Dinuclear Acetylide-bridged Ruthenium(II) Complexes with Rigid Non-aromatic Spacers Supplementary Information

Surabhi Naik, Synøve Ø. Scottwell, Hsiu L. Li, Chanel F. Leong, Deanna M. D'Alessandro, Leslie D. Field*.

Contents

S1	Compound numbers and labelling conventions2
S2	NMR Data3
	S2.1 ¹ H, ¹ H{ ³¹ P}, ³¹ P{ ¹ H}, and ¹³ C{ ¹ H} NMR spectra of [<i>trans</i> -Ru(dmpe) ₂ (C=C ^t Bu)(C=C-C ₈ H ₁₂ -C=CH)] (2a) 3
	S2.1.1 Assignment of acetylenic ¹³ C NMR resonances of [<i>trans</i> -Ru(dmpe) ₂ (C=C ^t Bu)(C=C-C ₈ H ₁₂ -C=CH)] (2a)
	S2.2 ¹ H, ¹ H{ ³¹ P}, ³¹ P{ ¹ H}, ¹¹ B{ ¹ H}, and ¹³ C{ ¹ H} NMR spectra of [<i>trans</i> -Ru(dmpe) ₂ (C≡C ^t Bu)(C≡C- <i>p</i> -C ₂ B ₁₀ H ₁₀ -C≡CH)] (2b)
	S2.2.1 Assignment of acetylenic ¹³ C NMR resonances of $[trans-Ru(dmpe)_2(C=C^tBu)(C=C-p-C_2B_{10}H_{10}-C=CH)]$ (2b)
	S2.3 ¹ H, ¹ H{ ³¹ P}, ³¹ P{ ¹ H}, and ¹³ C{ ¹ H} NMR spectra of [<i>trans,trans</i> -{Ru(dmpe) ₂ (C=C ^t Bu)} ₂ (μ -C=C-C ₈ H ₁₂ -C=C)] (3a)
	S2.4 ¹ H, ¹ H{ ³¹ P}, ³¹ P{ ¹ H}, ¹¹ B{ ¹ H}, and ¹³ C{ ¹ H} NMR spectra of [<i>trans,trans</i> -{Ru(dmpe) ₂ (C=C ^t Bu)} ₂ (μ -C=C- p -C ₂ B ₁₀ H ₁₀ -C=C)] (3b)
S 3	Crystallographic Data16
	Table S3.1 Crystallographic data for [<i>trans</i> -Ru(dmpe) ₂ (C=C ^t Bu)(C=C-C ₈ H ₁₂ -C=CH)] (2a) and [<i>trans,trans</i> -{Ru(dmpe) ₂ (C=C ^t Bu)} ₂ (μ -C=C- p -C ₂ B ₁₀ H ₁₀ -C=C)] (3b)
	S3.1 ORTEP Plot of [<i>trans</i> -Ru(dmpe) ₂ (C=C ^t Bu)(C=C-C ₈ H ₁₂ -C=CH)] (2a)18
	S3.2 ORTEP Plot of [<i>trans,trans</i> -{Ru(dmpe) ₂ (C=C ^t Bu)} ₂ (μ -C=C- p -C ₂ B ₁₀ H ₁₀ -C=C)] (3b)18
S4	High-resolution Mass Spectra19
	S4.1 Zoomed mass spectrum of [trans-Ru(dmpe) ₂ (C=C ^t Bu)(C=C-C ₈ H ₁₂ -C=CH)] (2a)19
	S4.2 Zoomed mass spectrum of [<i>trans</i> -Ru(dmpe) ₂ (C=C ^t Bu)(C=C- <i>p</i> -C ₂ B ₁₀ H ₁₀ -C=CH)] (2b)20
	S4.3 Zoomed mass spectrum of [trans,trans-{Ru(dmpe) ₂ (C=C ^t Bu)} ₂ (μ -C=C-C ₈ H ₁₂ -C=C)] (3a)21
	S4.4 Zoomed mass spectrum of [<i>trans,trans</i> -{Ru(dmpe) ₂ (C=C ^t Bu)} ₂ (μ -C=C- p -C ₂ B ₁₀ H ₁₀ -C=C)] (3b)22
S 5	Modelling of Electrochemical Data23
	S5.1 DPV of [<i>trans,trans</i> -{Ru(dmpe) ₂ (C=C ^t Bu)} ₂ (μ -C=C- p -C ₂ B ₁₀ H ₁₀ -C=C)] (3b)23
	S5.2 CV simulation of $[trans, trans-{Ru(dmpe)_2(C \equiv C^tBu)}_2(\mu - C \equiv C - C_8H_{12} - C \equiv C)]$ (3a)

