Electronic supplementary information

for

Red-emitting neutral rhenium(I) complexes bearing a pyridyl pyridoannelated *N*-heterocyclic carbene

Anna Bonfiglio,^a Kevin Magra,^b Cristina Cebrián,^b Federico Polo,^c Philippe C. Gros,^{b,d} Pierluigi Mercandelli,^e and Matteo Mauro^{*,a}

^a Université de Strasbourg & CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), 23, rue du Loess, F-67034 Strasbourg (France), e-mail: <u>mauro@unistra.fr</u>

^b Université de Lorraine, CNRS, L2CM, F-57000 Metz (France)

^c Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice. Via Torino 155, 30172 Venezia (Italy)

^{*d*} Université de Lorraine, CNRS, L2CM, F-54000 Nancy (France)

^e Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano (Italy)

Figure S1. ¹H (500 MHz, *top*) and ¹³C NMR (125 MHz, *bottom*) spectra recorded for complex **1** in CD_2Cl_2 at 298 K.

2 | J. Name., 2012, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Figure S2. 1 H- 1 H COSY NMR spectrum recorded for complex 1 in CD₂Cl₂ at 298 K.

Figure S3. 1 H- 13 C HMBC NMR spectrum recorded for complex **1** in CD₂Cl₂ at 298 K.

Figure S4. 1 H- 13 C HSQC NMR spectrum recorded for complex **1** in CD₂Cl₂ at 298 K.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5

Figure S5. $^{1}H^{-1}H$ ROESY NMR spectrum recorded for complex 1 in CD₂Cl₂ at 298 K.

Figure S6. ¹H (500 MHz, *top*) and ¹³C NMR (125 MHz, *bottom*) spectra recorded for complex **2** in CD₂Cl₂ at 298 K.

Figure S7. 1 H- 1 H COSY NMR spectrum recorded for complex **2** in CD₂Cl₂ at 298 K.

Figure S8. 1 H- 13 C HMBC spectrum recorded for complex 2 in CD₂Cl₂ at 298 K.

Figure S9. 1 H- 13 C HSQC NMR spectrum recorded for complex **2** in CD₂Cl₂ at 298 K.

Figure S10. 1 H- 1 H NOESY NMR spectrum recorded for complex **2** in CD₂Cl₂ at 298 K.

Figure S11. High-resolution ESI-MS spectrum of compound 1.

Figure S13. Thermogravimetric analysis recorded for complex 1.

Figure S14. Thermogravimetric analysis recorded for complex 2.

Figure S15. FT-ATR-IR spectra obtained for complex 1 in solid state as neat powder in the region $4000 - 400 \text{ cm}^{-1}$ (*top*) and enlarged spectrum in the vC=O region $2085 - 1711 \text{ cm}^{-1}$ (*bottom*).

Figure S16. FT-ATR-IR spectra obtained for complex **2** in solid state as neat powder in the region $4000 - 400 \text{ cm}^{-1}$ (*top*) and enlarged spectrum in the vC=O region $2093 - 1788 \text{ cm}^{-1}$ (*bottom*).

Figure S17. ORTEP diagram of compound **2** with thermal ellipsoids shown at 50% probability level obtained by singlecrystal X-ray diffractometric analysis. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å): Re–C(7) = 2.129(4) Å; Re–C(13) = 1.915(5) Å, Re–C(14) = 1.951(5) Å, Re–C(15) = 1.910(5) Å, Re–N(3) = 2.208(4) Å; Re–Br(1) = 2.6199(5) Å.

Figure S18. Electronic absorption (solid line) and normalized excitation spectra (dashed line) of complex **1** (black traces) and **2** (red traces) in degassed CH_2Cl_2 solution at a concentration of 2×10^{-5} M at room temperature. Excitation spectra were recorded setting emission at $\lambda_{em} = 660$ nm.

Figure S19. Blank-subtracted CVs recorded for 1 mM of compounds **1** (trace 1), compound **2** (trace 2) and ligand [pyipy]PF₆ (trace 3) in DMF/0.1 M TBAP. Scan rate: 0.1 V s^{-1} . (a) anodic and (b) cathodic processes.

Figure S20. Full range CV of 1 mM **1** in DMF/0.1 M TBAP covering both the reduction and oxidation processes. Scan rate: 0.1 V s^{-1} .

