Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Time-resolved Infra-red Spectroscopy Reveals Competitive Water and Dinitrogen Coordination to a Manganese(I) Carbonyl Complex

Jonathan B. Eastwood,^a L. Anders Hammarback,^a Matthew T. McRobie,^a Ian P. Clark,^b Michael Towrie,^b Ian J. S. Fairlamb^{a,*} and Jason M. Lynam^{a,*}

[a] Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK ian.fairlamb@york.ac.uk, Jason.lynam@york.ac.uk
 [b] Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK.

Contents

1. Determination of Absorption Coefficients for [1]	2
2. Modelling the Ultra-fast Behaviour of [1] on Photolysis in Heptane Solution	4
3. DFT-modelling of heptane binding in [2]	7
4. Behaviour of [1] under Ar	8
5. Addition of water to heptane	9
6. Collated energies and vibrational spectra.	10

1. Determination of Absorption Coefficients for [1]

A stock solution composed of 18.4 mg of [1] was prepared in 100 mL of heptane using volumetric glassware. Using appropriately sized graduated pipettes, this stock was diluted to the following amounts: 25 mL in 50 mL, 12.5 mL in 50 mL, 6.25 mL in 50 mL and 1.1 mL in 100 mL of heptane. The background spectrum of heptane was recorded, using a Specac IR cell with a 100 μ m spacer and CaF windows, on a Thermo Nicolet Avatar 370 FTIR instrument (16 scans, resolution of 1 cm⁻¹). Following this background, IR spectra of the of the stock solutions were obtained, with the experiment being repeated in triplicate.

Figure S1. Plot of concentration versus absorbance for a heptane solution of [1] monitoring the band at 1940 cm⁻¹. Dashed line shows a fit to the formula $y = 67.3x + 3.38 \times 10^{-4} \text{ R}^2 = 0.983$.

Figure S2. Plot of concentration versus absorbance for a heptane solution of [1] monitoring the band at 1980 cm⁻¹. Dashed line shows a fit to the formula $y = 76.6x + 6.32 \times 10^{-4} \text{ R}^2 = 0.993$

Figure S3. Plot of concentration versus absorbance for a heptane solution of [1] monitoring the band at 1990 cm⁻¹. Dashed line shows a fit to the formula $y = 118x + 1.29 \times 10^{-3} \text{ R}^2 = 0.998$

Figure S4. Plot of concentration versus absorbance for a heptane solution of [1] monitoring the band at 2074 cm⁻¹. Dashed line shows a fit to the formula $y = 21.84x + 3.17 \times 10^{-4} \text{ R}^2 = 0.993$

2. Modelling the Ultra-fast Behaviour of [1] on Photolysis in Heptane Solution

Examination of the data acquired following photolysis of [1] at short-pump probe delays indicated the formation of the heptane complex, [2], ³[1] and that the ground state bleach bands recovered in intensity (see Figure 2 in the manuscript).

Figure S5. Plot of absorbance versus time for a heptane solution of [1] monitoring the band at 1904 cm⁻¹ due to the vibrational cooling. Dashed line shows a fit to a monoexponential decay with $\tau = (26.4 \pm 0.8)$ ps R² = 0.995.

Figure S6. Plot of absorbance versus time for a heptane solution of [1] monitoring the band at 1924 cm⁻¹. Dashed line shows a fit to a monoexponential growth with decay with $\tau = (7.8 \pm 0.4)$ ps R² = 0.970.

Figure S7. Plot of absorbance versus time for a heptane solution of [1] monitoring the band at 1983 cm⁻¹ showing recovery of the ground state bleach bands. Dashed line shows a fit to a monoexponential growth with τ = (26.7 ± 2.6) ps R² = 0.953.

Figure S8. Waterfall plot showing pump-probe delays between 1 and 100 ps. The time axis is a log₁₀ scale.

Figure S9. (a) FTIR spectrum of [1] in heptane. (b) TRIR spectrum of [1] in heptane solution with a pump-probe delay of 2 ps. Black squares show the band positions of [2] in the v = 0 state, the blue circle for [2] in v > 0 and green diamonds the bands assigned to ³[1].

3. DFT-modelling of heptane binding in [2]

The binding of heptane to [2] was modelled at each of the four unique carbon atom sites. The resulting energies, relative to binding to C1, using a range of different DFT-methods are presented in Table S1, the geometries used in all cases were optimised at the BP86/SV(P) level. The greatest difference is for the calculated Gibbs energies for the C2 isomer which correlates with the lower calculated chemical potential for this state, however, given the relatively small value of these differences these data cannot be used to reliably predict which isomer is preferred.

						PBE0/de	f2-TZVPP	D3-PBE	0/def2-
Binding	Scaled IR	BP86/	/SV(P)	PBE0/de	f2-TZVPP	COSMO	solvation	TZVPP	COSMO
position	modes					hep	tane	solvation i	n heptane
		$\Delta E_{SCF+ZPE}$	ΔG_{298}						
	1895								
C1	1915	0	0	0	0	0	0	0	0
	1999								
	1896								
C2	1914	0	-6	-1	-7	-1	-6	-1	-6
	1998								
	1895								
C3	1914	3	2	3	2	3	2	3	2
	1998								
	1895								
C4	1914	3	3	3	4	4	4	4	4
	1998								

Table S1 Calculated energies (kJ mol⁻¹) and scaled IR modes of the carbonyl ligands (cm⁻¹) for the different isomers of heptane complex [2].

4. Behaviour of [1] under Ar.

Photolysis of [1] under argon results in the initial formation of heptane complex [2] (Figure S8b) which, in a similar vein to experiments performed under N₂, transforms to the water complex [4] (Figure S8c). At longer times (Figure S8 d) a number of new species are observed that are tentatively assigned to Mn hydroxy-bridged clusters.

Figure S10. TRIR spectra for the photolysis of [**1**] in heptane solution under Ar (a) ground state spectrum (b) experiment with a pump-probe delay of 10 ps showing the formation of [**2**], black squares. (c) experiment with a pump-probe delay of 100 ns showing the formation of [**2**], black squares and [**4**], blue diamonds. (d) experiment with a pump-probe delay of 5 μ s showing the formation of multiple species. Bleach band at 2074 cm⁻¹ omitted for clarity.

5. Addition of water to heptane

In order to aid with the assignment of the water complex, [4], a sample of [1] was photolyzed under an atmosphere of N_2 (Figure S9b). A single drop of water was then added to the sample and the experiment repeated (Figure S9c) demonstrating an increase in the amount of [4] (blue diamonds) relative to [3] (red circles).

