Pristine S,N-containing Mn-based metal organic framework nanorods enable efficient oxygen reduction electrocatalysis

Shujun Chao,^{*[a]} Qingyun Xia,^[a] Yingling Wang,^[a] Wenge Li,^[b] Wenge Chen^[b]

^a Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China

^b School of Pharmacy, Xinxiang Medial University, Xinxiang 453003, P. R. China

E-mail address: chaoshujun1979@163.com (S. Chao)

Tel: +86 373 3029128; fax: +86 373 3029128.

Supporting Information

Contents

Table S1. List of the ORR onset potentials (E_0) and half-wave potentials $(E_{1/2})$ of some reported MOFs.

Table S2. The Mn, O, C, N and S atomic percentages (%) of Mn^{II}[(Tdc)(4,4'-Bpy)]_{*n*}, -1, -2, and -3 from XPS analysis.

Figure. S1 PXRD patterns (a) and N₂ sorption isotherms (b) of Mn^{II}[(Tdc)(4,4'-Bpy)]_n-0 h, -2 h, -1, -2 and -3.

Figure. S2 N 1s and S 2p deconvolution spectra of $Mn^{II}[(Tdc)(4,4'-Bpy)]_n-1$ (a and d), -2 (b and e), and -3 (c and f).

Figure. S3 (a) Polarization curves of Pt/C at different rotating speeds at 5 mV s⁻¹. (b) Koutecky-Levich (K-L) curves of Pt/C at 0.60, 0.55, 0.50, 0.45 and 0.40 V vs. RHE.

Figure. S4 PXRD patterns of $Mn^{II}[(Tdc)(4,4^{2}-Bpy)]_{n}/C$ before and after the stability test for 20000 s.

For comparison, all the potential values from references were converted to *vs*. RHE in Table S1. All electrochemical tests were conducted in 0.1 M KOH solution.

Materials	E _o (V vs. RHE)	E _{1/2} (V vs. RHE)	References	
$\operatorname{Mn}^{II}[(\operatorname{Tdc})(4,4'-\operatorname{Bpy})]_n$	0.98	0.78	This work	
Mn/Fe-HIB-MOF	0.98	0.88	[1]	
Mn-BTC@AC	0.92	0.78	[2]	
Ni-Co-MOF	0.76	0.82	[3]	
E-MnO ₂ /MOF(Fe)	0.84	0.64	[4]	
Co/MIL-101(Cr)-R	0.95	0.67	[5]	
rGO/(Ni ²⁺ /THPP/Co ²⁺ /THPP) ₈	0.84	0.60	[6]	

Table S1. List of the ORR onset potentials (E_0) and half-wave potentials $(E_{1/2})$ of some reported MOFs.

Figure. S1 PXRD patterns (a) and N₂ sorption isotherms (b) of Mn^{II}[(Tdc)(4,4'-Bpy)]_{*n*}-0 h, -2 h, -1, -2 and -3.

Table S2. The Mn, O, C, N and S atomic percentages (%) of $Mn^{II}[(Tdc)(4,4'-Bpy)]_n$, -1, -2, and -3 from XPS analysis.

Samples	Mn	0	С	N	S
$Mn^{II}[(Tdc)(4,4'-Bpy)]_n$	9.53	29.43	50.36	6.54	4.14

Mn ^{II} [(Tdc)(4,4'-Bpy)] _n -1	6.63	24.64	58.89	5.71	4.08
Mn ^{II} [(Tdc)(4,4'-Bpy)] _n -2	5.16	21.54	64.67	5.61	3.02
Mn ^{II} [(Tdc)(4,4'-Bpy)] _n -3	14.43	40.52	39.08	3.8	2.17

Figure. S2 N 1s and S 2p deconvolution spectra of $Mn^{II}[(Tdc)(4,4'-Bpy)]_n$ -1 (a and d), -2 (b and e), and -3 (c and f).

Figure. S3 (a) Polarization curves of Pt/C at different rotating speeds at 5 mV s⁻¹. (b) Koutecky-Levich (K-L) curves of Pt/C at 0.60, 0.55, 0.50, 0.45 and 0.40 V vs. RHE.

Figure. S4 PXRD patterns of $Mn^{II}[(Tdc)(4,4'-Bpy)]_n/C$ before and after the stability test for 20000 s.

References

- S. S. Shinde, C. H. Lee, J. Y. Jung, N. K. Wagh, S. H. Kim, D. H. Kim, C. Lin,
 S. U. Lee, J. H. Lee, Energy Environ. Sci., 2019, 12, 727-738.
- 2 S. Gonen, O. Lori, G. Cohen-Taguri, L. Elbaz, Nanoscale, 2018, 10, 9634-9641.
- 3 H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, Nano-Micro Lett., 2017, 9, 43.
- 4 H. Wang, F. Yin, B. Chen, G. Li, J. Mater. Chem. A, 2015, 3, 16168-16176.
- 5 X. He, F. Yin, G. Li, Inter. J. Hydrogen Energ., 2015, 40, 9713-9722.
- 6 J. Sun, H. Yin, P. Liu, Y. Wang, X. Yao, Z. Tang, H. Zhao, Chem. Sci, 2016, 7, 5640-5646.