ARTICLE

Figure S21. CVs in DMF/0.1 M TBAP showing the oxidation (a) and reduction (b) processes of 1 mM 1, and the oxidation (c) and reduction processes (d) of 1 mM **2**. The insets provide the electrochemical analyses (peak current, i_p , vs the square root of the scan rate, $v^{1/2}$) assessing the diffusion-controlled regime of the redox processes. The redox process for **1** in the negative bias covering also R₂ and R₃ is also shown (red line, b).

Figure S22. Isodensity surface plots and energies computed for some relevant molecular orbitals of *fac*-[Re(pyipy)(CO)₃Cl] (1).

ARTICLE

Figure S23. Electronic density difference maps computed (at the optimized geometry of the corresponding triplet) for the vertical transition $T_1 \rightarrow S_0$ and $T_2 \rightarrow S_0$ of *fac*-[Re(pyipy)(CO)₃Cl] (1). Energy computed for the corresponding adiabatic transition is also reported. The difference in energy between the T_1 and T_2 minima is 31.210 m E_h (0.849 eV; 6850 cm⁻¹).

Figure S24. Assignment of the main bands of the computed emission spectrum of the $T_1 \rightarrow S_0$ electronic transition of *fac*-[Re(pyipy)(CO)₃Cl] (1). The solid line reports the harmonic spectrum calculated within the Franck-Condon approximation (half-width at half-maximum set to 220 cm⁻¹) and the sticks are labelled as v^x where v is the ground state normal mode and x its quantum number.

Figure S25. Some relevant normal modes computed for the ground state of *fac*-[Re(pyipy)(CO)₃Cl] (1).

ARTICLE

Figure S26. Isodensity surface plots and energies computed for some relevant molecular orbitals of *fac*-[Re(pyipy)(CO)₃Br] (2).

Journal Name

Figure S27. Electronic density difference maps computed (at the optimized geometry of the corresponding triplet) for the vertical transition $T_1 \rightarrow S_0$ and $T_2 \rightarrow S_0$ of *fac*-[Re(pypi)(CO)₃Br] (**2**). Energy computed for the corresponding adiabatic transition is also reported. The difference in energy between the T_1 and T_2 minima is 31.088 m E_h (0.846 eV; 6823 cm⁻¹). Cyan and violet indicates a decrease and increase in electron density, respectively.

 Table S1. Crystal data and structure refinement for compound 1.

Identification code	CCDC 1973530			
Empirical formula	C15 H9 Cl N3 O3 Re			
Formula weight	500.90			
Temperature	120(2) K			
Wavelength	0.71073 Å			
Crystal system, space group	Triclinic, P-1			
Unit cell dimensions	$a = 6.6594(2)$ Å $\alpha = 89.3060(10)^{\circ}$ $b = 10.8376(4)$ Å $\beta = 77.6610(10)^{\circ}$			
	$c = 11.1557(4) \text{ Å} \qquad \gamma = 72.2660(10)^{\circ}$			
Volume	747.94(4) Å ³			
Z, Calculated density	2, 2.224 Mg/m^3			
Absorption coefficient	8.319 mm ⁻¹			
F(000)	472			
Crystal size	0.200 x 0.150 x 0.120 mm			
Theta range for data collection	1.976 to 30.076 deg.			
Limiting indices	-9<=h<=9, -15<=k<=13, -15<=l<=15			
Reflections collected / unique	54563 / 4399 [R(int) = 0.0367]			
Completeness to theta = 25.242	99.9%			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7460 and 0.6059			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	4399 / 0 / 208			
Goodness-of-fit on F^2	1.106			
Final R indices [I>2 σ (I)]	<i>R</i> 1 = 0.0152, wR2 = 0.0302			
R indices (all data)	<i>R</i> 1 = 0.0163, wR2 = 0.0305			
Extinction coefficient	n/a			
Largest diff. peak and hole	1.616 and -0.985 <i>e</i> Å ⁻³			

 Table S2. Geometrical parameters obtained for compound 1 by means of X-ray crystallographic analysis.