Figure S11. TRIR spectra for the photolysis of [**1**] in heptane solution under N_2 (a) ground state spectrum (b) experiment with a pump-probe delay of 1 μ s showing that dinitrogen complex [**3**], red circles, is the dominant product. (c) experiment repeated with a single drop of water added to the sample showing an increase in the proportion of [**4**], blue diamonds.

[1] SCF Energy (au) BP86/SV(P) -2388.8496391370 SCF Energy (au) PBE0/def2-TZVPP -2388.444541898 Zero Point Energy (au) 0.2863571 Chemical potential (kJ mol⁻¹) 599.73 Dispersion correction (au) PBE0/def2-TZVPP -0.05312021 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -2388.4508474159 xyz coordinates 41 0.37598 Mn 3.32923 0.73855 С 3.03571 0.34890 2.15038 С 4.04822 2.38844 0.66001 0 4.49964 3.44838 0.83629 0 0.07117 2.83984 3.25919 С 0.42767 0.67014 0.02240 С -0.95715 1.19041 -0.09500 С 0.80767 -0.74215 -0.08668 С 2.21473 -0.98045 0.02998 С 2.63630 -2.31749 -0.06017 С 1.72699 -3.37974 -0.24620 С 0.34054 -0.33331 -3.12450 С -0.11667 -1.79584 -0.24630 Ν 0.25298 1.43665 1.47958 С 4.90674 -0.12703 0.45045 0 5.91695 -0.70746 0.49806 С 0.79463 -1.45964 3.45337 -1.20183 Η -1.61594 -0.28885 Ο -0.62155 -4.08229 -0.49287 Η -4.40759 -0.31026 2.11588 Η 3.70732 -2.56945 0.01972 С -3.57290 2.27998 -0.32946 С -3.08603 1.36337 -1.29213 С -1.80495 0.82338 -1.17197 С -1.45075 2.11405 0.85280 С -2.74224 2.65324 0.75081 0 -4.83540 2.73854 -0.52868 -3.74160 Η 1.09413 -2.13497 Η -1.43862 0.12836 -1.94396 Η -0.82203 2.39730 1.71380 Η -3.09253 3.35360 1.52301 1.19084 0.29570 Η 2.47875 Ο 3.52707 0.79006 -2.61692 С -0.22058 -5.43771 -0.57187 С -5.38847 3.65857 0.40036 Η -5.45681 3.21903 1.42323 Η -6.40951 0.03438 3.88654 Η -4.79749 4.60344 0.44550 -5.77206 0.30203 0.35638 Н Η 0.44505 -5.62472 -1.44855 Η -1.15134 -6.02811 -0.69358 \$vibrational spectrum selection rules # mode symmetry wave number IR intensity # cm**(-1) km/mol IR RAMAN 0.00 1 0.00000 _ _ 2 0.00 0.00000 _ _

6. Collated energies and vibrational spectra.

3		0.00	0.0000	_	-
4		0.00	0.00000	_	_
5		0.00	0.00000	_	_
6		0.00	0.00000	_	_
7	а	26.28	0.06802	YES	YES
8	а	34.69	0.47769	YES	YES
9	a	40.02	0.12265	YES	YES
10	а	52.68	0.78137	YES	YES
11	а	58.24	1.14003	YES	YES
12	a	72.22	0.63734	YES	YES
13	а	75.24	0.01637	YES	YES
14	а	81.70	0.93070	YES	YES
15	а	88.72	0.24597	YES	YES
16	а	90.82	0.02692	YES	YES
17	а	92.32	0.24563	YES	YES
18	а	99.17	0.38075	YES	YES
19	а	103.61	1.97811	YES	YES
20	a	129.04	1.51717	YES	YES
21	а	151.98	1.82135	YES	YES
22	а	178.24	1.50336	YES	YES
23	а	193.64	0.83460	YES	YES
24	а	211.05	1.02871	YES	YES
25	а	225.74	1.16918	YES	YES
26	а	245.91	0.22522	YES	YES
27	а	247.02	0.10912	YES	YES
28	a	250.95	0.67806	YES	YES
29	а	294.27	1.80392	YES	YES
30	а	319.99	3.92586	YES	YES
31	а	324.46	2.16673	YES	YES
32	а	354.63	1.79935	YES	YES
33	а	414.96	1.81219	YES	YES
34	a	418.86	0.77315	YES	YES
35	a	431.55	2.06704	YES	YES
36	a	434.43	1.15552	YES	YES
37	a	437.14	0.80613	YES	YES
38	a	446.39	0.12778	YES	YES
39	a	459.37	1.70816	YES	YES
40	a	476.35	0.37541	YES	YES
41	a	490.23	2.63363	YES	YES
42	a	493.04	15.29233	YES	YES
43	a	500.78	1.89126	YES	YES
44	a	512.47	13.55587	YES	YES
45	a	512.68	4.93768	YES	YES
46	a	544.58	9.01692	YES	YES
47	a	548.18	19.14965	YES	YES
48	a	569.25	2.10998	YES	YES
49	a	572.39	6.23530	YES	YES
50	a	579.52	19.55305	YES	YES

