(11B)	108.1
C(11)-C(12)-S(1)	108.0(11)
C(11)-C(12)-H(12A)	110.1
S(1)-C(12)-H(12A)	110.1
C(11)-C(12)-H(12B)	110.1
S(1)-C(12)-H(12B)	110.1
H(12A)-C(12)-H(12B)	108.4
C(18)-C(13)-C(14)	120.4(13)
C(18)-C(13)-S(1)	116.3(10)
C(14)-C(13)-S(1)	123.2(11)
C(15)-C(14)-C(13)	118.9(13)
C(15)-C(14)-H(14)	120.5
C(13)-C(14)-H(14)	120.5
C(16)-C(15)-C(14)	120.3(13)
C(16)-C(15)-H(15)	119.9
C(14)-C(15)-H(15)	119.9
C(15)-C(16)-C(17)	122.3(13)
C(15)-C(16)-Br(1)	119.3(11)
C(17)-C(16)-Br(1)	118.2(12)
C(18)-C(17)-C(16)	117.4(14)
C(18)-C(17)-H(17)	121.3
C(16)-C(17)-H(17)	121.3
C(13)-C(18)-C(17)	120.6(14)
C(13)-C(18)-H(18)	119.7
C(17)-C(18)-H(18)	119.7
C(24)-C(19)-C(20)	115.5(14)
C(24)-C(19)-C(25)	123.5(16)
C(20)-C(19)-C(25)	121.0(15)
C(24)-C(19)-Ru(1)	70.4(9)
C(20)-C(19)-Ru(1)	69.3(9)
C(25)-C(19)-Ru(1)	129.2(11)
C(21)-C(20)-C(19)	121.2(14)
C(21)-C(20)-Ru(1)	71.6(10)
C(19)-C(20)-Ru(1)	72.8(9)
C(21)-C(20)-H(20)	119.4
C(19)-C(20)-H(20)	119.4
Ru(1)-C(20)-H(20)	128.5

C(20)-C(21)-C(22)	123.3(15)
C(20)-C(21)-Ru(1)	72.4(10)
C(22)-C(21)-Ru(1)	72.1(8)
C(20)-C(21)-H(21)	118.4
C(22)-C(21)-H(21)	118.4
Ru(1)-C(21)-H(21)	129.9
C(21)-C(22)-C(23)	115.5(13)
C(21)-C(22)-C(26)	124.4(14)
C(23)-C(22)-C(26)	119.9(13)
C(21)-C(22)-Ru(1)	70.5(8)
C(23)-C(22)-Ru(1)	69.2(8)
C(26)-C(22)-Ru(1)	133.2(10)
C(24)-C(23)-C(22)	121.6(13)
C(24)-C(23)-Ru(1)	73.5(8)
C(22)-C(23)-Ru(1)	73.1(8)
C(24)-C(23)-H(23)	119.2
C(22)-C(23)-H(23)	119.2
Ru(1)-C(23)-H(23)	126.0
C(23)-C(24)-C(19)	122.7(14)
C(23)-C(24)-Ru(1)	69.5(8)
C(19)-C(24)-Ru(1)	73.3(9)
C(23)-C(24)-H(24)	118.6
C(19)-C(24)-H(24)	118.6
Ru(1)-C(24)-H(24)	131.7
C(19)-C(25)-H(25A)	109.5
C(19)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(19)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(27)-C(26)-C(22)	114.2(12)
C(27)-C(26)-C(28)	109.5(12)
C(22)-C(26)-C(28)	107.1(11)
C(27)-C(26)-H(26)	108.6
C(22)-C(26)-H(26)	108.6
C(28)-C(26)-H(26)	108.6
C(26)-C(27)-H(27A)	109.5
C(26)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
C(26)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(26)-C(28)-H(28A)	109.5
C(26)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(26)-C(28)-H(28C)	109.5

H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
N(3)-C(29)-N(4)	108.0
N(3)-C(29)-Ru(2)	129.0(2)
N(4)-C(29)-Ru(2)	122.6(2)
C(30)-N(3)-C(29)	108.0
C(30)-N(3)-C(32)	124.7(10)
C(29)-N(3)-C(32)	127.3(10)
N(3)-C(30)-C(31)	108.0
N(3)-C(30)-H(30)	126.0
C(31)-C(30)-H(30)	126.0
N(4)-C(31)-C(30)	108.0
N(4)-C(31)-H(31)	126.0
C(30)-C(31)-H(31)	126.0
C(39)-N(4)-C(31)	123.7(8)
C(39)-N(4)-C(29)	127.9(8)
C(31)-N(4)-C(29)	108.0
N(3)-C(32)-C(33)	113.0(14)
N(3)-C(32)-H(32A)	109.0
C(33)-C(32)-H(32A)	109.0
N(3)-C(32)-H(32B)	109.0
C(33)-C(32)-H(32B)	109.0
H(32A)-C(32)-H(32B)	107.8
C(34)-C(33)-C(38)	120.0
C(34)-C(33)-C(32)	115.0(11)
C(38)-C(33)-C(32)	124.9(11)
C(35)-C(34)-C(33)	120.0
C(35)-C(34)-H(34)	120.0
C(33)-C(34)-H(34)	120.0
C(34)-C(35)-C(36)	120.0
C(34)-C(35)-H(35)	120.0
C(36)-C(35)-H(35)	120.0
C(35)-C(36)-C(37)	120.0
C(35)-C(36)-H(36)	120.0
C(37)-C(36)-H(36)	120.0
C(38)-C(37)-C(36)	120.0
C(38)-C(37)-H(37)	120.0
C(36)-C(37)-H(37)	120.0
C(37)-C(38)-C(33)	120.0
C(37)-C(38)-H(38)	120.0
C(33)-C(38)-H(38)	120.0
N(4)-C(39)-C(40)	112.0(13)
N(4)-C(39)-H(39A)	109.2
C(40)-C(39)-H(39A)	109.2
N(4)-C(39)-H(39B)	109.2
C(40)-C(39)-H(39B)	109.2

