C₁-symmetric Si-bridged (2-indenyl)(1-indenyl) ansa-metallocenes as efficient ethene/1-hexene copolymerization catalysts

Dmitry V. Uborsky,^a Dmitry Y. Mladentsev,^a Bogdan A. Guzeev,^a Ilya S. Borisov,^a Antonio Vittoria,^b Christian Ehm,^b* Roberta Cipullo,^b* Coen Hendriksen,^c Nic Friederichs,^c Vincenzo Busico^b and Alexander Z. Voskoboynikov^a*

Supporting information

^a Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia. Email: voskoboy@med.chem.msu.ru

^b Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy. Email: rcipullo@unina.it; christian.ehm@unina.it

^c SABIC, Technology and Innovation Department, Urmonderbaan 22, 6167 RD Geleen (The Netherlands).

Table of contents

Synthesis	3
General	3
Starting indenes	3
Chlorosilanes	3
Pro-ligands	5
Complexes	11
2D 1H-1H NOESY spectra	17
References	21
Polymerization	22
Detailed polymerization procedure	22
Table S1. Polymerization Results (1-hexene feeding ratio 5 v/v%)	23
Table S2. Polymerization Results (varying 1-hexene feeding ratio)	24
Examples of ¹³ C NMR spectra of ethene/1-hexene copolymers	25
QSAR Models – Single Descriptor Correlations	26
Procedures to determine specialized descriptors	26
Table S3. Experimental Performance Indicators. $\Delta\Delta G^{\ddagger}$ at 80°C	27
Table S4. 1D Geometric Descriptors – Single correlations. Distances.	28
Table S5. 1D Geometric Descriptors – Single correlations. Angles and Dihedrals	29
Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations	(Occ).30
Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.)	(Occ). 31
Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies	(Occ). 31
Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies Table S8. 3D Geometric Descriptors – Single correlations	(Occ). 31 32 33
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). 	(Occ). 31 32 33 33
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. 	(Occ). 31 32 33 34 35
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. 	(Occ). 31 32 33 34 35 35
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. 	(Occ).
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. Models. Regression Analysis. Combined Catalyst Set. 	(Occ).
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. Models. Regression Analysis. Combined Catalyst Set. Models. Leave-one-out Cross Validation (LOOCV) Analysis. 	(Occ). 31 32 33 34 35 35 36 37 38
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. Models. Regression Analysis. Combined Catalyst Set. Models. Leave-one-out Cross Validation (LOOCV) Analysis. 	(Occ). 31 32 33 35 35 35 36 37 38 38
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II Models. Regression Analysis. Catalysts Type I Models. Regression Analysis. Catalysts Type II Models. Regression Analysis. Combined Catalyst Set. Models. Leave-one-out Cross Validation (LOOCV) Analysis. Models. LOOCV Analysis. Catalysts Type I Models. LOOCV Analysis. Catalysts Type I. 	(Occ). 31 32 33 35 35 36 36 38 38 38
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.). Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. Models. Regression Analysis. Combined Catalyst Set. Models. Leave-one-out Cross Validation (LOOCV) Analysis. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Catalysts Type I. 	(Occ). 31 32 33 34 35 35 36 37 38 38 38 38 38
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. Models. Regression Analysis. Combined Catalyst Set. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Catalysts Type II. 	(Occ). 31 32 33 34 35 35 36 36 38 38 38 38 38 38
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. Models. Regression Analysis. Combined Catalyst Set. Models. LOOCV Analysis. Catalysts Type I. 	(Occ). 31 32 33 34 35 35 36 36 37 38 38 38 38 38 40 41 43
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. Models. Regression Analysis. Combined Catalyst Set. Models. Leave-one-out Cross Validation (LOOCV) Analysis. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Combined Catalysts Set. X-Ray crystallography data . Table S9. Crystal data and structure refinement for C12 	(Occ). 31 32 33 34 35 35 36 36 37 38 38 38 38 38 40 41 43 43
 Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Ctd.) Table S7. Energetic Descriptors – HOMO and LUMO energies. Table S8. 3D Geometric Descriptors – Single correlations. Table S8. 3D Geometric Descriptors – Single correlations (ctd.). QSAR Models for Catalysts of Type I and II. Models. Regression Analysis. Catalysts Type I. Models. Regression Analysis. Catalysts Type II. Models. Regression Analysis. Combined Catalyst Set. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Catalysts Type II. Models. LOOCV Analysis. Catalysts Type I. Models. LOOCV Analysis. Combined Catalysts Set. X-Ray crystallography data Table S9. Crystal data and structure refinement for syn-C24. 	(Occ). 31 32 33 34 35 35 36 37 38 38 38 38 38 38 40 41 43 43 44