[**2**] C1-bound SCF Energy (au) BP86/SV(P) -2551.7199143720 SCF Energy (au) PBE0/def2-TZVPP -2551.303778446 Zero Point Energy (au) 0.4894833 1093.94 Chemical potential (kJ mol⁻¹) Dispersion correction (au) PBE0/def2-TZVPP -0.07346752 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -2551.3108730575 xyz coordinates 62 Mn 1.23664 0.78240 1.65236 С 1.63942 0.50321 3.34122 С 1.69516 1.67891 2.55128 0 1.98397 3.67835 1.74814 0 4.46412 1.88610 0.29541 С 1.96359 -1.57233 0.12465 С -3.02530 0.35067 2.15157 С -0.94229 -1.18475 1.74434 С 1.56123 0.47928 -1.11963 С 1.13086 -2.35434 1.38600 С 0.44127 -3.58696 1.38168 С -0.95489 -3.61866 1.57986 С -1.64660 -2.40438 1.76893 Ν 1.12558 2.00249 -0.71789 С 2.88081 0.24949 1.17388 0 3.95077 -0.11971 0.87776 Η 1.02701 0.59841 -0.32523 Η -2.73053 -2.45143 1.95470 -4.75318 0 -1.71707 1.61541 1.01145 Η -4.51779 1.23854 Η 2.22574 -2.38747 1.25059 С -5.79775 0.88687 2.49408 С -5.35159 0.04364 1.44821 С -3.99199 -0.22470 1.28606 С -3.48380 1.19961 3.18434 С -4.84904 1.46553 3.36699 2.57529 0 -7.13986 1.07564 Η -6.10321 -0.38824 0.76915 Η -3.66576 -0.86560 0.45195 Η -2.75778 1.63911 3.88895 Η -5.16170 2.11548 4.19715 Η -1.14870 2.05035 2.14583 С 0.44206 1.22127 -1.07121 -1.07272 1.46404 С -6.00462 С -7.65674 1.91454 3.59762 Η -7.41455 1.52218 4.61322 Η -8.75679 1.91856 3.46302 Η -7.27364 2.95797 3.50628 Η -6.18493 -0.32061 2.26899 -0.56821 -6.09594 0.47215 Η Η -1.86953 -6.77277 1.53540 Η -0.20177 0.46942 -1.58136 -2.03542 С 1.91929 1.40474 Η -0.22088 1.93882 -0.54756 С 2.38194 0.96209 -2.73650 Η 1.97980 2.69774 -1.48298 -2.80055 Η 0.80573 2.46832

0.42100

-1.96446

Η

2.97880

С	3.33670	1.66235	-3.71555
Н	1.80316	0.17789	-3.28113
С	4.33071	0.71027	-4.39946
Н	3.90317	2.45466	-3.17034
Н	2.74062	2.19639	-4.49437
Н	4.92746	0.18018	-3.61892
С	5.28663	1.40783	-5.38043
Н	3.76568	-0.08599	-4.94145
С	6.28261	0.45219	-6.05062
Н	5.84562	2.20735	-4.83924
Н	4.68955	1.93293	-6.16329
Н	6.92446	-0.05782	-5.29680
Н	6.95517	0.99102	-6.75434
Н	5.75668	-0.34105	-6.62904

\$vibrational spectrum # IR intensity mode symmetry wave number selection rules # cm**(-1) km/mol IR RAMAN 1 0.00 0.00000 _ _ 2 _ _ 0.00 0.00000 3 0.00 0.00000 _ _ 4 0.00 0.00000 _ _ 5 0.00 0.00000 _ _ _ _ 6 0.00 0.00000 7 а 7.27 0.03682 YES YES 8 11.82 0.24791 YES YES а 9 а 25.51 0.32182 YES YES 31.38 0.20117 10 YES YES а 35.63 0.72967 YES 11 YES а 12 43.22 0.01522 YES YES а 13 53.86 0.71777 YES YES а 14 56.58 1.24905 YES YES а 15 62.22 0.29767 YES YES а 16 65.92 0.05641 YES YES а 17 0.20854 72.90 YES YES а 77.47 18 а 0.26418 YES YES 19 83.75 0.80139 YES YES а 20 88.81 1.11943 YES YES а 21 90.57 0.43031 YES YES а 22 94.05 0.09487 YES YES а 23 100.09 1.99731 YES YES а 24 102.34 1.57240 YES YES а 25 118.67 0.45505 YES YES а 26 131.19 1.12809 YES YES а 27 а 136.03 0.25764 YES YES 28 150.98 1.03148 YES YES а 29 155.46 0.81716 YES YES а 30 177.63 0.37264 YES YES а 31 190.86 2.26955 YES YES а 32 199.68 3.77640 YES YES а 33 213.78 2.23016 YES YES а 34 227.25 1.24998 YES YES а 35 241.96 0.15861 YES YES а 36 244.26 0.22319 YES YES а 37 246.30 0.09537 YES YES а 38 251.32 0.16376 YES YES а 253.61 39 1.53694 YES YES а 40 292.21 1.53549 YES YES

а

41	a	302.41	0.15238	YES	YES
42	a	318.31	4.37346	YES	YES
43	a	323.04	1.74756	YES	YES
44	a	355.43	2.25980	YES	YES
45	a	377.72	7.92593	YES	YES
46	a	415.87	3.51190	YES	YES
47	a	424.74	0.35263	YES	YES
48	a	427.19	9.07822	YES	YES
49	a	436.83	0.62277	YES	YES
50	a	453.07	1.21352	YES	YES

[**2**] C2-bound SCF Energy (au) BP86/SV(P) -2551.7194387730 SCF Energy (au) PBE0/def2-TZVPP -2551.303681931 Zero Point Energy (au) 0.4888863 Chemical potential (kJ mol⁻¹) 1086.78 Dispersion correction (au) PBE0/def2-TZVPP -0.07658720 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -2551.3105670166 xyz coordinates 62 Mn 1.97078 1.44794 1.40235 С 2.52608 0.95084 2.99376 С 2.28369 3.21534 1.71492 0 2.50112 4.33868 1.95505 0 2.87565 0.59787 4.05162 С -0.75699 0.52106 1.76108 С -2.21049 0.60559 2.03708 С -0.04348 -0.69332 1.34238 С 1.35299 -0.48296 1.08705 С 2.08678 -1.62980 0.72930 С 1.49832 -2.90866 0.61444 С 0.12477 -3.08355 0.88340 С -0.64654 -1.96358 1.25739 1.57592 Ν 0.02174 1.89143 С 3.59576 1.13757 0.70987 0.25876 Ο 4.65075 0.91275 Η 2.11809 2.88004 -1.30174 Η -1.70862 -2.12554 1.49810 Ο -0.54113 -4.27582 0.82317 Η 2.13101 -3.76355 0.32943 Η -1.55263 0.53246 3.17026 С -4.99404 0.88993 2.54843 С -4.54060 0.20603 1.39480 С -3.17491 0.06051 1.14930 С -2.67742 1.29257 3.18093 С -4.04747 1.43255 3.44668 0 -6.34040 0.97035 2.70219 Η -5.29173 -0.20010 0.69959 Η -2.84451 -0.45445 0.23351 Η -1.95122 1.70090 3.90376 -4.36521 1.95653 4.35987 Η Η -0.47127 2.43843 2.16424 С 1.14541 2.34250 -1.32053 С 0.18764 -5.44021 0.48055 С -6.86498 1.65139 3.83249 Η -6.55233 1.16592 4.78671 Η -7.96784 1.59332 3.73997 Η -6.55522 2.72271 3.84714 Η 1.00329 -5.65027 1.21311 -5.36817 -0.54178Η 0.63039 -0.54008 Η -6.27681 0.50059 Η 1.13405 1.62423 -0.43950