H(39A)-C(39)-H(39B)	107.9
C(39)-C(40)-S(2)	116.9(15)
C(39)-C(40)-H(40A)	108.1
S(2)-C(40)-H(40A)	108.1
C(39)-C(40)-H(40B)	108.1
S(2)-C(40)-H(40B)	108.1
H(40A)-C(40)-H(40B)	107.3
C(46)-C(41)-C(42)	116.0(19)
C(46)-C(41)-S(2)	117.7(16)
C(42)-C(41)-S(2)	125.7(15)
C(43)-C(42)-C(41)	121.7(18)
C(43)-C(42)-H(42)	119.2
C(41)-C(42)-H(42)	119.2
C(44)-C(43)-C(42)	120.6(17)
C(44)-C(43)-H(43)	119.7
C(42)-C(43)-H(43)	119.7
C(43)-C(44)-C(45)	123.8(18)
C(43)-C(44)-Br(2)	119.7(16)
C(45)-C(44)-Br(2)	116.4(16)
C(44)-C(45)-C(46)	114.2(18)
C(44)-C(45)-H(45)	122.9
C(46)-C(45)-H(45)	122.9
C(41)-C(46)-C(45)	123.1(19)
C(41)-C(46)-H(46)	118.5
C(45)-C(46)-H(46)	118.5
C(52)-C(47)-C(48)	115.7(15)
C(52)-C(47)-C(53)	124.5(17)
C(48)-C(47)-C(53)	119.8(16)
C(52)-C(47)-Ru(2)	70.3(10)
C(48)-C(47)-Ru(2)	68.6(8)
C(53)-C(47)-Ru(2)	131.7(13)
C(49)-C(48)-C(47)	121.5(15)
C(49)-C(48)-Ru(2)	72.2(9)
C(47)-C(48)-Ru(2)	73.6(8)
C(49)-C(48)-H(48)	119.3
C(47)-C(48)-H(48)	119.3
Ru(2)-C(48)-H(48)	127.0
C(50)-C(49)-C(48)	121.7(15)
C(50)-C(49)-Ru(2)	74.6(9)
C(48)-C(49)-Ru(2)	70.8(9)
C(50)-C(49)-H(49)	119.2
C(48)-C(49)-H(49)	119.2
Ru(2)-C(49)-H(49)	127.6
C(49)-C(50)-C(51)	116.8(14)
C(49)-C(50)-C(54)	120.6(14)
C(51)-C(50)-C(54)	122.4(14)
$\langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle $	· /

C(49)-C(50)-Ru(2)	69.3(9)
C(51)-C(50)-Ru(2)	70.1(8)
C(54)-C(50)-Ru(2)	135.6(11)
C(52)-C(51)-C(50)	121.5(16)
C(52)-C(51)-Ru(2)	71.0(10)
C(50)-C(51)-Ru(2)	73.2(9)
C(52)-C(51)-H(51)	119.3
C(50)-C(51)-H(51)	1193
$R_{II}(2)-C(51)-H(51)$	129.0
C(51)-C(52)-C(47)	122.8(17)
C(51)-C(52)-Ru(2)	72.7(10)
C(47)-C(52)-Ru(2)	73.6(10)
C(51)- $C(52)$ - $H(52)$	118.6
C(47)- $C(52)$ - $H(52)$	118.6
$R_{11}(2) - C(52) - H(52)$	127.3
C(47)- $C(53)$ - $H(53A)$	109.5
C(47)-C(53)-H(53R)	109.5
H(53A) - C(53) - H(53B)	109.5
$\Gamma(33R) - C(33) - H(33C)$	109.5
H(53A) - C(53) - H(53C)	109.5
H(53R)-C(53)-H(53C)	109.5
$\Gamma(55b) - C(54) - \Gamma(50)$	109.5 108 0(15)
C(55)-C(54)-C(56)	110.6(15)
C(50)-C(54)-C(56)	115.3(13)
C(55)-C(54)-C(54)	107.6
C(53)-C(54)-H(54)	107.0
C(56) C(54) H(54)	107.0
C(54) - C(54) - H(554)	107.0
C(54) - C(55) - H(55R)	109.5
H(55A) C(55) H(55B)	109.5
$\Gamma(55R) - C(55) - H(55C)$	109.5
H(55A) - C(55) - H(55C)	109.5
H(55R) - C(55) - H(55C)	109.5
$\Gamma(55D) - C(55) - \Pi(55C)$ $\Gamma(54) \Gamma(56) - \Pi(56A)$	109.5
C(54)- $C(56)$ $H(56R)$	109.5
U(56A) C(56) U(56P)	109.5
$\Gamma(30A) - C(30) - \Gamma(30B)$	109.5
$U(54)-U(50)-\Pi(50C)$	109.5
$\Pi(30A)$ - $C(30)$ - $\Pi(30C)$	109.5
$\Pi(30D)-C(30)-\Pi(30C)$	109.5
C(1)-N(1)-C(2) C(1)-N(1)-C(4)	112.4(12)
C(1) - N(1) - C(4) C(2) N(1) C(4)	120.0(12)
C(2) - N(1) - C(4) C(1) N(2) C(2)	120.7(12)
C(1) - N(2) - C(3) C(1) - N(2) - C(11)	112.2(12) 122 $4(12)$
C(1) - N(2) - C(11) C(2) - N(2) - C(11)	123.4(13) 124.2(12)
U(3)-IN(2)-U(11) E(4) P(1) E(2)	124.2(12)
r(4)-r(1)-r(2)	90.9(8)

F(4)-P(1)-F(5)	89.8(8)
F(2)-P(1)-F(5)	179.0(8)
F(4)-P(1)-F(1)	177.1(8)
F(2)-P(1)-F(1)	91.7(8)
F(5)-P(1)-F(1)	87.6(7)
F(4)-P(1)-F(6)	89.9(7)
F(2)-P(1)-F(6)	91.4(7)
F(5)-P(1)-F(6)	89.3(7)
F(1)-P(1)-F(6)	91.3(7)
F(4)-P(1)-F(3)	88.8(7)
F(2)-P(1)-F(3)	90.2(6)
F(5)-P(1)-F(3)	89.2(6)
F(1)-P(1)-F(3)	89.9(6)
F(6)-P(1)-F(3)	178.0(7)
F(8)-P(2)-F(10)	91.7(10)
F(8)-P(2)-F(7)	92.2(10)
F(10)-P(2)-F(7)	175.8(10)
F(8)-P(2)-F(11)	179.4(11)
F(10)-P(2)-F(11)	88.0(9)
F(7)-P(2)-F(11)	88.1(9)
F(8)-P(2)-F(9)	87.6(9)
F(10)-P(2)-F(9)	87.9(7)
F(7)-P(2)-F(9)	90.6(7)
F(11)-P(2)-F(9)	92.9(9)
F(8)-P(2)-F(12)	92.3(8)
F(10)-P(2)-F(12)	91.9(8)
F(7)-P(2)-F(12)	89.5(7)
F(11)-P(2)-F(12)	87.2(8)
F(9)-P(2)-F(12)	179.8(8)
C(13)-S(1)-C(12)	102.8(7)
C(13)-S(1)-Ru(1)	112.0(4)
C(12)-S(1)-Ru(1)	111.1(5)
C(41)-S(2)-C(40)	104.8(9)
C(41)-S(2)-Ru(2)	115.2(6)
C(40)-S(2)-Ru(2)	108.5(7)
C(1)- $Ru(1)$ - $C(23)$	114.5(5)
C(1)- $Ru(1)$ - $C(21)$	98.0(6)
C(23)- $Ru(1)$ - $C(21)$	66.6(6)
C(1)-Ru(1)-C(20)	125.4(6)
C(23)- $Ru(1)$ - $C(20)$	78.8(6)
C(21)- $Ru(1)$ - $C(20)$	36.0(6)
C(1)-Ru(1)-C(24)	150.8(5)
C(23)-Ru(1)-C(24)	37.0(5)
C(21)- $Ru(1)$ - $C(24)$	77.4(6)
C(20)- $Ru(1)$ - $C(24)$	65.9(6)
C(1)-Ru(1)-C(22)	91.5(6)