Synthesis

General

All manipulations with air and moisture sensitive compounds were performed either under atmosphere of purified argon using a standard Schlenk technique or in a controlled-atmosphere (nitrogen) glovebox (VAC). NMR spectra were recorded at Bruker AVANCE 400 and Bruker AVANCE-II 600 spectrometers. NOESY experiments were conducted with 250 ms mixing time. Chemical shifts were measured relative to TMS or to residual ¹H resonances of the deuterated solvents. C and H microanalyses were made using a Carlo Erba 1106 analyzer. HRMS spectra were measured on Orbitrap Elite instrument. All reagents and solvents were purchased from commercial sources and used as received. Ethereal solvents (THF and diethyl ether) were stored over solid KOH for 24 h and then distilled from sodium/benzophenone under argon atmosphere prior to use. Hydrocarbon solvents (toluene, hexane, methylcyclohexane) were stored over MS 4Å for 24 h prior to use. NMR solvents (CDCl₃, CD₂Cl₂) were purchased from DEUTERO and stored over MS 4Å. When used for sensitive compounds, they were additionally degassed by freeze-pump-thaw technique.

Starting indenes

1*H*-Indene (**3**) and 9*H*-fluorene (**15**) were obtained from commercial sources; indenes**4** and **7** were obtained from corresponding ketones according to the literature procedure.¹Indenes**5** and **6** were synthesized from indan-1-one according to the literature procedures,²⁻³indenes **8–10** and **16** were synthesized by Suzuki coupling between 2-bromo-1*H*-indene and corresponding boronic acids.⁴ Indenes **11–14**, **17** and **19** were obtained from the corresponding ketones by Grignard reagent addition – dehydration sequence.⁵ Indene **18**⁶, 1,3-dimethyl-2-bromo-1*H*-indene⁷, 2-bromo-3-phenyl-1*H*-indene⁸, and pro-ligand **L26**⁹ complex **C26**⁹ were obtained as described.

Chlorosilanes

Chloro(1,3-dimethyl-1H-inden-2-yl)dimethylsilane (1-SiMe₂Cl). To a solution of 1,3-dimethyl-2-bromo-1*H*-indene (50.0 g, 224 mmol, 1 eq) in ether (1300 ml) *t*BuLi (354 ml, 673 mmol, 3 eq) was added at -80° C. Cooling bath was removed, and the mixture was allowed to warm to 0°C. At that point, the double

metalation was complete (GC-MS). Then, this mixture was cooled to -80° C, and THF (250 mI) was added followed by Me₂Si(H)Cl (24.6 ml, 224 mmol, 1 eq). The formed mixture was stirred overnight in the cooling bath so the mixture was slowly warmed to ambient temperature. Further on, a aqueous solution of NH₄Cl was added, the organic phase was separated, washed with water and dried over Na₂SO₄. Solvents were then evaporated in vacuo, and the residue was dissolved in hexane. This solution was passed through a pad of silica gel 60 (40–63 um) to remove (1,3-dimethylinden-2-yl)(ethoxy)dimethylsilane which was one of the side-products. Further on, the filtrate was evaporated in vacuo. The obtained crude (1,3-dimethyl-1*H*-inden-2-yl)(dimethyl)silane was used on the next step without additional purification. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (m, 1H), 7.38–7.31 (m, 2H), 7.27 (td, 1H, *J* = 7.0 Hz, *J* = 1.8 Hz), 4.53 (sept, 1H, *J* = 3.9 Hz), 3.57 (m, 1H), 2.30 (d, 3H, *J* = 1.9 Hz), 1.38 (d, 3H, *J* = 7.5 Hz), 0.39 (d, 3H, *J* = 3.9 Hz), 0.36 (d, 3H, *J* = 3.9 Hz). To the crude (1,3-dimethyl-1*H*-inden-2-yl)(dimethyl)silanedissloved in THF (50 mI) hexachloroethane (27.0 g, 111 mmol, 0.5 eq) and PdCl₂ (0.39 g, 2.20 mmol, 0.01 eq) were added. The obtained mixture was stirred overnight at room temperature, and then all volatiles were removed in vacuo. The residue was distilled in vacuo. This procedure gave 41.0 g (77%) of the title product as a colorless liquid, b.p. 72°C/2 mbar. ¹H NMR

