Supporting information

3D amorphous NiFe LDH nanosheets electrodeposited on NiCoP@NC in-situ grown on nickel foam for remarkably enhanced OER electrocatalytic performance

Jianhang Nie, Min Hong, Xiaohua Zhang*, Junlin Huang, Qin Meng, CuiCui Du* and Jinhua Chen*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China *Corresponding author. E-mail: mickyxie@hnu.edu.cn (X.H.Zhang), ducc@ hnu.edu.cn (C.C. Du), chenjinhua@hnu.edu.cn (J.H.Chen).

Figure S1.SEM images (a) bare Ni Foam and (b) ZIF-67/NF

Figure S2.TEM images (a) and (b) (c) HRTEM images of NiCoP@NC.

	Ni	P
1 µm		
Co	C	Ν

Figure S4. Surface atomic relative contents of NiCoP@NC/NF (a), and NiFe LDH/NiCoP@NC/NF (b) based on the XPS measurement.

Figure S5. Cyclic voltammograms of (a) NiFe LDH/NiCoP@NC/NF, (b) NiCoP@NC/NF, and (c) pure NiFe LDH at scan rates ranging from 10 mV s⁻¹ to 100 mV s⁻¹. The scanning potential range is from 0.96 V to 1.06 V vs RHE.

Figure S6. LSV polarization curves of the NiFe LDH/NiCoP@NC/NF catalyst before and after 1000 cycles at scan rate of 100 mV s⁻¹ in 1 M KOH.

Figure S7. XRD pattern and SEM image of NiFe LDH/NiCoP@NC/NF after 1000 cycles at scan rate of 100 mV s⁻¹ in 1 M KOH

Figure S8. Polarization curves for HER in 1.0M KOH of NiFe LDH/ NiCoP@NC/NF, NiCoP@NC/NF, and pure NiFe LDH/NF

 Table S1. Comparison of the OER performance for the NiFe LDH/NiCoP@NC

 catalyst with otherreported OER electrocatalysts in 1 M alkaline media.

Catalyst	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Voltage (V)@j ₁₀ //cathode	Stabilit y test	Reference
NiFeLDH/NiCoP@NC	210	35	1.54//NiCoP@NC/NF	40h	This work
/NF					
NiFe LDH/CNT	247	31	-	1h	1
NiCoFe LDH	340	93	-	15h	2
nanoplates					
Porous NiCoFe LDH	239	32	1.55//NiCoFe	18h	3

anosheets			LDH/CFC		
rGO/Ni2P/NiOOH	283	43.6	-	30	4
NiFe LDH/NiFe	290	38	-	10h	5
phosphate					
FeNi-P/NF	224	72	1.57		6
CoNi LDH/CoO	300	123	-	36h	7
CoCo LDH/CoSe _x	290	70	-	36 h	8
$Ni_{0.8}Co_{0.1}Fe_{0.1}O_xH_y$	239	45.4	$1.58 / Ni_{0.9} Co_{0.1} O_x H_y$	50 h	9
CoS _x /Ni ₃ S ₂	280	92	1.57//CoS _x /Ni ₃ S ₂	35 h	10
NiCoPArrays	268	71	1.57//NiCoP Arrays	20 h	11

Reference

[1] Gong M, Li Y, Wang H, Liang Y,Wu J, Zhou J, Wang J, Regier T, Wei F, Dai H.An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation.Journal of the American Chemical Society, 2013, 135 (23), 8452-8455.

[2] Qian L, Lu Z, Xu T, Wu X, Tian Y, Li Y, Huo Z, Sun X, Duan X. Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials, 2015, 5(13): 1500245.

[3] Wang A, Xu H, Li G. NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting. Acs Energy Letters, 2016, 1 (2), 445-453.

[4] Li P, Chen R, Tian S, Xiong Y. Efficient Oxygen Evolution Catalysis Triggered by Nickel Phosphide Nanoparticles Compositing with Reduced Graphene Oxide with Controlled Architecture. ACS Sustainable Chemistry & Engineering, 2019, **7**(10), 9566-9573.

[5] Li Y, Zhao C. Enhancing Water Oxidation Catalysis on a Synergistic Phosphorylated NiFe Hydroxide by Adjusting Catalyst Wettability. Acs Catalysis, 2017, **7**(4), 2535-2541.

[6] Yan Q, Wei T, Wu J, Yang X, Zhu M, Cheng K, Ye K, Zhu K, Yan J, Cao D, Wang G, Pan Y. Self-Supported FeNi-P Nanosheets with Thin Amorphous Layers for Efficient Electrocatalytic Water Splitting. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 9640-9648.

[7] Wu J, Ren Z, Du S, Kong L, Liu B, Wang X, Zhu J, Fu H. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Research, 2016, **9**(3), 713-725.

[8] Xue Y, Ren Z, Xie Y, Du S, Wu J, Meng H, Fu H. CoSex nanocrystalline-dotted

CoCo layered double hydroxide nanosheets: a synergetic engineering process for enhanced electrocatalytic water oxidation. Nanoscale, 2017, **9**(42), 16256-16263.

[9] Zhao Q, Yang J, Liu M, Wang R, Zhang G, Wang H, Tang H, Liu C, Mei Z, Chen
H. Tuning electronic push/pull of Ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting. ACS Catalysis, 2018, 8 (6): 5621-5629.

[10] Subhasis S, Suman C, Wooree J, Chandra M, Hyeyoung K, Pranab S, Tapas K. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. Acs Applied Materials & Interfaces, 2018, 10(33): 27712-27722.

[11] Wang J, Hua W, Li M, Liu H, Shao M, Wei B. Structural Engineering Hyperbranched NiCoP Arrays with Superior Electrocatalytic Activities Toward Highly Efficient Overall Water Splitting. ACS Applied Materials & Interfaces 2018, **10**(48):41237-41245.