С

С

С

Η

Η

Η

1.06331

-0.00924

2.22522

1.02516

0.09570

3.19203

-2.58606

-1.17616

-2.75411

-3.46954

-2.58793

-2.72725

1.47319

3.33818

0.48310

2.15624

0.91743

1.03932

С	2.14772	-0.34233	-4.04814		
H	2.24432	-0.20551	-1.87738		
С	3.30486	-1.34112	-4.21474		
H	2.12739	0.34629	-4.92775		
H	1.17840	-0.89632	-4.07401		
H	4.27283	-0.78730	-4.18901		
Н	3.32502	-2.02510	-3.33368		
Н	0.10993	3.97613	-0.27449		
Н	-0.99090	2.81864	-1.10645		
С	3.22207	-2.16805	-5.50450		
H	-0.05125	4.01314	-2.06086		
H	4.07581	-2.87633	-5.59166		
H	3.23592	-1.51502	-6.40678		
Н	2.28360	-2.76665	-5.54286		
\$vibrat	ional spectrum				
# mode	e symmetry	wave number	IR intensity	selecti	on rules
#		cm**(-1)	km/mol	IR	RAMAN
1		0.00	0.00000	_	_
2		0.00	0.00000	_	_
3		0.00	0.00000	_	_
4		0.00	0.00000	_	-
5		0.00	0.00000	_	_
6		0.00	0.00000	_	_
7		0.73	0.10916	_	_
8	а	16.64	0.05337	YES	YES
9	a	24.11	0.29143	YES	YES
10	a	32.56	0.24720	YES	YES
11	a	35.62	0.68846	YES	YES
12	a	46 51	0 15164	YES	YES
13	a	51 31	0.08562	YES	YES
14	a	55 55	1 86219	VFS	VFS
15	a	58 69	0 05401	VES	VES
16	2	71 37	0.00401	VEC	VEC
17	a	72.62	0.01909	VEC	VEC
1 0	a	72.02	0.02001	IES VEC	IES VEC
10	a	75.00	0.01404	ILS	ILS
20	a	00.00	1 10000	IES VEC	IES VEC
20	a	04.00	1 20122	IES	IES
21	a	09.33	1.30122	IES	IES
22	a	92.45	U.II42U 1 E4202	ILS	IES
20	d	90.30	1.04395	IES	IES
24	d	102.41	1.40300 0.111EC	IES	IES
25	d	111.29	0.11156	ILS	IES
20	a	120.35	1.11360	ILS	IES
27	d	134.33	0.04066	ILS	IES
28	a	145./1	0.05873	YES	YES
29	a	151.80	1.//333	YES	YES
30	a	169.95	0.11282	YES	YES
31	a	180.64	2.71230	YES	YES
32	a	191.91	0.47184	YES	YES
33	a	212.00	0.58769	YES	YES
34	a	224.34	0.99550	YES	YES
35	a	240.36	0.33760	YES	YES
36	a	243.45	0.31600	YES	YES
37	a	246.44	3.11874	YES	YES
38	a	249.58	0.03506	YES	YES
39	a	252.87	0.75665	YES	YES
40	a	262.82	1.35694	YES	YES
41	a	292.95	1.91221	YES	YES

42	a	299.56	0.07319	YES	YES
43	a	316.96	7.17521	YES	YES
44	a	322.06	1.72922	YES	YES
45	a	354.94	2.27234	YES	YES
46	a	412.74	1.29859	YES	YES
47	a	415.86	3.66564	YES	YES
48	a	425.80	2.86135	YES	YES
49	a	436.42	0.71545	YES	YES
50	a	447.66	0.60889	YES	YES

[**2**] C3-bound SCF Energy (au) BP86/SV(P) -2551.7181555600 SCF Energy (au) PBE0/def2-TZVPP -2551.302200705 Zero Point Energy (au) 0.4889881 Chemical potential (kJ mol⁻¹) 1091.63 Dispersion correction (au) PBE0/def2-TZVPP -0.07732848 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -2551.3090842390 xyz coordinates 62 Mn 2.12909 1.09565 1.22133 С 2.69715 0.59569 2.80682 С 1.53701 2.44551 2.86224 0 2.66877 3.98361 1.78092 0 3.86085 3.05566 0.24014 С 1.59259 -0.59570 0.16505 С -2.04849 0.24764 1.87243 С 0.11780 -1.04822 1.17093 С 0.90981 1.51284 -0.83581 С 2.24746 -1.98232 0.55255 С 1.66103 -3.26253 0.44287 С 0.28864 -3.43917 0.71660 С -0.48340 -2.31965 1.09050 1.22052 1.72183 Ν 0.18255 С 3.74930 0.78895 0.51659 Ο 0.56695 0.05875 4.80206 Η 2.26284 2.55862 -1.47142 -1.54433 Η -2.48295 1.33537 Ο -0.37528 -4.63277 0.66162 Η 2.29433 -4.11698 0.15794 Η 3.33007 -1.90357 0.35160 С -4.83136 0.52761 2.38977 С -4.37937 -0.15561 1.23518 С -0.29898 0.98675 -3.01399 С -2.51399 0.93397 3.01725 С -3.88369 1.07175 3.28597 0 -6.17753 0.60600 2.54639 Η -5.13137 -0.56279 0.54153 Η -2.68465 -0.81324 0.07020 Η -1.78691 1.34338 3.73857 Η -4.20029 1.59519 4.19987 Η -0.31049 2.08223 1.99709 С 1.28997 2.01985 -1.50725 С -5.79688 0.35479 0.32068 С -6.70077 1.28612 3.67785 Η -6.38531 0.80108 4.63136 Η -7.80373 1.22634 3.58764 Η -6.39270 2.35794 3.69194 Η -6.00296 1.05169 1.17285 0.79460 -5.72724 -0.70307 Η Η -0.37126 -6.63479 0.34539 Η 1.26522 1.29916 -0.62878 С 1.15199 1.22784 -2.77515 С 0.13479 3.02364 -1.33991 С 2.36869 0.13096 -2.89843 Η 1.82270 -3.66677 1.24373 -2.80671 Η 0.62071 0.24673 Η -2.83685 3.34852 0.66122