(400 MHz, CDCl₃): δ 7.41 (m, 1H), 7.35 (m, 1H), 7.31 (td, 1H, *J* = 7.2 Hz, *J* = 1.2 Hz), 7.26 (td, 1H, *J* = 7.1 Hz, *J* = 1.5 Hz), 3.66 (m, 1H), 2.31 (d, 3H, *J* = 2.0 Hz), 1.38 (d, 3H, *J* = 7.5 Hz), 0.70 (s, 3H), 0.69 (s, 3H).

Chlorodimethyl(3-phenyl-1*H***-inden-2-yl)silane (2-SiMe₂Cl)**. To a solution of 2-bromo-3-phenyl-1*H*-indene⁸ (27.0 g, 100 mmol, 1 eq.) in ether (1000 ml) *t*BuLi (176 ml, 300 mmol, 3 eq.) was added at -80° C. Cooling bath was removed, and the mixture was allowed to warm to 0°C. Then, this mixture was cooled to -80° C, and THF (250 ml) was added followed by Me₂Si(H)Cl (9.45 g, 100 mmol,

1 eq.). The formed mixture was stirred overnight in the cooling bath so the mixture was slowly warmed to ambient temperature. Further on, a aqueous solution of NH₄Cl was added, the organic phase was separated, washed with water and dried over Na₂SO₄. Solvents were then evaporated in vacuo, and the residue was dissolved in hexane. This solution was passed through a pad of silica gel 60 (40–63 um). The filtrate was evaporated in vacuo. The residue was distilled in vacuo, b.p. 113–127°C/2 mbar. This procedure gave 19.8 g (63%) of the title product as a colorless liquid. It was contaminated with ~21% (w/w) of 3-phenyl-1*H*-indene. ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.61 (m, 1H), 7.42–7.53 (m, 5H), 7.32–7.35 (m, 3H), 4.36–4.41 (sept, 1H, *J* = 3.8 Hz), 3.66 (s, 2H), 0.20 (d, 6H, *J* = 3.8 Hz). To the above obtained crude dimethyl(3-phenyl-1*H*-indene-2-yl)silane (15.0 g, 47.0 mmol, 1 eq) dissolved in THF (50 ml) hexachloroethane (5.60 g, 24.0 mmol, 0.5 eq) and PdCl₂ (84.0 mg, 0.47 mmol, 0.01 eq) were added. The obtained mixture was stirred for 1 h (until the exothermic reaction ceased), and then all volatiles were removed in vacuo. The residue was distilled in vacuo to give 13.0 g (96%) of the title product as a colorless liquid, b.p. 138–142°C/2 mbar. ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.61 (m, 1H), 7.42–7.51 (m, 5H), 7.31–7.33 (m, 2H), 7.23–7.25 (m, 1H), 3.77 (m, 2H), 0.39 (s, 6H).

Chloro(1*H***-inden-2-yl)dimethylsilane (IndSiMe₂Cl)**. To a solution of 2-bromo-1*H*-indene (10.0 g, 51.0 mmol, 1 eq.) in ether (250 ml) cooled to -80° C *t*BuLi (96 ml, 153 mmol, 3 eq.) was added. Cooling bath was removed, and the mixture was allowed to warm to 0°C. Then, this mixture was cooled to -80° C, and THF (50 ml) was added followed by Me₂Si(H)Cl (4.83 g, 51.0 mmol, 1 eq). The formed mixture was stirred overnight in the cooling bath so the mixture was slowly warmed to ambient temperature. Further on, a aqueous solution of NH₄Cl was added, the organic phase was separated, washed with water and dried over Na₂SO₄. Solvents were then evaporated in vacuo, and the residue was dissolved in hexane. This solution was passed through a pad of silica gel 60 (40–63 um). The filtrate was evaporated in vacuo. The residue (6.50 g, 37.0 mmol, 1 eq) was dissolved in THF (10 ml) and hexachloroethane (4.40 g, 18.5 mmol, 0.5 eq) and PdCl₂ (66.0 mg, 0.37 mmol, 0.01 eq) were added. The obtained mixture was stirred for 1 h (until the exothermic reaction ceased), and then all volatiles were removed in vacuo. The residue was distilled in vacuo to give 3.70 g (35%) of the title product (contaminated with ca. 25% of chloro(2,3-dihydro-1*H*-inden-2-yl)dimethylsilane) as a colorless liquid, b.p. 87–95°C/2 mbar. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, 1H, *J* = 7.3 Hz), 7.46 (d, 1H, *J* = 7.5 Hz), 7.22–7.32 (m, 3H), 3.57 (br.s, 2H), 0.60 (s, 6H).