Bond leng	ths [A]
C(1)-C(2)	1.347(3)
C(1)-N(1)	1.396(3)
C(1)-H(1)	0.9500
C(2)-C(3)	1.437(3)
C(2)-H(2)	0.9500
C(3)-C(4)	1.353(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.425(3)
C(4)-H(4)	0.9500
C(5)-C(6)	1.365(3)
C(5)-N(1)	1.415(3)
C(6)-N(2)	1.387(2)
C(6)-H(6)	0.9500
C(7)-N(1)	1.359(3)
C(7)-N(2)	1.370(3)
C(7)-Re(1)	2.126(2)
C(8)-N(3)	1.342(3)
C(8) - C(9)	1.386(3)
C(8)-N(2)	1.411(3)
C(9)-C(10)	1.384(3)
$C(9) - \Pi(9)$	0.9500
C(10)-C(11)	1.389(3)
$C(10) - \Pi(10)$ C(11) - C(12)	0.9500
C(11)-C(12) C(11)-H(11)	1.378(3)
C(12)-N(3)	1 358(3)
C(12)-N(3) C(12)-H(12)	0.9500
$C(12) \cap (12)$ C(13) - O(1)	1 156(3)
C(13)-Re(1)	1.913(2)
C(14)-O(2)	1.145(3)
C(14)-Re(1)	1.957(2)
C(15)-O(3)	1.147(3)
C(15)-Re(1)	1.914(2)
N(3)-Re(1)	2.2085(17)
Cl(1)-Re(1)	2.5049(5)
Bond ang	les [°]
C(2)-C(1)-N(1)	119.1(2)
C(2)-C(1)-H(1)	120.5
N(1)-C(1)-H(1)	120.5
C(1)-C(2)-C(3)	121.3(2)
C(1)-C(2)-H(2)	119.4
C(3)-C(2)-H(2)	119.4
C(4)-C(3)-C(2)	120.5(2)
C(4)-C(3)-H(3)	119.8
C(2)-C(3)-H(3)	119.8
C(3) - C(4) - C(5)	119.3(2)
C(5) - C(4) - H(4)	120.3
C(5)-C(4)-П(4)	106 20/17)
C(0)-C(3)-IV(1) C(6)-C(5)-C(4)	124 0/2/
N(1) - C(5) - C(4)	118 82(10)
C(5)-C(6)-N(2)	105 53(17)
	±00.00(±/)

This journal is © The Royal Society of Chemistry 20xx

C(5)-C(6)-H(6)	127.2
N(2)-C(6)-H(6)	127.2
N(1)-C(7)-N(2)	102.88(16)
N(1)-C(7)-Re(1)	140.64(15)
N(2)-C(7)-Re(1)	116.36(14)
N(3)-C(8)-C(9)	124.18(19)
N(3)-C(8)-N(2)	113.63(17)
C(9)-C(8)-N(2)	122.18(18)
C(10)-C(9)-C(8)	117.66(19)
C(10)-C(9)-H(9)	121.2
C(8)-C(9)-H(9)	121.2
C(9)-C(10)-C(11)	119.5(2)
C(9)-C(10)-H(10)	120.2
C(11)-C(10)-H(10)	120.2
C(12)-C(11)-C(10)	118.9(2)
C(12)-C(11)-H(11)	120.5
C(10)-C(11)-H(11)	120.5
N(3)-C(12)-C(11)	122.7(2)
N(3)-C(12)-H(12)	118.6
C(11)-C(12)-H(12)	118.6
O(1)-C(13)-Re(1)	176.2(2)
O(2)-C(14)-Re(1)	177.1(2)
O(3)-C(15)-Re(1)	178.6(2)
C(7)-N(1)-C(1)	127.11(18)
C(7)-N(1)-C(5)	111.86(17)
C(1)-N(1)-C(5)	120.99(17)
C(7)-N(2)-C(6)	113.41(17)
C(7)-N(2)-C(8)	118.68(17)
C(6)-N(2)-C(8)	127.90(17)
C(8)-N(3)-C(12)	116.99(18)
C(8)-N(3)-Re(1)	117.26(13)
C(12)-N(3)-Re(1)	125.64(14)
C(13)-Re(1)-C(15)	87.28(9)
C(13)-Re(1)-C(14)	89.70(9)
C(15)-Re(1)-C(14)	91.94(9)
C(13)-Re(1)-C(7)	100.48(9)
C(15)-Re(1)-C(7)	94.99(8)
C(14)-Re(1)-C(7)	167.92(9)
C(13)-Re(1)-N(3)	173.71(8)
C(15)-Re(1)-N(3)	90.34(8)
C(14)-Re(1)-N(3)	96.20(8)
C(7)-Re(1)-N(3)	/3.92(/)
C(13)-Re(1)-Cl(1)	95.95(7)
C(15)-Re(1)-Cl(1)	1/6./1(/)
C(14)-Ke(1)-Cl(1)	87.46(7)
C(7)-Re(1)-Cl(1)	85.05(5)
N(3)-Re(1)-Cl(1)	86.51(5)

Journal Name

Table S3. Crystal data and structure refinement for compound 2.