С	2.31754	-0.69472	-4.19408		
Н	2.33821	-0.55645	-2.02103		
С	3.45013	-1.72398	-4.30592		
н	2.35205	-0.00654	-5.07233		
н	1 33349	-1 21716	-4 25644		
и и	1 11856	-1 23166	-1 28320		
11 TJ	2 11026	-2 44946	-2 46170		
п С	5.41920	-2.44940	-3.401/9		
	0.02107	4.11364	-2.42123		
H	0.23423	3.51188	-0.34444		
H	-0.83332	2.47001	-1.31948		
H	3.38248	-2.30482	-5.25250		
H	1.04030	4.67820	-2.47090		
H	-0.72695	4.84571	-2.20392		
H	-0.11598	3.69493	-3.43241		
\$vibr	ational spectrum				
#	-	cm**(-1)	km/mol	IR	RAMAN
	1	0.00	0.00000	_	_
	2	0 00	0 00000	_	_
	ר ר	0.00	0 00000	_	_
	1	0.00	0.00000	_	_
	4	0.00	0.00000	_	_
	5	0.00	0.00000	_	_
	6	0.00	0.00000	_	_
	7 a	6.35	0.07389	YES	YES
	8 a	18.79	0.11719	YES	YES
	9 a	18.99	0.17564	YES	YES
1	0 a	34.26	0.33753	YES	YES
1	1 a	35.93	0.41086	YES	YES
1	2 a	43.00	0.08521	YES	YES
1	З а	48.89	0.31692	YES	YES
1	4 a	55 53	1 93094	YES	YES
1	т <u>а</u> 5 о	60.24	1.00013	VEC	VEC
1		62 00	0.04943	IES VEC	IES VEC
1	o a	63.00	0.10075	ILS	ILS
T	/ a	72.38	0.02480	YES	YES
1	8 a	76.34	0.55950	YES	YES
1	9 a	82.05	1.07192	YES	YES
2	0 a	83.53	0.02464	YES	YES
2	1 a	85.82	1.42316	YES	YES
2	2 a	89.39	1.12568	YES	YES
2	3 a	92.65	0.08661	YES	YES
2	4 a	98.52	1.37699	YES	YES
2		102 83	1 58841	YES	YES
2	6 7	126 91	0 17471	VES	VES
2	0 a	120.91	0.1/4/1	IES VEC	IES VEC
2	/ d	130.44	0.72271	IES	IES
2	8 a	145.18	0.18262	YES	YES
2	9 a	151.70	1.81574	YES	YES
3	0 a	173.99	0.10323	YES	YES
3	1 a	181.96	3.29031	YES	YES
3	2 a	191.71	0.47772	YES	YES
3	3 a	212.16	0.65412	YES	YES
3	4 a	224.33	0.92663	YES	YES
3	5 а	233.25	0.35715	YES	YES
े २	- <u>-</u>	241 09	0 38898	VES	VES
с С		271.UJ 012 57	0.30090 0.31951	VEC VEC	VEC
2	0 -	24J.J/	0.01257	TEO	VEO VEO
3	o a	249.31	0.0135/	YES	YES
3	у а	250.76	2.6/853	YES	YES
4	0 a	291.76	1.55553	YES	YES
4	1 a	300.52	1.10581	YES	YES
4	2 a	316.34	6.58359	YES	YES

43	a	321.98	1.64023	YES	YES
44	a	352.15	1.28242	YES	YES
45	а	355.40	2.53186	YES	YES
46	a	393.27	2.54438	YES	YES
47	a	415.82	3.79555	YES	YES
48	a	425.89	3.02858	YES	YES
49	a	436.39	0.77977	YES	YES
50	a	447.36	0.62194	YES	YES

[**2**] C4-bound SCF Energy (au) BP86/SV(P) -2551.7183217140 SCF Energy (au) PBE0/def2-TZVPP -2551.301959507 Zero Point Energy (au) 0.4889275 1092.74 Chemical potential (kJ mol⁻¹) Dispersion correction (au) PBE0/def2-TZVPP -0.07693777 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -2551.3088316523 xyz coordinates 62 Mn 2.20762 0.61221 1.56585 С 2.48624 0.07381 3.21469 С 2.50588 2.36568 1.97514 0 2.71856 3.47627 2.26950 0 2.64937 -0.30741 4.30747 С -0.55362 -0.25549 1.40782 С -2.03122 -0.15554 1.45880 С 0.19985 -1.45724 1.02299 С -1.27425 1.62333 1.03234 С 2.38547 -2.41310 0.71164 С 1.80186 -3.65954 0.39246 С 0.40702 0.39978 -3.80960 С -0.40340 -2.69677 0.73350 1.74077 Ν 0.20963 0.76534 С 3.91696 0.25898 1.16512 Ο -0.00850 0.91894 5.02903 Η 2.17446 1.36258 -0.37583 Η -1.49383 -2.84220 0.77374 0 -0.26861 -4.97079 0.13643 Η 2.45781 -4.51006 0.15078 Η 3.48779 -2.35805 0.70980 С -4.85891 0.13809 1.56330 С -4.23808 -0.45680 0.43867 С -0.60772 0.39234 -2.85184 С -2.66351 0.44720 2.57015 С -4.05735 0.59035 2.63572 0 -6.21275 0.22686 1.51850 Η -4.87632 -0.79090 -0.39418 Η -2.38907 -1.05297 -0.50252 Η -2.05404 0.78259 3.42605 Η -4.50747 1.04496 3.53013 Η -0.30641 1.61694 2.00521 С 1.52087 1.45436 -1.30171 С 0.48598 -6.12882 -0.17004С -6.90070 0.81816 2.61097 Η -6.73486 0.25081 3.55695 -7.97729 Η 0.78156 2.35057 Η -6.59711 1.88098 2.76135 Η 1.15838 -6.42124 0.67176 -5.99275 -1.09213 Η 1.10085 -0.24995 Η -6.94001 -0.34355 Η 0.82315 0.58673 -1.28158 С 2.45183 1.34680 -2.51997 С 0.73530 2.77285 -1.19922 С 3.28930 0.06005 -2.57830 Η -2.54214 3.13003 2.23383 -3.44624 Η 1.83302 1.41453 Η -1.67636 3.93971 0.00301