S1 Compound numbers and labelling conventions

 $[trans-Ru(dmpe)_2(C \equiv C^t Bu)(CH_3)]$ (1)

 $[trans-Ru(dmpe)_2(C\equiv C^tBu)(C\equiv C-C_8H_{12}-C\equiv CH)]$ (2a)

 $[trans-Ru(dmpe)_2(C\equiv C^tBu)(C\equiv C-p-C_2B_{10}H_{10}-C\equiv CH)]$ (2b)

 $[trans, trans-{Ru(dmpe)_2(C=C^tBu)}_2(\mu-C=C-C_8H_{12}-C=C)]$ (3a)

 $[trans, trans-{Ru(dmpe)_2(C \equiv C^tBu)}_2(\mu-C \equiv C-p-C_2B_{10}H_{10}-C \equiv C)]$ (3b)

S2 NMR Data

S2.1 ¹H, ¹H{³¹P}, ³¹P{¹H}, and ¹³C{¹H} NMR spectra of [trans-Ru(dmpe)₂(C=C^tBu)(C=C-C₈H₁₂-C=CH)] (2a)

¹H{³¹P} NMR (C₆D₆, 400 MHz) [*trans*-Ru(dmpe)₂(C=C^tBu)(C=C-C₈H₁₂-C=CH)] (**2a**)

³¹P{¹H} NMR (C₆D₆, 162 MHz) [*trans*-Ru(dmpe)₂(C=C^tBu)(C=C-C₈H₁₂-C=CH)] (**2a**)

S2.1.1 Assignment of acetylenic ¹³C NMR resonances of $[trans-Ru(dmpe)_2(C=C^tBu)(C=C-C_8H_{12}-C_8H_{1$

C≡CH)] (2a)

The ¹H and ¹³C NMR resonances for complex **2a** were assigned using a range of 2D NMR experiments. Resonances arising from alkyl groups on the complex (environments i/j, k, o, labelling scheme in Figure S1) were identified in a straightforward manner using multiplicity-edited ¹H-¹³C heteronuclear single quantum coherence (HSQC) spectroscopy. The terminal acetylenic carbon C_a was likewise identified by a ¹H-¹³C HSQC correlation to the acetylenic proton resonance.

¹H-¹H NOESY (C₆D₆, 400 MHz) [*trans*-Ru(dmpe)₂(C≡C'Bu)(C≡C-C₈H₁₂-C≡CH)] (**2a**)

Figure S1. Zoomed ¹H-¹H NOESY spectrum of complex **2a**; NB: indicated labelling of nuclear environments does not correspond to labelling scheme of acetylenic carbons in manuscript.

The ¹H-¹H NOESY (nuclear Overhauser effect spectroscopy) spectrum of complex **2a** (Figure S1) enabled identification of the two inequivalent methyl resonances (H_i and H_j) bound to the phosphorus atoms. Each methyl group exhibited separate NOE interactions with either the protons on the capping *tert*-butyl group (H_o) or the one of the bicyclooctyl bridge proton environments (H_e). This then enabled the assignment of the two bridge proton resonances, H_d and H_e .