Identification code	CCDC 1980932			
Empirical formula	C15 H9 Br N3 O3 Re			
Formula weight	545.36			
Temperature	120(2) K			
Wavelength	0.71073 Å			
Crystal system, space group Unit cell dimensions	Triclinic, P -1 $a = 6.7338(3)$ Å $\alpha = 88.7910(10)^{\circ}$ $b = 10.8986(4)$ Å $\beta = 76.4800(10)^{\circ}$ $c = 11.2120(5)$ Å $\gamma = 72.1440(10)^{\circ}$			
Volume	$767.14(6) Å^3$			
Z, Calculated density	2, 2.361 Mg/m^3			
Absorption coefficient	10.542 mm ⁻¹			
F(000)	508			
Crystal size	0.180 x 0.150 x 0.120 mm			
Theta range for data collection	1.966 to 29.168 deg.			
Limiting indices	-9<=h<=9, -14<=k<=14, -15<=l<=15			
Reflections collected / unique	54752 / 4137 [R(int) = 0.0597]			
Completeness to theta = 25.242	100.0 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7458 and 0.5741			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	4137 / 0 / 208			
Goodness-of-fit on F^2	1.109			
Final R indices $[I>2\sigma(I)]$	<i>R</i> 1 = 0.0295, w <i>R</i> 2 = 0.0621			
R indices (all data)	<i>R</i> 1 = 0.0342, w <i>R</i> 2 = 0.0649			
Extinction coefficient	n/a			
Largest diff. peak and hole	3.362 and -1.941 <i>e</i> Å⁻³			

 Table S4. Geometrical parameters obtained for compound 2 by means of X-ray crystallographic analysis.

Bond lengths [A]					
C(1)-C(2)	1.347(7)				
C(1)-N(1)	1.396(6)				
C(1)-H(1)	0.9500				
C(2)-C(3)	1.440(8)				
C(2)-H(2)	0.9500				
C(3)-C(4)	1.339(8)				
C(3)-H(3)	0.9500				
C(4)-C(5)	1.428(7)				
C(4)-H(4)	0.9500				
C(5)-C(6)	1.359(7)				
C(5)-N(1)	1.416(6)				
C(6)-N(2)	1.384(6)				
C(6)-H(6)	0.9500				
C(7)-N(1)	1.349(6)				
C(7)-N(2)	1.374(6)				
C(7)-Re(1)	2.129(4)				
C(8)-N(3)	1.344(6)				
C(8)-C(9)	1.381(7)				
C(8)-N(2)	1.411(6)				
C(9)-C(10)	1.385(7)				
C(9)-H(9)	0.9500				
C(10)-C(11)	1.382(8)				
C(10)-H(10)	0.9500				
C(11)-C(12)	1.380(8)				
C(11)-H(11)	0.9500				
C(12)-N(3)	1.355(6)				
C(12)-H(12)	0.9500				
C(13)-O(1)	1.154(6)				
C(13)-Re(1)	1.915(5)				
C(14)-O(2)	1.150(6)				
C(14)-Re(1)	1.951(5)				
C(15)-O(3)	1.146(6)				
C(15)-Re(1)	1.910(5)				
N(3)-Re(1)	2.208(4)				
Br(1)-Re(1)	2.6199(5)				

Bond angles [°]					
C(2)-C(1)-N(1)	118.6(5)				
C(2)-C(1)-H(1)	120.7				
N(1)-C(1)-H(1)	120.7				
C(1)-C(2)-C(3)	121.2(5)				
C(1)-C(2)-H(2)	119.4				
C(3)-C(2)-H(2)	119.4				
C(4)-C(3)-C(2)	121.0(5)				