Pro-ligands

Bis(1,3-dimethyl-1H-inden-2-yl)dimethylsilane (L1). To a solution of 1,3dimethyl-2-bromo-1*H*-indene⁷ (5.30 g, 23.7 mmol, 1 eq) in ether (120 ml) *t*BuLi (71 ml, 71.1 mmol, 3 eq) was added at -80° C. Cooling bath was removed, and the mixture was allowed to warm to 0°C. At that point the double metalation was complete (GC-MS). Then, this mixture was cooled to -80° C, and Me₂SiCl₂ (1.43 ml, 11.9 mmol, 0.5 eq) was added. The formed mixture was stirred overnight in the cooling bath so the mixture was slowly warmed to ambient temperature.

Further on, a aqueous solution of NH₄Cl was added, the organic phase was separated, washed with water and dried over Na₂SO₄. Solvents were then evaporated in vacuo, and the residue was purified by flash chromatography on silica gel 60 (40–63 um) using hexane-dichloromethane mixture (10:1, v/v) as eluent to afford 7.1 g (87%) of the title compound as yellow oil. HRMS (ESI): calcd. for C₂₄H₂₉Si [M+H]⁺: 345.2033; found 345.2040. ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.48 (m, 2H), 7.33–7.37 (m, 4H), 7.25–7.30 (m, 2H), 3.62–3.73 (m, 2H), 2.23 (d, 3H, *J* = 1.8 Hz), 2.18 (d, 3H, *J* = 1.8 Hz), 1.38 (d, 3H, *J* = 7.5 Hz), 0.61 (s 3H), 0.58 (s+s, 6H), 0.54 (s, 3H).

Dimethylbis(3-phenyl-1H-inden-2-yl)silane (L2). *t*BuLi (65.0 ml, 111 mmol, 3 eq) was added dropwise to a solution of 2-bromo-3-phenyl-1H-indene (10.0 g, 36.9 mmol, 1 eq) in dry ether (250 ml) at -80° C, and the formed mixture was stirred for 1 h at -80° C. Me₂SiCl₂ (2.38 g, 18.5 mmol, 0.5 eq) was added at -80° C, the obtained mixture was allowed to warm slowly to room temperature and stirred overnight. The resulting mixture was poured into water, the organic layer was separated, and the aqueous layer was extracted with ether

(2×100 ml). The combined extract was dried over anhydrous sodium sulfate and then evaporated to dryness. The residue was purified by flash chromatography on silica gel 60 (40–63 um) using hexanedichloromethane mixture (10:1, vol.) as eluent to afford 1.60 g (20%) of the title compound as viscous oil. HRMS (ESI): calcd. for $C_{32}H_{29}Si$ [M+H]⁺: 441.2033; found 441.2036. ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.49 (m, 2H), 7.22–7.31 (m, 14H), 7.12–7.15 (m, 2H), 3.39 (s, 4H), –0.04 (s, 6H).

General procedure 1 for synthesis of pro-ligands. *n*-Butyllithium in hexanes (1 eq) was added dropwise to a solution of an indene (1 eq) in dry ether at ambient temperature and the formed mixture was stirred overnight. Chlorosilane **1-SiMe₂Cl**, **2-SiMe₂Cl** or **IndSiMe₂Cl** (1 eq) was added at –80°C, the obtained mixture was allowed to warm slowly to room temperature and then stirred overnight. The resulting mixture was poured into water, the organic layer was separated, and the aqueous layer was extracted with ether. The combined extract was dried over anhydrous Na₂SO₄ and then evaporated to dryness. The residue was purified by flash chromatography on silica gel 60 (40–63 um) using hexane-dichloromethane mixture (10:1, v/v) as eluent.