C(23)-Ru(1)-C(22)	37.7(6)
C(21)-Ru(1)-C(22)	37.4(5)
C(20)-Ru(1)-C(22)	67.1(5)
C(24)-Ru(1)-C(22)	67.2(6)
C(1)-Ru(1)-C(19)	163.3(6)
C(23)-Ru(1)-C(19)	67.2(6)
C(21)-Ru(1)-C(19)	66.8(6)
C(20)-Ru(1)-C(19)	37.9(6)
C(24)-Ru(1)-C(19)	36.3(6)
C(22)-Ru(1)-C(19)	80.5(5)
C(1)- $Ru(1)$ - $S(1)$	89.1(4)
C(23)- $Ru(1)$ - $S(1)$	90.3(4)
C(21)-Ru(1)-S(1)	156.8(4)
C(20)- $Ru(1)$ - $S(1)$	145.4(4)
C(24)- $Ru(1)$ - $S(1)$	85.7(4)
C(22)- $Ru(1)$ - $S(1)$	120.9(4)
C(19)- $Ru(1)$ - $S(1)$	107.6(4)
C(1)-Ru(1)-Cl(1)	87.6(4)
C(23)-Ru(1)-Cl(1)	157.9(4)
C(21)-Ru(1)-Cl(1)	111.0(4)
C(20)-Ru(1)-Cl(1)	87.5(4)
C(24)- $Ru(1)$ - $Cl(1)$	121.2(4)
C(22)-Ru(1)-Cl(1)	147.8(4)
C(19)- $Ru(1)$ - $Cl(1)$	91.4(4)
S(1)-Ru(1)-Cl(1)	91.23(12)
C(29)-Ru(2)-C(48)	91.7(5)
C(29)-Ru(2)-C(49)	91.3(5)
C(48)-Ru(2)-C(49)	37.0(6)
C(29)-Ru(2)-C(52)	154.8(5)
C(48)- $Ru(2)$ - $C(52)$	65.9(7)
C(49)- $Ru(2)$ - $C(52)$	77.7(7)
C(29)- $Ru(2)$ - $C(51)$	153.3(5)
C(48)- $Ru(2)$ - $C(51)$	77.4(6)
C(49)- $Ru(2)$ - $C(51)$	65.3(6)
C(52)- $Ru(2)$ - $C(51)$	36.3(6)
C(29)- $Ru(2)$ - $C(47)$	118.7(5)
C(48)- $Ru(2)$ - $C(47)$	37.8(6)
C(49)- $Ru(2)$ - $C(47)$	67.3(6)
C(52)- $Ru(2)$ - $C(47)$	36.2(6)
C(51)- $Ru(2)$ - $C(47)$	65.7(6)
C(29)- $Ru(2)$ - $C(50)$	116.6(5)
C(48)- $Ru(2)$ - $C(50)$	66.1(6)
C(49)-Ru(2)-C(50)	36.2(5)
C(52)- $Ru(2)$ - $C(50)$	66.1(6)
C(51)-Ru(2)-C(50)	267(6)
$\mathcal{O}(\mathcal{O}^{(1)})$ $\mathcal{O}(\mathcal{O}^{(1)})$	30.7(0)

C(29)-Ru(2)-Cl(2)	87.1(2)
C(48)- $Ru(2)$ - $Cl(2)$	156.4(5)
C(49)- $Ru(2)$ - $Cl(2)$	119.5(4)
C(52)- $Ru(2)$ - $Cl(2)$	118.0(5)
C(51)-Ru(2)-Cl(2)	93.3(4)
C(47)- $Ru(2)$ - $Cl(2)$	153.9(5)
C(50)- $Ru(2)$ - $Cl(2)$	93.5(4)
C(29)- $Ru(2)$ - $S(2)$	91.5(3)
C(48)- $Ru(2)$ - $S(2)$	113.5(5)
C(49)- $Ru(2)$ - $S(2)$	150.5(4)
C(52)- $Ru(2)$ - $S(2)$	87.6(5)
C(51)- $Ru(2)$ - $S(2)$	115.2(4)
C(47)- $Ru(2)$ - $S(2)$	85.7(5)
C(50)- $Ru(2)$ - $S(2)$	151.8(4)
Cl(2)-Ru(2)-S(2)	90.04(15)

Table S10. Torsion angles [de	eg] for sblta151104, complex 1i	
N(1)-C(2)-C(3)-N(2)	-0.3(16)	
N(1)-C(4)-C(5)-C(6)	-136.2(13)	
N(1)-C(4)-C(5)-C(10)	48.1(17)	
C(10)-C(5)-C(6)-C(7)	-2(2)	
C(4)-C(5)-C(6)-C(7)	-177.5(13)	
C(5)-C(6)-C(7)-C(8)	4(2)	
C(6)-C(7)-C(8)-C(9)	-8(2)	
C(7)-C(8)-C(9)-C(10)	9(3)	
C(8)-C(9)-C(10)-C(5)	-7(2)	
C(6)-C(5)-C(10)-C(9)	3(2)	
C(4)-C(5)-C(10)-C(9)	178.6(13)	
N(2)-C(11)-C(12)-S(1)	-78.3(14)	
C(18)-C(13)-C(14)-C(15)	2(2)	
S(1)-C(13)-C(14)-C(15)	-178.6(11)	
C(13)-C(14)-C(15)-C(16)	-1(2)	
C(14)-C(15)-C(16)-C(17)	1(3)	
C(14)-C(15)-C(16)-Br(1)	176.5(11)	
C(15)-C(16)-C(17)-C(18)	-2(3)	
Br(1)-C(16)-C(17)-C(18)	-177.3(12)	
C(14)-C(13)-C(18)-C(17)	-2(2)	
S(1)-C(13)-C(18)-C(17)	177.7(12)	
C(16)-C(17)-C(18)-C(13)	3(2)	
C(24)-C(19)-C(20)-C(21)	0(2)	
C(25)-C(19)-C(20)-C(21)	-179.0(16)	
Ru(1)-C(19)-C(20)-C(21)	-55.0(15)	
C(24)-C(19)-C(20)-Ru(1)	54.6(12)	