C(4)-C(3)-H(3)	119.5
C(2)-C(3)-H(3)	119.5
C(3)-C(4)-C(5)	119.3(5)
C(3)-C(4)-H(4)	120.4
C(5)-C(A)-H(A)	120.1
C(5) - C(5) - N(1)	106 2(4)
$C(0)^{-}C(0)^{-}N(1)$	125 2(5)
C(0)-C(3)-C(4)	119 ((5)
N(1) - C(5) - C(4)	118.0(5)
C(5)-C(6)-N(2)	106.0(4)
C(5)-C(6)-H(6)	127.0
N(2)-C(6)-H(6)	127.0
N(1)-C(7)-N(2)	103.3(4)
N(1)-C(7)-Re(1)	140.7(3)
N(2)-C(7)-Re(1)	115.8(3)
N(3)-C(8)-C(9)	124.7(4)
N(3)-C(8)-N(2)	113.2(4)
C(9)-C(8)-N(2)	122.1(4)
C(8)-C(9)-C(10)	117.5(5)
C(8)-C(9)-H(9)	121.2
C(10)-C(9)-H(9)	121.2
C(11)-C(10)-C(9)	119.4(5)
C(11)-C(10)-H(10)	120.3
C(9)-C(10)-H(10)	120.3
C(12)-C(11)-C(10)	119.1(5)
C(12)-C(11)-H(11)	120.4
C(10)-C(11)-H(11)	120.1
$N(3)_{C(12)_{C(11)}}$	120.4
N(3) = C(12) = H(12)	118.6
$C(11)_C(12)_H(12)$	118.0
$O(1) C(12) P_0(1)$	177 5/5)
O(1)-C(15)-Re(1)	177.3(5)
O(2)-C(14)-Re(1)	177.8(5)
O(3)-C(15)-Re(1)	177.9(5)
C(7)-N(1)-C(1)	126.8(4)
C(7)-N(1)-C(5)	111.8(4)
C(1)-N(1)-C(5)	121.4(4)
C(7)-N(2)-C(6)	112.7(4)
C(7)-N(2)-C(8)	119.3(4)
C(6)-N(2)-C(8)	128.0(4)
C(8)-N(3)-C(12)	116.4(4)
C(8)-N(3)-Re(1)	117.5(3)
C(12)-N(3)-Re(1)	126.0(3)
C(15)-Re(1)-C(13)	87.4(2)
C(15)-Re(1)-C(14)	91.9(2)
C(13)-Re(1)-C(14)	89.8(2)
C(15)-Re(1)-C(7)	95.33(19)
C(13)-Re(1)-C(7)	100.16(19)
C(14)-Re(1)-C(7)	167.9(2)
C(15)-Re(1)-N(3)	91.48(18)
C(13)-Re(1)-N(3)	174 05(18)
$C(14) - R_{P}(1) - N(3)$	96 07/10)
$C(7)_{R_{0}}(1)_{N(2)}$	7/ 11/16
C(Y) = CC(T) = C(S)	/4.11(10)

Please do not adjust margins

C(15)-Re(1)-Br(1)	177.35(16)
C(13)-Re(1)-Br(1)	95.01(15)
C(14)-Re(1)-Br(1)	87.03(15)
C(7)-Re(1)-Br(1)	85.31(12)
N(3)-Re(1)-Br(1)	86.22(10)

Table S5. Properties of some of the more intense electronic transitions computed for *fac*-[Re(pyipy)(CO)₃Cl] (1). In the electronic density difference maps (EDDMs), cyan and violet indicates a decrease and increase in electron density, respectively.

Sn	<i>E</i> [eV]	λ [nm]	f			EDDM
1	2.982	416	0.0531	HOMO→LUMO	93%	So→Si
2	3.325	373	0.0641	HOMO–1→LUMO	92%	$S_0 \rightarrow S_2$
14	4.679	265	0.1285	HOMO–4→LUMO HOMO–2→LUMO+2	55% 9%	$S_0 \rightarrow S_{14}$
17	4.867	255	0.1033	HOMO–2→LUMO+2	72%	$S_0 \rightarrow S_{17}$
21	5.138	241	0.1813	HOMO-2→LUMO+3 HOMO-6→LUMO HOMO→LUMO+5	34% 13% 9%	$S_0 \rightarrow S_{11}$

Table S6. Properties of some of the more intense electronic transitions computed for *fac*-[Re(pyipy)(CO)₃Br] (2). In the electronic density difference maps (EDDMs), cyan and violet indicates a decrease and increase in electron density, respectively.

S _n	<i>E</i> [eV]	λ [nm]	f			EDDM
1	2.975	417	0.0511	HOMO→LUMO	92%	$S_0 \rightarrow S_1$
2	3.278	378	0.0524	HOMO−1→LUMO	92%	$\overbrace{S_0 \rightarrow S_2}^{\bullet}$
15	4.616	269	0.0916	HOMO–5→LUMO HOMO–1→LUMO+2	71% 13%	$S_0 \rightarrow S_{15}$
18	4.800	258	0.0901	HOMO–6→LUMO HOMO→LUMO+5	73% 10%	So→Sre