Acetylenic carbons C_b , C_g and C_m were easily distinguished by strong correlations in ¹H-¹³C HMBC spectrum (Figure S2) to H_d , H_e and H_o , respectively. Pentet resonances C_h and C_l were identified by

their 15 Hz coupling to 4 equivalent phosphorus atoms, and were differentiated by a weak correlation between C_i and H_o in ¹H-¹³C HMBC spectrum. Carbons C_h and C_i also displayed HMBC correlations to either H_i and H_j on either side of the plane formed by equatorial P atoms.

Figure S2. Zoomed ¹H-¹³C HMBC spectrum of complex **2a** showing relevant cross-peaks; NB: indicated labelling of nuclear environments does not correspond to labelling scheme of acetylenic carbons in manuscript. * Cross-peak arising from unidentified impurity.

S2.2 ¹H, ¹H{³¹P}, ³¹P{¹H}, ¹¹B{¹H}, and ¹³C{¹H} NMR spectra of [trans-Ru(dmpe)₂(C=C^tBu)(C=C-p-

$C_2B_{10}H_{10}-C\equiv CH)](2b)$

7

¹¹B{¹H} NMR (C₆D₆, 193 MHz) [*trans*-Ru(dmpe)₂(C=C^tBu)(C=C-p-C₂B₁₀H₁₀-C=CH)] (**2b**)

¹³C{¹H} NMR (C₆D₆, 151 MHz) [*trans*-Ru(dmpe)₂(C≡C⁺Bu)(C≡C-p-C₂B₁₀H₁₀-C≡CH)] (**2b**)

S2.2.1 Assignment of acetylenic ¹³C NMR resonances of [trans-Ru(dmpe)₂(C=C^tBu)(C=C-p-

C₂B₁₀H₁₀-C≡CH)] (2b)

The ¹H and ¹³C NMR resonances for complex **2b** were assigned, as with complex **2a** (see **S2.1.1**), using a range of 2D NMR experiments. The broadness of proton resonances arising from the *p*-carborane bridge (H_d and H_e , labelling scheme in Figure S3) prevented the detection of cross-peaks in the ¹H-¹³C HMBC spectra of complex **2b** that would have allowed direct identification of carbons C_b or C_g ; these carbon resonances have been tentatively assigned based on corresponding chemical shift values with analogous ¹³C environments in complex **2a**.

Acetylenic carbon resonance C_m was identified by a strong correlation in ¹H-¹³C HMBC spectrum to H_o . Pentet resonances C_h and C_l were, as with complex **2a**, identified by their 15-16 Hz coupling to 4 equivalent phosphorus atoms. These were differentiated by HMBC correlations to H_i and H_j , respectively, and assigned based on both analogous correlations in the ¹H-¹³C HMBC spectrum of complex **2a**, as well as chemical shift values for NMR resonances arising from analogous ¹H and ¹³C environments in complex **2a**.

¹H-¹³C HMBC (C₆D₆, 600 MHz) [*trans*-Ru(dmpe)₂(C≡C'Bu)(C≡C-*p*-C₂B₁₀H₁₀-C≡CH)] (**2b**)

Figure S3. Zoomed ¹H-¹³C HMBC spectrum of complex **2b** showing relevant cross-peaks; NB: indicated labelling of nuclear environments does not correspond to labelling scheme of acetylenic carbons in manuscript. * Cross-peak arising from unidentified impurity.

S2.3 ¹H, ¹H{³¹P}, ³¹P{¹H}, and ¹³C{¹H} NMR spectra of [trans,trans-{Ru(dmpe)₂(C=C^tBu)}₂(μ -C=C-

C₈H₁₂-C≡C)] (3a)

-40.1

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (C₆D₆, 162 MHz) [*trans,trans*-{Ru(dmpe)_2(C=C^{1}\text{Bu})}_2(\mu\text{-}C=C\text{-}C_8\text{H}_{12}\text{-}C=C)] (\textbf{3a})