C(25)-C(19)-C(20)-Ru(1)	-124.1(15)
C(19)-C(20)-C(21)-C(22)	2(3)
Ru(1)-C(20)-C(21)-C(22)	-53.6(14)
C(19)-C(20)-C(21)-Ru(1)	55.5(15)
C(20)-C(21)-C(22)-C(23)	0(2)
Ru(1)-C(21)-C(22)-C(23)	-54.0(11)
C(20)-C(21)-C(22)-C(26)	-176.7(15)
Ru(1)-C(21)-C(22)-C(26)	129.6(14)
C(20)-C(21)-C(22)-Ru(1)	53.7(15)
C(21)-C(22)-C(23)-C(24)	-3(2)
C(26)-C(22)-C(23)-C(24)	173.6(14)
Ru(1)-C(22)-C(23)-C(24)	-57.7(13)
C(21)-C(22)-C(23)-Ru(1)	54.7(11)
C(26)-C(22)-C(23)-Ru(1)	-128.8(13)
C(22)-C(23)-C(24)-C(19)	5(2)
Ru(1)-C(23)-C(24)-C(19)	-52.7(14)
C(22)-C(23)-C(24)-Ru(1)	57.5(12)
C(20)-C(19)-C(24)-C(23)	-3(2)
C(25)-C(19)-C(24)-C(23)	175.7(16)
Ru(1)-C(19)-C(24)-C(23)	51.1(14)
C(20)-C(19)-C(24)-Ru(1)	-54.1(13)
C(25)-C(19)-C(24)-Ru(1)	124.6(16)
C(21)-C(22)-C(26)-C(27)	-32(2)
C(23)-C(22)-C(26)-C(27)	151.3(14)
Ru(1)-C(22)-C(26)-C(27)	63(2)
C(21)-C(22)-C(26)-C(28)	88.9(16)
C(23)-C(22)-C(26)-C(28)	-87.3(15)
Ru(1)-C(22)-C(26)-C(28)	-176.0(10)
N(4)-C(29)-N(3)-C(30)	0.0
Ru(2)-C(29)-N(3)-C(30)	173.1(3)
N(4)-C(29)-N(3)-C(32)	-178.4(10)
Ru(2)-C(29)-N(3)-C(32)	-5.3(9)
C(29)-N(3)-C(30)-C(31)	0.0
C(32)-N(3)-C(30)-C(31)	178.4(10)
N(3)-C(30)-C(31)-N(4)	0.0
C(30)-C(31)-N(4)-C(39)	-172.8(9)
C(30)-C(31)-N(4)-C(29)	0.0
N(3)-C(29)-N(4)-C(39)	172.5(10)
Ru(2)-C(29)-N(4)-C(39)	-1.2(9)
N(3)-C(29)-N(4)-C(31)	0.0
Ru(2)-C(29)-N(4)-C(31)	-173.6(3)
C(30)-N(3)-C(32)-C(33)	-49.8(18)
C(29)-N(3)-C(32)-C(33)	128.3(12)
N(3)-C(32)-C(33)-C(34)	154.9(12)
N(3)-C(32)-C(33)-C(38)	-29(2)
C(38)-C(33)-C(34)-C(35)	0.0

C(32)-C(33)-C(34)-C(35)	176.6(14)
C(33)-C(34)-C(35)-C(36)	0.0
C(34)-C(35)-C(36)-C(37)	0.0
C(35)-C(36)-C(37)-C(38)	0.0
C(36)-C(37)-C(38)-C(33)	0.0
C(34)-C(33)-C(38)-C(37)	0.0
C(32)-C(33)-C(38)-C(37)	-176.3(15)
C(31)-N(4)-C(39)-C(40)	112.3(13)
C(29)-N(4)-C(39)-C(40)	-59.0(18)
N(4)-C(39)-C(40)-S(2)	72.7(18)
C(46)-C(41)-C(42)-C(43)	4(3)
S(2)-C(41)-C(42)-C(43)	174.5(16)
C(41)-C(42)-C(43)-C(44)	2(3)
C(42)-C(43)-C(44)-C(45)	-2(3)
C(42)-C(43)-C(44)-Br(2)	176.9(16)
C(43)-C(44)-C(45)-C(46)	-3(3)
Br(2)-C(44)-C(45)-C(46)	178.1(17)
C(42)-C(41)-C(46)-C(45)	-9(3)
S(2)-C(41)-C(46)-C(45)	179.3(19)
C(44)-C(45)-C(46)-C(41)	9(4)
C(52)-C(47)-C(48)-C(49)	-3(2)
C(53)-C(47)-C(48)-C(49)	176.8(16)
Ru(2)-C(47)-C(48)-C(49)	-56.4(14)
C(52)-C(47)-C(48)-Ru(2)	53.7(14)
C(53)-C(47)-C(48)-Ru(2)	-126.8(16)
C(47)-C(48)-C(49)-C(50)	0(2)
Ru(2)-C(48)-C(49)-C(50)	-56.9(14)
C(47)-C(48)-C(49)-Ru(2)	57.0(14)
C(48)-C(49)-C(50)-C(51)	2(2)
Ru(2)-C(49)-C(50)-C(51)	-53.3(12)
C(48)-C(49)-C(50)-C(54)	-173.3(15)
Ru(2)-C(49)-C(50)-C(54)	131.6(14)
C(48)-C(49)-C(50)-Ru(2)	55.2(14)
C(49)-C(50)-C(51)-C(52)	-1(2)
C(54)-C(50)-C(51)-C(52)	173.6(16)
Ru(2)-C(50)-C(51)-C(52)	-54.3(14)
C(49)-C(50)-C(51)-Ru(2)	52.8(12)
C(54)-C(50)-C(51)-Ru(2)	-132.1(14)
C(50)-C(51)-C(52)-C(47)	-1(3)
Ru(2)-C(51)-C(52)-C(47)	-56.4(16)
C(50)-C(51)-C(52)-Ru(2)	55.3(14)
C(48)-C(47)-C(52)-C(51)	3(3)
C(53)-C(47)-C(52)-C(51)	-176.3(16)
Ru(2)-C(47)-C(52)-C(51)	56.0(16)
C(48)-C(47)-C(52)-Ru(2)	-52.9(13)
C(53)-C(47)-C(52)-Ru(2)	127.7(17)