General procedure 2 for synthesis of pro-ligands. *n*-Butyllitium in hexanes (1 eq) was added dropwise to a solution of an indene (1 eq) in dry ether at ambient temperature and the formed mixture was stirred overnight. 4-Dimethylaminopyridine (DMAP, 0.02 eq) followed by chlorosilane**1-SiMe₂Cl** or **2-SiMe₂Cl** (1 eq) were added at -80° C.The obtained mixture was allowed to warm slowly to room temperature and then stirred overnight. The resulting mixture was poured into water, the organic layer was separated, and the aqueous layer was extracted with ether. The combined extract was dried over anhydrous Na₂SO₄ and then evaporated to dryness. The residue was purified by flash chromatography on silica gel 60 (40–63 um) using hexane-dichloromethane mixture (10:1, v/v) as eluent.

(1,3-Dimethyl-1H-inden-2-yl)(1H-inden-1-yl)dimethylsilane (L3). According to General procedure 1, 5.50 g (81%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 2.50 g (21.6 mmol) of 3 in 100 ml of ether, 8.6 ml (21.6 mmol, 2.5 M) of *n*BuLi, and 5.10 g (21.6 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for C₂₂H₂₅Si [M+H]⁺: 317.1720; found: 317.1714. ¹H NMR (400 MHz, CDCl₃): δ 7.22–7.48 (m, 14H), 7.16 (t, 1H, J = 7.5 Hz), 7.09 (t, 1H, J = 7.5 Hz), 6.93–6.97 (m,

2H), 6.68 (dd, 1H, J = 5.2 Hz, J = 1.9 Hz), 6.60 (dd, 1H, J = 5.2 Hz, J = 1.9 Hz), 3.86 (m, 2H), 3.55–3.61 (m, 2H), 2.26 (d, 3H, J = 1.8 Hz), 2.22 (d, 3H, J = 2.0 Hz), 1.38 (d, 3H, J = 7.5 Hz), 1.36 (d, 3H, J = 7.5 Hz), 0.34 (s, 3H), 0.24 (s, 3H), -0.02 (s, 3H), -0.09 (s, 3H).

(1,3-Dimethyl-1H-inden-2-yl)(2-methyl-1H-inden-1-yl)dimethylsilane (L4). According to General procedure 1, 5.49 g (86%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 2.50 g (19.2 mmol) of 4 in 70 ml of dry ether, 7.7 ml (19.2 mmol, 2.5 M) of *n*BuLi and 4.55 g (19.2 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for C₂₃H₂₇Si [M+H]⁺: 331.1877; found: 331.1882. ¹H NMR (400 MHz, CDCl₃): δ 7.43 (m, 2H), 7.10–7.37 (m, 12H), 7.03 (td, 1H, J = 7.3 Hz, J = 1.0 Hz), 6.93 (td, 1H, J = 7.3 Hz, J = 1.0 Hz), 6.57 (m, 2H), 3.70 (s, 1H), 3.66 (s, 1H),

3.57 (m, 2H), 2.31 (d, 3H, J = 1.8 Hz), 2.19 (s, 3H), 2.11 (d, 3H, J = 2.0 Hz), 2.01 (s, 3H), 1.41 (d, 3H, J = 7.5 Hz), 1.28 (d, 3H, J = 7.5 Hz), 0.34 (s, 3H), 0.30 (s, 3H), -0.05 (s, 3H), -0.11 (s, 3H).

(1,3-Dimethyl-1H-inden-2-yl)(2-isopropyl-1H-inden-1-yl)dimethylsilane (L5). According to General procedure 1, 2.10 g (98%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 1.00 g (6.30 mmol) of 5 in 50 ml of dry ether, 2.6 ml (6.30 mmol, 2.44 M) of nBuLi and 1.50 g (6.30 mmol) of 1-SiMe₂Cl. HRMS (ESI): calcd. for C₂₅H₃₁Si [M+H]⁺: 359.2190; found: 359.2192. ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.47 (m, 2H), 7.16–7.39 (m, 11H), 7.12 (d, 1H, J = 7.5 Hz), 7.06 (t, 1H, J = 7.4 Hz), 6.95 (t, 1H, J = 7.5 Hz), 6.64 (s, 1H), 6.62 (s, 1H), 3.90-3.91 (m), 3.53-3.61 (m, 2H), 2.81 (m, 1H), 2.66 (m, 1H), 2.33 (br.s, 3H), 2.15

(br.s, 3H), 1.42 (d, 3H, J = 7.4 Hz), 1.31 (s, 3H), 1.30 (s, 3H), 1.27 (d, 3H, J = 6.5 Hz), 1.19 (d, 3H, J = 6.9 Hz), 1.04 (d, 3H, J = 6.8 Hz), 0.33 (s, 3H), 0.30 (s, 3H), -0.10 (s+s, 6H).