S2.4 ¹H, ¹H{³¹P}, ³¹P{¹H}, ¹¹B{¹H}, and ¹³C{¹H} NMR spectra of [trans,trans-{Ru(dmpe)₂(C=C^tBu)}₂(μ-C=C-p-C₂B₁₀H₁₀-C=C)] (3b)

 $\label{eq:linear} \begin{array}{l} ^{1}\text{H NMR }(C_{6}D_{6},\,600\;\text{MHz}) \\ [\textit{trans,trans-}\{\text{Ru}(\text{dmpe})_{2}(C=C^{t}\text{Bu})\}_{2}(\mu\text{-}C=C\text{-}p\text{-}C_{2}B_{10}\text{H}_{10}\text{-}C=C)]\;(\textbf{3b}) \end{array}$

3b

-Ru—C≡C

P

(H₃C)₃C-C≡C-

C≡C−C(CH₃)₃

 $c \equiv c$

Ru

 $\label{eq:constraint} \begin{array}{l} ^{13}C\{^{1}H\} \ \text{NMR} \ (C_6D_6, \ 151 \ \text{MHz}) \\ [\textit{trans,trans-}\{\text{Ru}(\text{dmpe})_2(C=\!\!\!C^{t}\text{Bu})\}_2(\mu\text{-}C=\!\!C\text{-}\rho\text{-}C_2B_{10}H_{10}\text{-}C=\!\!C)] \ (\textbf{3b}) \end{array}$

S3 Crystallographic Data

Crystallographic analyses were performed at the Mark Wainwright Analytical Centre at the University of New South Wales.

Data was collected using a Bruker Kappa APEXII area detector diffractometer employing graphite-monochromated Mo K α radiation generated from a fine-focus sealed tube. The data integration and reduction were undertaken with APEX21, and subsequent computations were carried out with Olex2.

Structures were solved by direct methods with SHELXS and the full-matrix least-squares refinements performed using SHELXL. The non-hydrogen atoms in the asymmetrical units were modelled with anisotropic displacement parameters. Hydrogen atoms were placed in calculated positions and refined using a riding model. All calculations were performed using the crystallographic and structural refinement data summarised in Table S3.1.

For compound **2a**, the six B-level alerts given by the checkCIF report arise due to mild rotational positional disorder of the terminal methyl group attached at C3, and the positional disorder of the two carbon backbone of the dmpe ligands which are known to occupy a number of equivalent bent positions in order to alleviate the steric strain around the ruthenium centre. Parting the atoms in question does not markedly improve the model, thus the model used has elongated ellipsoids indicative of the mild disorder.

Compound number	2a	3b
CCDC	1961817	1961818
Empirical formula	$C_{31}H_{51}P_4Ru$	$C_{42}H_{92}B_{10}P_8Ru_2$
Formula weight	648.66	1155.15
Temperature/K	150(2)	150(2)
Crystal system	triclinic	triclinic
Space group	P-1	P-1
a /Å	9.471(3)	9.0326(8)
b /Å	9.9463(13)	9.5696(7)
<i>c</i> /Å	18.892(4)	17.8617(18)
α /°	89.006(15)	80.212(3)
в /°	89.266(19)	87.485(4)
γ /°	79.674(15)	76.091(4)
Unit cell volume /Å ³	1750.4(6)	1476.8(2)
Formula units per cell, Z	2	1
ρ_{calc} /g cm ⁻³	1.231	1.299
μ /mm ⁻¹	0.648	0.756
F(000)	682.0	602.0
Crystal size /mm ³	0.17 × 0.16 × 0.05	$0.18 \times 0.1 \times 0.05$
Radiation	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)
2 Θ range for data collection / °	2.156 to 53.102	4.662 to 50.32
Index ranges	-11 ≤ h ≤ 11, -12 ≤ k ≤ 12, -23 ≤ l ≤ 23	-10 ≤ h ≤ 10, -11 ≤ k ≤ 11, -21 ≤ l ≤ 21
Reflections collected	125061	14559
Independent reflections	7217 [R _{int} = 0.0710, R _{sigma} = 0.0253]	5261 [R _{int} = 0.1171, R _{sigma} = 0.1187]
Data/restraints/parameters	7217/0/327	5261/0/291
Goodness-of-fit on F ²	1.181	1.006
Final R indexes [I>=2σ (I)]	R ₁ = 0.0550, wR ₂ = 0.1333	R ₁ = 0.0577, wR ₂ = 0.1393
Final R indexes [all data]	R ₁ = 0.0733, wR ₂ = 0.1504	R ₁ = 0.0896, wR ₂ = 0.1589
Largest diff. peak/hole / e Å ⁻³	1.09/-0.69	0.93/-1.11