C(49)-C(50)-C(54)-C(55)	83.1(19)
C(51)-C(50)-C(54)-C(55)	-91.8(18)
Ru(2)-C(50)-C(54)-C(55)	174.0(13)
C(49)-C(50)-C(54)-C(56)	-152.7(16)
C(51)-C(50)-C(54)-C(56)	32(2)
Ru(2)-C(50)-C(54)-C(56)	-62(2)
N(2)-C(1)-N(1)-C(2)	3.0(16)
Ru(1)-C(1)-N(1)-C(2)	173.2(11)
N(2)-C(1)-N(1)-C(4)	-173.6(13)
Ru(1)-C(1)-N(1)-C(4)	-3(2)
C(3)-C(2)-N(1)-C(1)	-1.8(17)
C(3)-C(2)-N(1)-C(4)	175.0(13)
C(5)-C(4)-N(1)-C(1)	-136.3(14)
C(5)-C(4)-N(1)-C(2)	47.3(17)
N(1)-C(1)-N(2)-C(3)	-3.2(16)
Ru(1)-C(1)-N(2)-C(3)	-174.1(10)
N(1)-C(1)-N(2)-C(11)	-177.6(12)
Ru(1)-C(1)-N(2)-C(11)	11.5(19)
C(2)-C(3)-N(2)-C(1)	2.2(17)
C(2)-C(3)-N(2)-C(11)	176.5(12)
C(12)-C(11)-N(2)-C(1)	60.8(18)
C(12)-C(11)-N(2)-C(3)	-112.9(15)
C(18)-C(13)-S(1)-C(12)	139.8(11)
C(14)-C(13)-S(1)-C(12)	-40.0(13)
C(18)-C(13)-S(1)-Ru(1)	-100.7(10)
C(14)-C(13)-S(1)-Ru(1)	79.4(12)
C(11)-C(12)-S(1)-C(13)	153.4(10)
C(11)-C(12)-S(1)-Ru(1)	33.4(11)
C(46)-C(41)-S(2)-C(40)	-141.2(18)
C(42)-C(41)-S(2)-C(40)	48.3(18)
C(46)-C(41)-S(2)-Ru(2)	99.7(18)
C(42)-C(41)-S(2)-Ru(2)	-70.8(17)
C(39)-C(40)-S(2)-C(41)	-154.4(14)
C(39)-C(40)-S(2)-Ru(2)	-30.9(15)

Complex 1j

Table S11. Crystal data and structure refinement for sblta151118, complex 1j

Identification code	sblta151118
Empirical formula	C28 H31 Cl F6 N3 O2 P Ru S
Formula weight	755.11
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space gro	oup Triclinic, P -1
Unit cell dimensions b = c =	a = 8.9199(7) A alpha = 81.652(2) deg 11.3270(9) A beta = 84.987(2) deg. 15.5712(13) A gamma = 73.995(2) deg.
Volume	1494.4(2) A^3

Z, Calculated density 2, 1.678 Mg/m ³		
Absorption coefficient 0.808 mm^-1		
F(000) 764		
Crystal size 0.350 x 0.300 x 0.250 mm		
Theta range for data collection 1.323 to 30.977 deg.		
Limiting indices -12<=h<=12, -16<=k<=16, -22<=l<=22		
Reflections collected / unique $35892 / 9480 [R(int) = 0.0183]$		
Completeness to theta = $25.242 100.0 \%$		
Absorption correction Semi-empirical from equivalents		
Max. and min. transmission 0.7462 and 0.7149		
Refinement method Full-matrix least-squares on F^2		
Data / restraints / parameters 9480 / 0 / 391		
Goodness-of-fit on F^2 1.046		
Final R indices $[I>2sigma(I)]$ R1 = 0.0247, wR2 = 0.0599		
R indices (all data) $R1 = 0.0288, wR2 = 0.0625$		
Extinction coefficient n/a		
Largest diff. peak and hole 0.694 and -0.631 e.A^-3		

	Table S12	Bond lengths [A] and angles [deg] for sblta151118, complex 1j	
--	-----------	---	--

C(1)-N(1)	1.3573(17)
C(1)-N(2)	1.3636(18)
C(1)-Ru(1)	2.0592(14)
C(2)-C(3)	1.349(2)
C(2)-N(1)	1.3906(19)
C(2)-H(2)	0.9500
C(3)-N(2)	1.3837(19)
C(3)-H(3)	0.9500

C(4)-N(1)	1.4795(19)
C(4)-C(5)	1.517(2)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.391(2)
C(5)-C(10)	1.396(2)
C(6)-C(7)	1.394(2)
C(6)-H(6)	0.9500
C(7)-C(8)	1.394(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.379(3)
C(8)-H(8)	0.9500
C(9)-C(10)	1.395(2)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-N(2)	1.4643(18)
C(11)-C(12)	1.518(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-S(1)	1.8280(16)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(14)	1.390(2)
C(13)-C(18)	1.393(2)
C(13)-S(1)	1.7863(14)
C(14)-C(15)	1.391(2)
C(14)-H(14)	0.9500
C(15)-C(16)	1.379(2)
C(15)-H(15)	0.9500
C(16)-C(17)	1.383(3)
C(16)-N(3)	1.473(2)
C(17)-C(18)	1.392(2)
C(17)-H(17)	0.9500
C(18)-H(18)	0.9500
C(19)-C(20)	1.400(2)
C(19)-C(24)	1.429(2)
C(19)-C(25)	1.505(2)
C(19)- $Ru(1)$	2.2322(14)
C(20)-C(21)	1.429(2)
C(20)-Ru(1)	2.2149(14)
C(20)-H(20)	0.9500
C(21)-C(22)	1.396(2)
C(21)-Ru(1)	2.2611(14)
C(21)-H(21)	0.9500
C(22)-C(23)	1.438(2)
C(22)-C(26)	1.514(2)

