Supplementary Materials

Structure-function correlations in mononuclear manganese(III) spin crossover system with big conjugated hexadentate Schiff-base ligands

Sheng-Ze Zhao^a• Chun-Yan Qin^a• Shi Wang^a*• Masahiro Yamashita^b• Yong-Hua Li^a*•Wei Huang^{ac}

^a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

E-mail: iamswang@njupt.edu.cn

http://iam.njupt.edu.cn/

^b Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan

^c Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710000, China

1-SbF ₆									
100K					295K				
D-HA	D-H	HA	DA	D-HA	D-HA	D-H	HA	DA	D-HA
N3-H19F5 ^{iv}	0.87(3)	2.20(3)	2.969(3)	145.8(3)	N2-H14F2 ^{iv}	0.83(5)	2.33(4)	3.03(6)	143.6(4)
2-AsF ₆									
100K					295K				
D-HA	D-H	HA	DA	D-HA	D-HA	D-H	HA	DA	D-HA
N3-H19F11 ⁱ	1	2.14	3.01(4)	144.5	N2-H14F1 ⁱⁱⁱ	0.75(4)	2.37(4)	3.06(4)	154 (4)
N7-H51F2 ⁱⁱ	0.79(4)	2.35(4)	3.06(4)	150.5(4)					
N11-H83F14	0.81(4)	2.23(4)	2.90(4)	139.9(4)					
3-PF ₆ ·1/2CH ₃ OH									
100K					295K				
D-HA	D-H	HA	DA	D-HA	D-HA	D-H	HA	DA	D-HA
N2-H14F6	1(3)	2.26(4)	3.12(3)	143.2(3)	N2-H2F6viii	0.98(3)	2.30(3)	3.16(3)	145.6(3)
N2-H14F4	1(3)	2.62(3)	3.31(3)	126.7	N2-H2F4	0.98(3)	2.64(3)	3.34(3)	128.9(3)
4-ClO ₄									
100K					273K				
D-HA	D-H	HA	DA	D-HA	D-HA	D-H	HA	DA	D-HA
N2-H2O2 ^v	0.93	2.46	3.067(3)	123	N2-H2O3 ^{vi}	0.91	2.54	3.170(6)	127
a	. 1	() 1 · 1 ·	(1) 1. (1)	24.	1. () 2/2 1/2				

Table S1. Hydrogen bond distances and parameters for the complexes of **1-4** (Å,°)

Symmetry codes:(i)-1+x,y,-1+z; (ii) x,y,1+z; (iii)1+x, y, z; (iv)-1+x, y, z; (v)3/2-x,1/2+y,-z; (vi)1/2+x,3/2-y,-z;

Table S2. The variations of octahedral distortion parameters (°) for complexes 1-4

0	1-SbF ₆	2-AsF ₆	3-PF ₆ ·1/2CH ₃ OH	4-ClO ₄
	295 K→ 100 K	295 K→ 100 K	295 K→ 100 K	273 K→ 100 K
$\Delta\Sigma^{[a]}$	26.64	22.24	0.46	7.51
		27.92		
		26.61		
$\Delta \Theta^{[a]}$	38.7	35.7	-1.4	15.28
		15.1		
		38.2		

[a] for complex 1, $\Delta \Sigma = \Sigma_{\rm HS} - \Sigma_{\rm LS}$, $\Delta \Theta = \Theta_{\rm HS} - \Theta_{\rm LS}$

Figure S1. The molecular structure for complex **1** at 100 K, hydrogen atoms have been omitted for clarity.

Figure S2. The molecular structure for complex **1** at 295 K, hydrogen atoms have been omitted for clarity.

Figure S3. The molecular structure for complex **2** at 100 K, hydrogen atoms have been omitted for clarity.

Figure S4. The molecular structure for complex **2** at 295 K, hydrogen atoms have been omitted for clarity.

Figure S5. The molecular structure for complex **3** at 100 K, hydrogen atoms have been omitted for clarity.

Figure S6. The molecular structure for complex **4** at 100 K, hydrogen atoms have been omitted for clarity.

Figure S7. (a) Crystal packing of complex 1 at 295 K, viewed along the *a* axis, showing the N– H…F hydrogen bonds between the [Mn(naphth-sal-N-1,5,8,12)]⁺ cations and SbF₆⁻ anions. The chain is shown in the light grey background. (b) The chain viewed along the *c* axis. The N–H…F hydrogen bonds are indicated by black dotted lines. The C–H… π and C–H…F hydrogen bonds are indicated by red dotted lines.

Figure S8. (a) Crystal packing of complex **2** at 295 K, viewed along the *a* axis, showing the N– H…F hydrogen bonds between the [Mn(naphth-sal-N-1,5,8,12)]⁺ cations and AsF₆⁻ anions. The chain is shown in the light grey background. (b) The chain viewed along the *c* axis. The N–H…F hydrogen bonds are indicated by black dotted lines. The C–H… π and C–H…F hydrogen bonds are indicated by red dotted lines.

Figure S9. (a) Crystal packing of complex **3** at 295 K, viewed along the *a* axis, showing the N– $H\cdots F$ hydrogen bonds between the [Mn(naphth-sal-N-1,5,8,12)]⁺ cations and PF₆⁻ anions. The chain is shown in the light grey triangular background. (b) The chain viewed along the *c* axis.

Figure S10. (a) Crystal packing of complex 4 at 273 K, viewed along the *a* axis, showing the N– $H\cdots O$ hydrogen bonds between the [Mn(naphth-sal-N-1,5,8,12)]⁺ cations and ClO_4^- anions. The chain is shown in the light grey background. (b) The chain viewed along the *c* axis.

Figure S11. (a) Crystal packing of complex 4 at 100 K. The C-H $\cdots\pi$ contacts between naphthalene groups from the ligands of the neighboring cation is shown in the light grey elliptical background. (b) The detail of C-H $\cdots\pi$ contacts between naphthalene groups.

Figure S12. Temperature dependence of the χ_M^{-1} for [Mn(naphth-sal-N-1,5,8,12)]SbF₆ (1), [Mn(naphth-sal-N-1,5,8,12)]AsF₆. (2), [Mn(naphth-sal-N-1,5,8,12)]PF₆ (3) and [Mn(naphth-sal-N-1,5,8,12)]ClO₄ (4). (a): The solid line represents the best fit to the Curie–Weiss law from 17 to 80 K and 260 to 400 K for 1 and from 20 to 90 K and 240 to 400 K for 2. (b): The solid line represents the best fit to the Curie–Weiss law from 20 to 250 K for 4.

Figure S13. (a) Temperature dependence of the μ_{eff} for [Mn(naphth-sal-N-1,5,8,12)]SbF₆ (1) and [Mn(naphth-sal-N-1,5,8,12)]AsF₆ (2) between 2–400 K. (b) Temperature dependence of the μ_{eff} for [Mn(naphth-sal-N-1,5,8,12)]PF₆ (3) and [Mn(naphth-sal-N-1,5,8,12)]ClO₄ (4) between 2–300 K.