С		4 15762	-0 03782	-3 83964		
С Ц		2 61117	_0 02207	-2 51007		
п		2.01117	-0.02307	-2.51907		
H		4.8/036	0.81531	-3.90916		
Н		3.53622	-0.02831	-4./6418		
С		-0.27692	3.01269	-2.33428		
Η		1.45187	3.62741	-1.15500		
Η		0.18792	2.78443	-0.22893		
Η		0.25458	3.07225	-3.31151		
С		-1.10812	4.28787	-2.13652		
Н		-0.95784	2.13162	-2.40898		
Н		-1.82678	4.43932	-2.97212		
Н		-0.45800	5.19059	-2.08499		
Н		-1.69483	4.24672	-1.19091		
Η		4.75703	-0.97477	-3.84739		
\$v	ibrati	onal spectrum				
#	mode	symmetry	wave number	IR intensitv	selecti	on rules
#			cm**(-1)	km/mol	TR	RAMAN
"	1			0 00000	_	_
	2		0.00	0 00000	_	_
	2		0.00	0.00000	_	_
	1		0.00	0.00000		
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	_
	6		0.00	0.00000	-	-
	7	a	14.07	0.01889	YES	YES
	8	a	16.13	0.13217	YES	YES
	9	a	19.35	0.03958	YES	YES
	10	a	34.67	0.63202	YES	YES
	11	a	36.63	0.15900	YES	YES
	12	a	42.53	0.43165	YES	YES
	13	a	54.74	0.27667	YES	YES
	14	a	56.29	1.64411	YES	YES
	15	a	59.03	0.09053	YES	YES
	16	a	60.52	0.17536	YES	YES
	17	a	67.16	0.14862	YES	YES
	18	a	73.23	0.18122	YES	YES
	19	a	77 93	0 08385	YES	YES
	20	a	80.89	0 54395	YES	YES
	21	a	85 81	0.64288	VFS	VFS
	21	a	00.01 00.10	1 13131	VEC	VEC
	22	a	90.40	1.43434	IES VEC	IES VEC
	23	d	94.30	0.12700	IES	ILS
	24	d	97.82	0.73914	IES	IES
	25	a	100.69	1./4535	YES	YES
	26	a	105.00	2.29501	YES	YES
	27	a	130.87	0.66367	YES	YES
	28	a	146.75	0.15773	YES	YES
	29	a	152.43	1.81896	YES	YES
	30	a	179.34	1.69518	YES	YES
	31	a	191.78	0.74314	YES	YES
	32	a	210.44	0.86256	YES	YES
	33	a	213.00	1.26049	YES	YES
	34	a	226.28	0.91061	YES	YES
	35	a	235.29	0.15628	YES	YES
	36	a	245.56	0.45273	YES	YES
	37	a	247 07	0 37149	VF C	VES
	30	a	277.07 210 71	0.J/14J 0 10050	VEC	VEG
	20	a	240./1 252 00	0.10009	TEO	TEO
	27	d	ZUZ.U0 206 10	Z.JU000 0 17001	ILD	ILS
	40	a	286.18	2.1/921	YES	YES
	4⊥	a	293.12	1.4/64/	YES	YES

42	а	302.74	0.40262	YES	YES
43	а	315.06	3.01567	YES	YES
44	а	322.38	1.94383	YES	YES
45	а	356.18	2.19840	YES	YES
46	а	398.35	1.63128	YES	YES
47	а	415.44	3.69951	YES	YES
48	а	424.85	2.09348	YES	YES
49	а	437.15	1.00122	YES	YES
50	а	449.04	0.44123	YES	YES

[3] SCF Energy (au) BP86/SV(P) -2385.0365037980 SCF Energy (au) PBE0/def2-TZVPP -2384.626651427 Zero Point Energy (au) 0.2863196 Chemical potential (kJ mol⁻¹) 600.05 Dispersion correction (au) PBE0/def2-TZVPP -0.05305957 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -2384.6329131839

xyz coordinates 41

Mn	3.32844	0.73210	0.36884
С	3.09055	0.35002	2.11979
С	4.07613	2.36967	0.69088
0	4.54815	3.40905	0.92717
0	2.92007	0.08567	3.23858
С	0.43161	0.66481	0.03032
С	-0.95291	1.18408	-0.09420
С	0.81200	-0.74915	-0.07438
С	2.21696	-0.99022	0.06236
С	2.63132	-2.33032	-0.00851
С	1.72115	-3.39066	-0.20735
С	0.33845	-3.12997	-0.32185
С	-0.11448	-1.79852	-0.24645
Ν	1.43707	1.47546	0.27096
С	4.89527	-0.15960	0.38713
0	5.89277	-0.76318	0.40787
Ν	3.39065	0.91149	-1.52869
Н	-1.19821	-1.61518	-0.30751
0	-0.62541	-4.08352	-0.49624
Н	2.10663	-4.42059	-0.25825
Н	3.69883	-2.58920	0.09457
С	-3.56632	2.27601	-0.34136
С	-3.07299	1.36441	-1.30555
С	-1.79318	0.82291	-1.17898
С	-1.45273	2.10303	0.85502
С	-2.74335	2.64284	0.74703
0	-4.82691	2.73659	-0.54725
Н	-3.72260	1.10025	-2.15459
Н	-1.42165	0.13199	-1.95217
Н	-0.82984	2.38124	1.72187
Н	-3.09900	3.33882	1.52074
Н	1.18618	2.47323	0.32101
N	3.40502	1.00134	-2.65001
С	-0.22912	-5.44089	-0.56470
С	-5.38569	3.65277	0.38228

Н	-5.46245	3.20809	1.40232
Н	-6.40354	3.88416	0.00967
Н	-4.79354	4.59639	0.43674
Н	0.27355	-5.77564	0.37430
Н	0.45303	-5.63243	-1.42759
Н	-1.15994	-6.02735	-0.70385