C(22)-Ru(1)	2.2808(14)
C(23)-C(24)	1.403(2)
C(23)-Ru(1)	2.2056(14)
C(23)-H(23)	0.9500
C(24)-Ru(1)	2.1884(15)
C(24)-H(24)	0.9500
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(26)-C(27)	1.523(4)
C(26)-C(28)	1.524(3)
C(26)-H(26)	1.0000
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
N(3)-O(2)	1.222(2)
N(3)-O(1)	1.226(2)
F(1)-P(1)	1.5912(15)
F(2)-P(1)	1.6009(13)
F(3)-P(1)	1.5708(13)
F(4)-P(1)	1.5910(15)
F(5)-P(1)	1.5908(14)
F(6)-P(1)	1.6029(12)
S(1)-Ru(1)	2.3891(4)
Cl(1)-Ru(1)	2.4061(4)
N(1)-C(1)-N(2)	104.07(11)
N(1)-C(1)-Ru(1)	133.84(10)
N(2)-C(1)-Ru(1)	122.06(10)
C(3)-C(2)-N(1)	106.93(13)
C(3)-C(2)-H(2)	126.5
N(1)-C(2)-H(2)	126.5
C(2)-C(3)-N(2)	106.43(13)
C(2)-C(3)-H(3)	126.8
N(2)-C(3)-H(3)	126.8
N(1)-C(4)-C(5)	111.07(12)
N(1)-C(4)-H(4A)	109.4
C(5)-C(4)-H(4A)	109.4
N(1)-C(4)-H(4B)	109.4
C(5)-C(4)-H(4B)	109.4
H(4A)-C(4)-H(4B)	108.0
C(6)-C(5)-C(10)	119.13(15)
C(6)-C(5)-C(4)	121.14(13)

C(10)-C(5)-C(4)	119.73(14)
C(5)-C(6)-C(7)	120.33(15)
C(5)-C(6)-H(6)	119.8
C(7)-C(6)-H(6)	119.8
C(6)-C(7)-C(8)	120.04(18)
C(6)-C(7)-H(7)	120.0
C(8)-C(7)-H(7)	120.0
C(9)-C(8)-C(7)	119.92(16)
C(9)-C(8)-H(8)	120.0
C(7)-C(8)-H(8)	120.0
C(8)-C(9)-C(10)	120.11(15)
C(8)-C(9)-H(9)	119.9
C(10)-C(9)-H(9)	119.9
C(9)-C(10)-C(5)	120.47(16)
C(9)-C(10)-H(10)	119.8
C(5)-C(10)-H(10)	119.8
N(2)-C(11)-C(12)	112.19(12)
N(2)-C(11)-H(11A)	109.2
C(12)-C(11)-H(11A)	109.2
N(2)-C(11)-H(11B)	109.2
C(12)-C(11)-H(11B)	109.2
H(11A)-C(11)-H(11B)	107.9
C(11)-C(12)-S(1)	113.42(10)
C(11)-C(12)-H(12A)	108.9
S(1)-C(12)-H(12A)	108.9
C(11)-C(12)-H(12B)	108.9
S(1)-C(12)-H(12B)	108.9
H(12A)-C(12)-H(12B)	107.7
C(14)-C(13)-C(18)	121.08(13)
C(14)-C(13)-S(1)	115.46(11)
C(18)-C(13)-S(1)	123.43(12)
C(13)-C(14)-C(15)	119.59(15)
C(13)-C(14)-H(14)	120.2
C(15)-C(14)-H(14)	120.2
C(16)-C(15)-C(14)	118.52(15)
C(16)-C(15)-H(15)	120.7
C(14)-C(15)-H(15)	120.7
C(15)-C(16)-C(17)	122.91(14)
C(15)-C(16)-N(3)	118.33(16)
C(17)-C(16)-N(3)	118.76(16)
C(16)-C(17)-C(18)	118.42(15)
C(16)-C(17)-H(17)	120.8
C(18)-C(17)-H(17)	120.8
C(17)-C(18)-C(13)	119.42(15)
C(17)-C(18)-H(18)	120.3
C(13)-C(18)-H(18)	120.3

C(20)-C(19)-C(24)	117.15(14)
C(20)-C(19)-C(25)	121.36(15)
C(24)-C(19)-C(25)	121.49(16)
C(20)-C(19)-Ru(1)	70.98(8)
C(24)-C(19)-Ru(1)	69.49(8)
C(25)-C(19)-Ru(1)	129.70(11)
C(19)-C(20)-C(21)	122 18(14)
C(19)-C(20)-Ru(1)	72 32(8)
C(21)-C(20)-Ru(1)	73 15(8)
C(19)-C(20)-H(20)	118.9
C(21)-C(20)-H(20)	118.9
$R_{1}(1)-C(20)-H(20)$	127.9
C(22) C(21) C(20)	127.5 120.67(14)
C(22)- $C(21)$ - $C(20)C(22) C(21) P_{10}(1)$	120.07(14)
C(22)- $C(21)$ - $Ru(1)$	72.07(0)
C(20)-C(21)-Ku(1) C(22)-C(21)-Ku(1)	09.04(8)
C(22)- $C(21)$ - $H(21)$	119.7
C(20)-C(21)-H(21)	119.7
Ru(1)-C(21)-H(21)	130.5
C(21)-C(22)-C(23)	117.61(14)
C(21)-C(22)-C(26)	123.84(16)
C(23)-C(22)-C(26)	118.53(15)
C(21)-C(22)-Ru(1)	71.33(8)
C(23)-C(22)-Ru(1)	68.49(8)
C(26)-C(22)-Ru(1)	129.93(10)
C(24)-C(23)-C(22)	121.32(14)
C(24)-C(23)-Ru(1)	70.72(8)
C(22)-C(23)-Ru(1)	74.17(8)
C(24)-C(23)-H(23)	119.3
C(22)-C(23)-H(23)	119.3
Ru(1)-C(23)-H(23)	128.0
C(23)-C(24)-C(19)	121.02(14)
C(23)-C(24)-Ru(1)	72.05(9)
C(19)-C(24)-Ru(1)	72.81(8)
C(23)-C(24)-H(24)	119.5
C(19)-C(24)-H(24)	119.5
Ru(1)-C(24)-H(24)	127.8
C(19)-C(25)-H(25A)	109.5
C(19)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(19)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25R) - C(25) - H(25C)	109.5
C(22)-C(26)-C(27)	113 77(18)
C(22) = C(26) = C(27)	107 95(18)
C(22) C(20) - C(20)	113 4(3)
C(27) = C(20) = C(20)	107 1
$U(22)-U(20)-\Pi(20)$	10/.1