(1,3-Dimethyl-1H-inden-2-yl)(2-(tert-butyl)-1H-inden-1-yl)dimethylsilane (L6). According to General procedure 2, 3.50 g (81%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 2.00 g (11.6 mmol) of 6 in 60 ml of dry ether, 8.7 ml (11.6 mmol, 2.5 M) of *n*BuLi, 0.03 g (0.23 mmol) of DMAP and 2.74 g (11.6 mmol) of 1-SiMe₂Cl. HRMS (ESI): calcd. for C₂₆H₃₃Si [M+H]⁺: 373.2346; found: 373.2343. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, 1H, J = 7.3 Hz), 7.26–7.42 (m, 10H), 7.12–7.20 (m, 2H), 6.98 (td, 1H J = 7.5 Hz, J = 1.0 Hz), 6.93 (d, 1H, J = 7.6 Hz) 6.83 (td, 1H J = 7.5 Hz, J = 1.0 Hz), 6.79 (s, 1H), 6.74 (s, 1H), 4.04 (s, 1H), 3.94

(s, 1H), 3.48–3.61 (m, 2H), 2.45 (d, 3H, J = 1.9 Hz), 2.09 (d, 3H, J = 1.9 Hz), 1.43 (d, 3H, J = 7.5 Hz), 1.37 (s, 9H), 1.24 (s, 9H), 1.14 (d, 3H, J = 7.4 Hz), 0.59 (s, 3H), 0.12 (s, 3H), 0.09 (s, 3H), -0.35 (s, 3H).

(1,3-Dimethyl-1H-inden-2-yl)(2-phenyl-1H-inden-1-yl)dimethylsilane (L7). According to General

procedure 1, 3.16 g (62%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 2.5 g (13.0 mmol) of 7 in 50 ml of dry ether, 5.3 ml (13.0 mmol, 2.5 M) of *n*BuLi and 3.08 g (13.0 mmol) of 1-SiMe₂Cl. HRMS (ESI): calcd. for C₂₈H₂₉Si [M+H]⁺: 393.2033; found: 393.2040. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (m, 2H), 7.46 (d, 2H, J = 7.6 Hz), 7.06–7.43 (m, 23H), 7.00 (td, 1H, J = 7.3 Hz, J = 1.0 Hz), 4.43 (s, 1H), 4.42 (s, 1H), 3.45 (m, 1H), 3.02 (m, 1H), 2.20 (d,

3H, J = 1.6 Hz), 2.09 (d, 3H, J = 1.6 Hz), 1.34 (d, 3H, J = 7.5 Hz), 1.14 (d, 3H, J = 7.5 Hz), 0.08 (s, 3H), 0.04 (s, 3H), -0.22 (s, 3H), -0.35 (s, 3H).

(1,3-Dimethyl-1*H*-inden-2-yl)(2-(o-tolyl)-1*H*-inden-1-yl)dimethylsilane (L8). According to *General procedure* 1, 2.10 g (98%) of the title compound as a ca. 1.5:1 mixture of diastereomers was obtained from 1.00 g (6.30 mmol) of **8** in 30 ml of dry ether, 2.6 ml (6.30 mmol, 2.44 M) of *n*BuLi and 1.50 g (6.30 mmol) of **1**-SiMe₂Cl. HRMS (ESI): calcd. for C₂₉H₃₁Si [M+H]⁺: 407.2190; found: 407.2194. ¹H NMR (400 MHz, CDCl₃): δ 7.02–7.48 (m, 23H), 6.99 (td, 1H, *J* = 7.5 Hz, *J* = 1.0 Hz), 6.96 (s, 1H), 6.93 (s, 1H), 4.47 (s, 1H), 4.42 (s, 1H), 3.46 (m, 1H), 3.15 (m, 1H), 2.51 (s, 3H), 2.45 (s, 3H), 2.27 (d, 3H, *J* = 1.9 Hz), 2.08 (d, 3H, *J* = 1.9 Hz), 1.40 (d, 3H, *J* =