\$vibrational spectrum

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	-	-
	2		0.00	0.0000	-	-
	3		0.00	0.0000	-	-
	4		0.00	0.0000	-	-
	5		0.00	0.0000	-	-
	6		0.00	0.0000	-	-
	7	a	26.09	0.06155	YES	YES
	8	a	34.83	0.55472	YES	YES
	9	a	39.94	0.11211	YES	YES
	10	a	55.02	1.41485	YES	YES
	11	a	61.32	0.55432	YES	YES
	12	a	75.96	0.09883	YES	YES
	13	a	78.07	0.42937	YES	YES
	14	a	85.25	1.28896	YES	YES
	15	a	92.37	0.44046	YES	YES
	16	a	92.49	0.04775	YES	YES
	17	a	95.62	0.01563	YES	YES
	18	a	99.40	0.34592	YES	YES
	19	a	105.38	1.50621	YES	YES
	20	a	131.29	1.88156	YES	YES
	21	a	152.28	1.77738	YES	YES
	22	a	179.39	0.91144	YES	YES
	23	a	193.40	1.05336	YES	YES
	24	a	211.01	0.73731	YES	YES
	25	a	229.07	0.61321	YES	YES
	26	a	245.85	0.58944	YES	YES
	27	a	248.15	0.19175	YES	YES
	28	a	249.62	1.30908	YES	YES
	29	a	293.02	2.31278	YES	YES
	30	a	319.77	4.81215	YES	YES
	31	a	323.00	2.00777	YES	YES
	32	a	353.55	1.44663	YES	YES
	33	a	371.32	14.70453	YES	YES
	34	a	395.56	0.20087	YES	YES
	35	a	416.35	2.33749	YES	YES
	36	a	416.57	4.07155	YES	YES
	37	a	431.39	0.67885	YES	YES
	38	a	436.08	0.86495	YES	YES
	39	a	458.24	1.05642	YES	YES
	40	a	470.38	0.73743	YES	YES
	41	a	480.03	2.19379	YES	YES
	42	a	488.46	8.58009	YES	YES
	43	a	493.52	1.35659	YES	YES
	44	a	508.25	4.87336	YES	YES
	45	a	512.49	6.34115	YES	YES
	46	a	536.14	24.04596	YES	YES
	47	a	545.10	4.21738	YES	YES
	48	a	551.20	5.95627	YES	YES
	49	a	571.91	6.25813	YES	YES

а

S25

SCF Energy (au) BP86/SV(P) -2351.9348114380 SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) -2351.561490343 0.3016435 Chemical potential (kJ mol⁻¹) 641.24 Dispersion correction (au) PBE0/def2-TZVPP -0.05282759 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -2351.5706161977

xyz coordinates 4

1	2	

[**4**]

Ī	Мn	3.25273	0.70147	0.51255	
(2	3,10069	0.44875	2.26004	
(- -	4 02486	2 34334	0 69608	
(2 7	4 51794	3 39281	0 84134	
(2 7	2 97753	0 27024	3 40897	
(- -	0 37354	0.64751	0 06833	
(~	-1 00760	1 17227	-0.06176	
(- -	0 75784	-0 76718	-0 05412	
(~	2 16247	-1 00488	0 14652	
(~	2.56686	-2 35176	0.05816	
Ć	- -	1 66496	-3 40905	-0 19609	
(~	0 28887	-3 14313	-0 35710	
(- -	-0 16322	-1 80968	-0 28099	
ז	N N	1 38216	1 44863	0 35290	
(~	4 81293	-0 18358	0.39290	
(\sim	5 81167	-0 79192	0.49016	
F		-1 24431	-1 62625	-0.37976	
(-0 67154	-4 08952	-0.58070	
Ţ	Э Ч	2 04995	-4 43938	-0.24633	
Ţ	4	3 62773	-2 61818	0.24000	
(~	-3 61526	2 28365	-0.31171	
(-3 12169	1 37984	-1 28310	
(~	-1 84586	0 82929	-1 15462	
Ć	- -	-1 50982	2 08316	0 89530	
(~	-2 79619	2.00310	0.78588	
(\sim	-4 87111	2 75511	-0 52004	
F	9	-3 76821	1 12847	-2 13838	
F	H	-1 47724	0 14348	-1 93393	
F	H	-0.89253	2.34554	1,77102	
F	H	-3.15234	3,31986	1.56645	
Ŧ	H	1 11756	2 43927	0 46199	
(<u>)</u>	3 26814	0 82544	-1 65675	
(-	-0 28082	-5 44963	-0 63199	
(-5.42994	3.66380	0.41730	
F	U H	-5.51607	3,20703	1,43112	
F	н. Н	-6.44373	3,90645	0.04098	
F	H	-4.83175	4.60252	0.48696	
F	H	0.18344	-5.78481	0.32613	
F	H	0.43327	-5.64646	-1.46738	
F	н. Н	-1,20896	-6.03086	-0.80637	
F	H	3.04944	-0.12522	-1.82427	
F	H	2.42359	1,30173	-1.83651	
-	-				
0	\$vibratic	onal spectrum			
ŧ	# mode	symmetry	wave number	IR intensity	sele
ŧ	#		cm**(-1)	km/mol	IF
	1		0.00	0.0000	-

selection	on rules
IR	RAMAN
_	_

2		0.00	0.0000	-	-
3		0.00	0.00000	-	-
4		0.00	0.0000	_	-
5		0.00	0.0000	_	-
6		0.00	0.00000	_	-
7	a	26.00	0.53254	YES	YES
8	a	35.02	0.48641	YES	YES
9	a	38.97	0.38077	YES	YES
10	a	55.92	2.07081	YES	YES
11	a	67.12	0.31764	YES	YES
12	a	74.09	0.11402	YES	YES
13	a	82.78	0.71109	YES	YES
14	a	86.65	1.60959	YES	YES
15	a	91.17	0.04151	YES	YES
16	a	97.47	2.32132	YES	YES
17	a	99.92	0.92330	YES	YES
18	a	121.20	1.55990	YES	YES
19	a	131.29	2.54849	YES	YES
20	a	148.42	2.18503	YES	YES
21	a	157.20	4.18466	YES	YES
22	a	185.88	8.59400	YES	YES
23	a	199.25	1.75080	YES	YES
24	a	210.12	24.35927	YES	YES
25	a	212.49	4.10185	YES	YES
26	a	236.29	5.26463	YES	YES
27	a	247.00	1.41147	YES	YES
28	a	247.72	3.29396	YES	YES
29	a	253.34	6.73868	YES	YES
30	a	296.62	2.35600	YES	YES
31	a	312.22	25.70654	YES	YES
32	a	322.85	2.81274	YES	YES
33	a	329.76	11.29843	YES	YES
34	a	353.46	2.99418	YES	YES
35	a	415.92	3.04308	YES	YES
36	a	424.94	4.92278	YES	YES
37	a	436.10	0.52141	YES	YES
38	а	457.50	1.80447	YES	YES
39	a	459.25	5.11155	YES	YES
40	a	472.75	8.95774	YES	YES
41	a	484.12	43.60404	YES	YES
42	a	490.47	0.95525	YES	YES
43	а	506.09	5.02604	YES	YES
44	a	509.17	2.50731	YES	YES
45	a	529.09	21.93988	YES	YES
46	a	537.94	33.26943	YES	YES
47	a	550.15	11.82123	YES	YES
48	a	556.60	159.65150	YES	YES
49	a	565.93	71.78882	YES	YES
50	a	573.73	15.89494	YES	YES