C(27)-C(26)-H(26)	107.1
C(28)-C(26)-H(26)	107.1
C(26)-C(27)-H(27A)	109.5
C(26)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
C(26)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(26)-C(28)-H(28A)	109.5
C(26)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(26)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
C(1)-N(1)-C(2)	111.05(12)
C(1)-N(1)-C(4)	127.37(12)
C(2)-N(1)-C(4)	121.58(12)
C(1)-N(2)-C(3)	111.51(12)
C(1)-N(2)-C(11)	124.93(12)
C(3)-N(2)-C(11)	123.52(12)
O(2)-N(3)-O(1)	123.88(16)
O(2)-N(3)-C(16)	118.41(17)
O(1)-N(3)-C(16)	117.71(17)
F(3)-P(1)-F(5)	90.47(9)
F(3)-P(1)-F(4)	91.05(9)
F(5)-P(1)-F(4)	178.32(10)
F(3)-P(1)-F(1)	91.88(9)
F(5)-P(1)-F(1)	88.08(10)
F(4)-P(1)-F(1)	92.57(11)
F(3)-P(1)-F(2)	89.69(8)
F(5)-P(1)-F(2)	89.49(8)
F(4)-P(1)-F(2)	89.82(10)
F(1)-P(1)-F(2)	177.13(10)
F(3)-P(1)-F(6)	179.05(8)
F(5)-P(1)-F(6)	90.23(8)
F(4)-P(1)-F(6)	88.23(9)
F(1)-P(1)-F(6)	88.79(8)
F(2)-P(1)-F(6)	89.68(7)
C(13)-S(1)-C(12)	101.75(7)
C(13)-S(1)-Ru(1)	110.25(5)
C(12)-S(1)-Ru(1)	109.47(5)
C(1)-Ru(1)-C(24)	90.24(6)
C(1)- $Ru(1)$ - $C(23)$	112.89(6)
C(24)- $Ku(1)$ - $C(23)$	37.23(6)
C(1)- $Ku(1)$ - $C(20)$	124.88(5)
C(24)- $Ru(1)$ - $C(20)$	66.50(6)

C(23)-Ru(1)-C(20)	78.32(5)
C(1)-Ru(1)-C(19)	95.41(5)
C(24)-Ru(1)-C(19)	37.70(6)
C(23)-Ru(1)-C(19)	67.48(6)
C(20)-Ru(1)-C(19)	36.70(6)
C(1)-Ru(1)-C(21)	161.74(5)
C(24)-Ru(1)-C(21)	78.45(6)
C(23)-Ru(1)-C(21)	65.72(6)
C(20)-Ru(1)-C(21)	37.21(5)
C(19)-Ru(1)-C(21)	66.89(5)
C(1)-Ru(1)-C(22)	149.45(6)
C(24)-Ru(1)-C(22)	67.26(6)
C(23)-Ru(1)-C(22)	37.34(6)
C(20)-Ru(1)-C(22)	66.16(5)
C(19)-Ru(1)-C(22)	79.52(5)
C(21)- $Ru(1)$ - $C(22)$	35.79(5)
C(1)- $Ru(1)$ - $S(1)$	84.62(4)
C(24)- $Ru(1)$ - $S(1)$	122.08(4)
C(23)- $Ru(1)$ - $S(1)$	93.74(4)
C(20)- $Ru(1)$ - $S(1)$	150.33(4)
C(19)- $Ru(1)$ - $S(1)$	159.70(4)
C(21)- $Ru(1)$ - $S(1)$	113.52(4)
C(22)- $Ru(1)$ - $S(1)$	90.13(4)
C(1)- $Ru(1)$ - $Cl(1)$	92.16(4)
C(24)- $Ru(1)$ - $Cl(1)$	150.14(4)
C(23)- $Ru(1)$ - $Cl(1)$	154.94(5)
C(20)- $Ru(1)$ - $Cl(1)$	88.05(4)
C(19)- $Ru(1)$ - $Cl(1)$	112.48(4)
C(21)- $Ru(1)$ - $Cl(1)$	90.75(4)
C(22)- $Ru(1)$ - $Cl(1)$	117.74(4)
S(1)-Ru(1)-Cl(1)	87.773(12)

Table S13. Torsion angles [deg] for sblta151118, complex 1j

N(1)-C(2)-C(3)-N(2)	0.87(19)
N(1)-C(4)-C(5)-C(6)	-81.74(18)
N(1)-C(4)-C(5)-C(10)	97.56(16)
C(10)-C(5)-C(6)-C(7)	-0.4(2)
C(4)-C(5)-C(6)-C(7)	178.95(16)
C(5)-C(6)-C(7)-C(8)	0.5(3)
C(6)-C(7)-C(8)-C(9)	-0.4(3)
C(7)-C(8)-C(9)-C(10)	0.1(3)
C(8)-C(9)-C(10)-C(5)	0.0(2)
C(6)-C(5)-C(10)-C(9)	0.1(2)
C(4)-C(5)-C(10)-C(9)	-179.22(14)

N(2)-C(11)-C(12)-S(1)	56.38(15)
C(18)-C(13)-C(14)-C(15)	-1.8(2)
S(1)-C(13)-C(14)-C(15)	-179.94(12)
C(13)-C(14)-C(15)-C(16)	-0.3(2)
C(14)-C(15)-C(16)-C(17)	2.1(2)
C(14)-C(15)-C(16)-N(3)	-176.68(14)
C(15)-C(16)-C(17)-C(18)	-1.8(2)
N(3)-C(16)-C(17)-C(18)	176.94(14)
C(16)-C(17)-C(18)-C(13)	-0.3(2)
C(14)-C(13)-C(18)-C(17)	2.1(2)
S(1)-C(13)-C(18)-C(17)	-179.94(12)
C(24)-C(19)-C(20)-C(21)	-2.3(2)
C(25)-C(19)-C(20)-C(21)	178.52(14)
Ru(1)-C(19)-C(20)-C(21)	-55.95(12)
C(24)-C(19)-C(20)-Ru(1)	53.60(11)
C(25)-C(19)-C(20)-Ru(1)	-125.53(14)
C(19)-C(20)-C(21)-C(22)	1.4(2)
Ru(1)-C(20)-C(21)-C(22)	-54.17(12)
C(19)-C(20)-C(21)-Ru(1)	55.57(12)
C(20)-C(21)-C(22)-C(23)	0.5(2)
Ru(1)-C(21)-C(22)-C(23)	-52.17(11)
C(20)-C(21)-C(22)-C(26)	178.79(14)
Ru(1)-C(21)-C(22)-C(26)	126.10(14)
C(20)-C(21)-C(22)-Ru(1)	52.69(12)
C(21)-C(22)-C(23)-C(24)	-1.4(2)
C(26)-C(22)-C(23)-C(24)	-179.77(14)
Ru(1)-C(22)-C(23)-C(24)	-54.95(12)
C(21)-C(22)-C(23)-Ru(1)	53.54(12)
C(26)-C(22)-C(23)-Ru(1)	-124.82(13)
C(22)-C(23)-C(24)-C(19)	0.4(2)
Ru(1)-C(23)-C(24)-C(19)	-56.13(12)
C(22)-C(23)-C(24)-Ru(1)	56.55(13)
C(20)-C(19)-C(24)-C(23)	1.4(2)
C(25)-C(19)-C(24)-C(23)	-179.43(14)
Ru(1)-C(19)-C(24)-C(23)	55.77(12)
C(20)-C(19)-C(24)-Ru(1)	-54.34(11)
C(25)-C(19)-C(24)-Ru(1)	124.80(14)
C(21)-C(22)-C(26)-C(27)	-18.8(2)
C(23)-C(22)-C(26)-C(27)	159.44(18)
Ru(1)-C(22)-C(26)-C(27)	74.6(2)
C(21)-C(22)-C(26)-C(28)	108.0(3)
C(23)-C(22)-C(26)-C(28)	-73.7(3)
Ru(1)-C(22)-C(26)-C(28)	-158.6(2)
N(2)-C(1)-N(1)-C(2)	0.24(16)
Ru(1)-C(1)-N(1)-C(2)	-177.67(12)
N(2)-C(1)-N(1)-C(4)	-179.17(13)