Table S3.1 Crystallographic data for $[trans-Ru(dmpe)_2(C\equiv C^tBu)(C\equiv C-C_8H_{12}-C\equiv CH)]$ (2a) and $[trans,trans-{Ru(dmpe)_2(C\equiv C^tBu)}_2(\mu-C\equiv C-p-C_2B_{10}H_{10}-C\equiv C)]$ (3b)

S3.2 ORTEP Plot of [trans,trans-{ $Ru(dmpe)_2(C \equiv C^tBu)$ }_2(μ -C=C-p-C₂B₁₀H₁₀-C=C)] (3b)

S4 High-resolution Mass Spectra

S5 Modelling of Electrochemical Data

S5.1 DPV of $[trans, trans-{Ru(dmpe)_2(C \equiv C^tBu)}_2(\mu - C \equiv C - p - C_2B_{10}H_{10} - C \equiv C)]$ (3b)

Gaussian deconvolution of DPV performed with Origin Pro 8.1

Table S5.1. Output parameters fo	r peak fitting of DPV of [trans,trans-{Ru(dmpe) ₂ (C=C ^t Bu)} ₂	(μ-
C=C-p-C ₂ B ₁₀ H ₁₀ -C=C)] (3b)		

χ ² 0.010		
R ² 0.997		
Peak:	[Ru ₂ ^{2+, 2+}]/[Ru ₂ ^{3+, 2+}]	[Ru ₂ ^{3+, 2+}]/[Ru ₂ ^{3+, 3+}]
Model	Gaussian	Gaussian
Integration / %	51	49
Peak centre / V	-0.32	-0.21

S5.2 CV simulation of $[trans, trans-{Ru(dmpe)_2(C=C^tBu)}_2(\mu-C=C-C_8H_{12}-C=C)]$ (3a)

Cyclic Voltammetry (CV) Simulator available at: <u>https://communities.acs.org/docs/DOC-58017-</u> cyclic-voltammetry-cv-simulator-written-in-microsoft-excel¹⁻³

A background trace was not subtracted in this simulation.

Table S5.2. CV simulation parameters for $[trans, trans-{Ru(dmpe)_2(C \equiv C^tBu)}_2(\mu-C \equiv C-C_8H_{12}-C \equiv C)]$ (3a)

Bulk concentration / mol cm- ³	2.2×10^{-7}	
Scan rate / mV s ⁻¹	100	
Error (RMS) / 🛛 A	7.1 × 10 ⁻²	
Redox couple:	[Ru ₂ ^{2+, 2+}]/[Ru ₂ ^{3+, 2+}]	[Ru ₂ ^{3+, 2+}]/[Ru ₂ ^{3+, 3+}]
<i>E</i> _{1/2} / V	-0.51	-0.44
No. of electrons	1	1
Diffusion coefficient / cm ² s ⁻¹	8.0× 10 ⁻⁷	1.0× 10 ⁻⁹

References:

1. J. H. Brown, J. Chem. Educ., 2016, 93 (7), 1326–1329. DOI: 10.1021/acs.jchemed.6b00052.

2. A. J. Bard, L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, Wiley: New York, **1980**, ISBN: 0-471-05542-5.

3. D. Britz, *Digital Simulation in Electrochemistry 3^{ed} ed.*, Springer: Berlin, **2010**, ISBN: 978-3-642-06307-7.