7.5 Hz), 1.08 (d, 3H, J = 7.5 Hz), -0.05 (s, 3H), -0.18 (s, 3H), -0.25 (s, 3H), -0.34 (s, 3H).

(1,3-Dimethyl-1*H*-inden-2-yl)(2-(3,5-dimethylphenyl)-1*H*-inden-1-yl)dimethylsilane (L9). According to *General procedure* 1, 1.85 g (64%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 1.50 g (6.80 mmol) of **9** in 40 ml of dry ether, 2.8 ml (6.80 mmol, 2.45 M) of *n*BuLi and 1.60 g (6.80 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for C₃₀H₃₃Si [M+H]⁺: 421.2346; found: 421.2344. ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.46 (m, 2H), 7.38–7.41 (m, 2H), 7.08–7.34 (m, 15H), 6.97–7.01 (m, 3H), 6.88 (s, 1H), 6.68 (s, 1H), 4.38 (s, 2H), 3.44 (m, 1H), 2.92 (m, 1H), 2.31 (s, 6H), 2.22 (d, 3H, *J* = 1.7 Hz), 2.10 (d, 3H, *J* = 1.7 Hz), 2.04 (s, 6H), 1.30 (d, 3H, *J* = 7.4 Hz), 1.15 (d, 3H, *J* = 7.5 Hz),

diastereomers was obtained from 1.50 g (5.00 mmol) of **10** in 40 ml of dry ether, 2.50 ml (5.00 mmol, 2.45 M) of *n*BuLi and 1.20 g (5.00 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{36}H_{45}Si [M+H]^+$: 505.3285; found: 505.3293. ¹H NMR (400 MHz, CDCl₃): δ 7.15–7.45 (m, 20H), 7.05–7.10 (m, 3H), 6.99 (t,

1H, *J* = 7.4 Hz), 4.46 (s, 1H), 4.44 (s, 1H), 3.42 (m, 1H), 3.12 (m, 1H), 2.12 (d, 3H, *J* = 1.8 Hz), 2.09 (d, 3H, *J* = 1.8 Hz), 1.36 (s, 18H), 1.29 (d, 3H, *J* = 7.5 Hz),

1.36 (s, 18H), 1.17 (d, 3H, J = 7.5 Hz), -0.01 (s, 3H), -0.07 (s, 3H), -0.16 (s,

0.19 (s, 3H), 0.05 (s, 3H), -0.27 (s, 3H), -0.28 (s, 3H).

(1,3-Dimethyl-1*H*-inden-2-yl)(2-(3,5-di-*tert*-butylphenyl)-1*H*-inden-1-yl)-dimethylsilane (L10). According to *General procedure 1*, 1.50 g (60%) of the title compound as a ca. 2:3 mixture of

yl)dimethylsilane

the title compound as a 3.00 g (15.6 mmol) of *n*BuLi and 3.70 g [M+H]⁺: 393.2033; (m, 2H), 7.60–7.63 (m, 1H, J = 2.0 Hz), 6.67 (d,

3H), -0.33 (s, 3H).

(1,3-Dimethyl-1*H*-inden-2-yl)(3-phenyl-1*H*-inden-1-

(L11). According to *General procedure 1*, 5.45 g (89%) of ca. 1:1 mixture of diastereomers was obtained from 11 in 100 ml of dry ether, 6.2 ml (15.6 mmol, 2.5 M) of (15.6 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{28}H_{29}Si$ found: 393.2040. ¹H NMR (400 MHz, CDCl₃): δ 7.67–7.71 4H), 7.20–7.50 (m, 19H), 7.17 (t, 1H, *J* = 7.3 Hz), 6.74 (d, 1H, *J* = 2.0 Hz), 3.99 (m, 2H), 3.60 (m, 2H), 2.32 (d, 3H, *J*

= 1.8 Hz), 2.23 (d, 3H, J = 2.0 Hz), 1.42 (d, 3H, J = 7.5 Hz), 1.37 (d, 3H, J = 7.3 Hz), 0.38 (s, 3H), 0.32 (s, 3H), 0.04 (s, 3H), -0.03 (s, 3H).