Ru(1)-C(1)-N(1)-C(4)	2.9(2)
C(3)-C(2)-N(1)-C(1)	-0.72(19)
C(3)-C(2)-N(1)-C(4)	178.73(14)
C(5)-C(4)-N(1)-C(1)	128.12(15)
C(5)-C(4)-N(1)-C(2)	-51.24(19)
N(1)-C(1)-N(2)-C(3)	0.33(16)
Ru(1)-C(1)-N(2)-C(3)	178.54(11)
N(1)-C(1)-N(2)-C(11)	178.21(13)
Ru(1)-C(1)-N(2)-C(11)	-3.57(19)
C(2)-C(3)-N(2)-C(1)	-0.77(19)
C(2)-C(3)-N(2)-C(11)	-178.70(14)
C(12)-C(11)-N(2)-C(1)	-66.04(18)
C(12)-C(11)-N(2)-C(3)	111.60(16)
C(15)-C(16)-N(3)-O(2)	-168.58(16)
C(17)-C(16)-N(3)-O(2)	12.6(2)
C(15)-C(16)-N(3)-O(1)	11.4(2)
C(17)-C(16)-N(3)-O(1)	-167.44(15)
C(14)-C(13)-S(1)-C(12)	-142.68(12)
C(18)-C(13)-S(1)-C(12)	39.22(14)
C(14)-C(13)-S(1)-Ru(1)	101.24(11)
C(18)-C(13)-S(1)-Ru(1)	-76.86(13)
C(11)-C(12)-S(1)-C(13)	-114.55(11)
C(11)-C(12)-S(1)-Ru(1)	2.10(12)

15 REFERENCES.

- M. Valencia, A. Pereira, H. Müller-Bunz, T. R. Belderraín, P. J. Pérez and M. Albrecht, *Chem. Eur. J.*, 2017, 23, 8901-8911.
- 2. D. Yuan, H. Y. Tang, L. F. Xiao and H. V. Huynh, *Dalton Trans.*, 2011, 40, 8788-8795.
- 3. J. Egly, M. Bouche, W. Chen, A. Maisse-Francois, T. Achard and S. Bellemin-Laponnaz, *Eur. J. Inorg. Chem.*, 2018, 159-166.
- 4. C. Fliedel, G. Schnee and P. Braunstein, *Dalton Trans.*, 2009, 2474-2476.
- 5. Y. Suzuki, T. Yoshino, K. Moriyama and H. Togo, *Tetrahedron*, 2011, 67, 3809-3814.
- G. Bencivenni, T. Lanza, R. Leardini, M. Minozzi, D. Nanni, P. Spagnolo and G. Zanardi, J. Org. Chem., 2008, 73, 4721-4724.
- T. Achard, J. Egly, M. Sigrist, A. Maisse-Francois and S. Bellemin-Laponnaz, *Chem. Eur. J*, 2019, 25, 13271-13274.
- (a) R. Ray, S. Chandra, V. Yadav, P. Mondal, D. Maiti and G. K. Lahiri, *Chem. Commun.*, 2017, **53**, 4006-4009; (b) K. M. Lambert, J. M. Bobbitt, S. A. Eldirany, K. B. Wiberg and W. F. Bailey, *Org. Lett.*, 2014, **16**, 6484-6487.
- 9. (a) W. Y. Yin, C. M. Wang and Y. Huang, *Org. Lett.*, 2013, 15, 1850-1853; (b) X. D. An and S. Y. Yu, *Org. Lett.*, 2015, 17, 5064-5067.
- 10. T. Knauber, F. Arikan, G. V. Roschenthaler and L. J. Goossen, *Chem. Eur. J*, 2011, **17**, 2689-2697.
- 11. L. G. Marinescu, C. M. Pedersen and M. Bols, *Tetrahedron*, 2005, **61**, 123-127.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery J. A.; Peralta, Jr,J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, j. V.; Cioslowski, J.; Fox, D. J.; *Gaussian 09*, revisionD.01, Gaussian, Inc., Wallingford CT, **2013**.
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H.; *Theor. Chim. Acta*, **1990**, 77, 123–141.
- Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.;
 Stegmann, R.; Veldkamp, A.; Frenking, G.; *Chem. Phys. Lett.*, **1993**, *208*, 111–114.

- (a) MacLean, A. D; Chandler, G. S.; *J. Chem. Phys.*, **1980**, *72*, 5639; (b) Krishnan, R.;
 Binkley, J. S.; Seeger, R.; Pople, J. A.; *J. Chem. Phys.*, **1980**, *72*, 650. (b) Becke, A. D.; *J. Chem. Phys.*, **1993**, *98*, 5648–5652. (c) Perdew, J. P.; Wang, Y.; *Phys. Rev. B: Condens. Matter*, **1992**, *45*, 13244–13249.
- 16. Tomasi, J.; Mennucci, B.; Cammi, R.; Chem. Rev., 2005, 105, 2999-3093.
- (a) Zhao, Y.; Truhlar, D. G.; *Theor. Chem. Acc.*, 2008, 120, 215-41. (b) Weigend, F.;
 Ahlrichs, R.; *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305.