СО SCF Energy (au) BP86/SV(P) -113.230064069 SCF Energy (au) PBE0/def2-TZVPP -113.2302273127 Zero Point Energy (au) 0.0049005 Chemical potential (kJ mol⁻¹) -37.48 Dispersion correction (au) PBE0/def2-TZVPP -0.00033780 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -113.2305691586 xyz coordinates 2 0.000000.000000.571000.000000.00000-0.57100 С 0 \$vibrational spectrum # mode symmetry wave number IR intensity selection rules
 IR
 RAMAN

 0.00000

 0.00000

 0.00000
 # cm**(-1) km/mol

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 2151.08
 60.66925
 YES
 YES

 1 2 3 4 5

6

a1

Heptane SCF Energy (au) BP86/SV(P) -276.1593180343 SCF Energy (au) PBE0/def2-TZVPP -276.1417117921 Zero Point Energy (au) 0.2107137 Chemical potential (kJ mol⁻¹) 460.98 Dispersion correction (au) PBE0/def2-TZVPP -0.01471318 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -276.1422777983 xyz coordinates 23 С 1.85757 -2.97819 1.63815 С 0.56993 -2.26372 1.20650 Η 1.63900 -3.94987 2.13420 -2.35926 Η 2.44313 2.35518 2.51726 -3.18797 0.76559 Η Η -0.01093 -2.92617 0.52186 С 0.81746 -0.91437 0.51235 Η -0.08271 -2.10300 2.09740 Η 1.39975 -0.25117 1.19652 С 0.07897 -0.46820 -0.19163 Н 1.46922 -1.07473 -0.38057 С -0.22099 1.15762 -0.61445 -0.03213 0.97222 Η -1.11945 -1.04980 -0.85536 -0.60502 Η Η 0.35963 1.82229 0.06971 С 1.87992 -1.04890 -1.50707 Η 0.43093 0.99926 -1.50761 С -1.25220 3.22668 -1.73865 Η -0.15662 -2.15879 2.03659 Η -2.08621 1.21563 -1.73308Η -0.70739 3.92897 -1.06756 Η -2.20394 3.71909 -2.03806 -0.63620 Η 3.10151 -2.65813 \$vibrational spectrum # mode symmetry wave number IR intensity selection rules # cm**(-1) IR RAMAN km/mol 1 0.00 0.00000 _ _ 2 0.00 0.00000 -_ 3 0.00 0.00000 _ _ _ 4 0.00 0.00000 _ _ 5 0.00 0.00000 _ _ _ 6 0.00 0.00000 7 60.08 0.00058 YES YES а 69.76 8 а 0.00014 YES YES 9 95.99 0.00884 YES YES а 10 0.00012 YES YES а 139.13 11 0.00039 YES YES а 143.13 12 238.45 0.00003 YES YES а 13 246.62 0.00004 YES YES а 249.00 YES YES 14 а 0.00043 15 296.47 0.00453 YES YES а 16 а 407.81 0.06774 YES YES 17 YES YES а 471.92 0.04358 18 723.56 6.01809 YES YES а 19 726.96 YES YES 0.00072 а 20 757.44 1.98990 YES YES а 21 826.64 0.00149 YES YES а

22	a	868.53	2.28104	YES	YES
23	a	899.60	1.81290	YES	YES
24	a	914.56	1.20882	YES	YES
25	a	988.34	0.00259	YES	YES
26	a	997.82	0.00204	YES	YES
27	a	1031.91	0.02471	YES	YES
28	a	1050.27	1.01889	YES	YES
29	a	1056.90	0.71985	YES	YES
30	a	1064.84	1.96649	YES	YES
31	a	1128.20	1.07902	YES	YES
32	a	1167.12	0.19505	YES	YES
33	a	1202.04	0.00081	YES	YES
34	a	1215.84	5.81204	YES	YES
35	a	1253.59	0.02151	YES	YES
36	a	1276.36	0.00666	YES	YES
37	a	1282.53	0.00195	YES	YES
38	a	1290.96	0.02064	YES	YES
39	a	1297.10	0.76738	YES	YES
40	a	1328.57	2.83233	YES	YES
41	a	1359.14	0.61598	YES	YES
42	a	1364.29	2.60863	YES	YES
43	a	1366.82	1.55053	YES	YES
44	a	1370.36	0.09231	YES	YES
45	a	1423.54	0.31652	YES	YES
46	a	1424.09	0.04094	YES	YES
47	a	1428.46	0.03606	YES	YES
48	a	1433.58	1.23573	YES	YES
49	a	1436.43	7.96972	YES	YES
50	a	1437.71	9.02038	YES	YES

 N_2 SCF Energy (au) BP86/SV(P) -109.4489525196 SCF Energy (au) PBE0/def2-TZVPP -109.4449257462 Zero Point Energy (au) 0.0054354 Chemical potential (kJ mol⁻¹) -34.28 Dispersion correction (au) PBE0/def2-TZVPP -0.00035163 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane) -109.4451555170 xyz coordinates 2 0.000000.000000.556000.000000.00000-0.55600 Ν Ν \$vibrational spectrum wave number IR intensity selection rules
 IR
 RAMAN

 0.00000

 0.00000

 0.00000
 # mode symmetry # cm**(-1) km/mol 1 0.00 0.00 -2 0.00 0.00000 - -0.00 0.00000 - -0.00 0.00000 - -2385.86 0.00000 NO YES 3 4 5 6 alg

 H2O
 -76.3451982082

 SCF Energy (au) PBE0/def2-TZVPP
 -76.379976764

 Zero Point Energy (au)
 0.0199812

 Chemical potential (kJ mol⁻¹)
 5.89

 Dispersion correction (au) PBE0/def2-TZVPP
 -0.00027693

 SCF Energy (au) PBE0/def2-TZVPP COSMO (Heptane)
 -76.3840924503

xyz coordinates

\$vi	brational	l spectrum				
#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	-	-
	2		0.00	0.0000	-	-
	3		0.00	0.0000	_	-
	4		0.00	0.0000	_	-
	5		0.00	0.0000	-	-
	6		0.00	0.0000	-	-
	7	al	1604.23	61.98164	YES	YES
	8	al	3526.13	0.10543	YES	YES
	9	b1	3640.35	16.43822	YES	YES