(1,3-Dimethyl-1H-inden-2-yl)(2,3-dimethyl-1H-inden-1-yl)dimethylsilane (L12). According to General procedure 1, 2.10 g (61%) of the title compound as a ca. 2:3 mixture of diastereomers was obtained from 1.50 g (10.0 mmol) of 12 in 50 ml of dry ether, 4.1 ml (10.0 mmol, 2.45 M) of nBuLi and 2.37 g (10.0 mmol) of 1-SiMe₂Cl. HRMS: calcd. for C₂₄H₂₉Si [M+H]⁺: 345.2033; found: 345.2035. ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.47 (m. 2H), 7.22–7.38 (m, 11H), 7.14 (d, 1H, J = 7.4 Hz), 7.08 (td, 1H, J = 7.3 Hz, J = 1.2 Hz), 6.99 (td, 1H, J = 7.3 Hz, J = 1.0 Hz), 3.67 (s, 1H),

3.63 (s, 1H), 3.54–3.62 (m, 2H), 2.32 (d, 3H, J = 1.9 Hz), 2.14 (d, 3H, J = 1.9 Hz), 2.11–2.15 (m, 9H), 1.99 (s, 3H), 1.43 (d, 3H, J = 7.5 Hz), 1.30 (d, 3H, J = 7.4 Hz), 0.33 (s, 3H), 0.32 (s, 3H), -0.097 (s, 3H), -0.100 (s, 3H).

(1,3-Dimethyl-1H-inden-2-yl)(2-ethyl-3-methyl-1H-inden-1-yl)dimethylsilane

(L13). According to General procedure 1, 2.10 g (62%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 1.50 g (9.50 mmol) of 13 in 50 ml of dry ether, 3.9 ml (9.50 mmol, 2.45 M) of *n*BuLi and 2.25 g (9.50 mmol) of 1-SiMe₂Cl. HRMS (ESI): calcd. for C₂₅H₃₁Si [M+H]⁺: 359.2190; found: 359.2186. ¹H NMR (400 MHz, $CDCl_3$): δ 7.43 (m, 2H), 7.19–7.37 (m, 11H), 7.10 (d, 1H, J = 7.5 Hz), 7.06 (t, 1H, J = 7.4 Hz), 6.95 (t, 1H, J = 7.4 Hz), 3.79 (s, 1H), 3.77 (s, 1H), 3.50-3.57

(m, 2H), 22.67–2.76 (m, 1H), .58–2.67 (m, 1H), 2.34–2.43 (m, 1H), 2.28 (s, 3H), 2.19–2.27 (m 1H), 2.11 (s+s+s, 9H), 1.38 (d, 3H, J = 7.5 Hz), 1.27 (d, 3H, J = 7.3 Hz), 1.13 (t, 3H, J = 7.5 Hz), 0.97 (t, 3H, J = 7.4 Hz), 0.31 (s, 3H), 0.26 (s, 3H), -0.13 (s, 3H), -0.17 (s, 3H).

(1,3-Dimethyl-1H-inden-2-yl)(3-methyl-2-phenyl-1H-inden-1-yl)dimethylsilane (L14). According to General procedure 1, 2.70 g (92%) of the title compound as a ca. 2:3 mixture of diastereomers was obtained from 1.50 g (7.27 mmol) of 14 in 50 ml of dry ether, 3.0 ml (7.27 mmol, 2.5 M) of *n*BuLi and 1.72 g (7.27 mmol) of 1-SiMe₂Cl. HRMS (ESI): calcd. for C₂₉H₃₁Si [M+H]⁺: 407.2190; found: 407.2198. ¹H NMR (400 MHz, CDCl₃): δ 7.00–7.45 (m, 26H), 4.33 (m, 1H), 4.26 (m, 1H), 3.44 (m, 1H), 3.03 (m, 1H), 2.31 (d, 3H, J = 1.8 Hz), 2.29 (d, 3H, J = 1.8 Hz), 2.27 (d, 3H, J =

1.8 Hz), 2.04 (d, 3H, J = 1.8 Hz), 1.39 (d, 3H, J = 7.6 Hz), 1.05 (d, 3H, J = 7.6 Hz), 0.03 (s, 3H), -0.22 (s, 3H), -0.30 (s, 3H), -0.39 (s, 3H).

(1,3-Dimethyl-1H-inden-2-yl)(9H-fluoren-9-yl)dimethylsilane (L15). According to General procedure 1, 2.10 g (93%) of the title compound was obtained from 1.00 g (6.00 mmol) of **15** in 60 ml of dry ether, 2.5 ml (6.00 mmol, 2.5 M) of *n*BuLi, and 1.42 g (6.00 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for C₂₆H₂₇Si [M+H]⁺: 367.1877; found: 367.1880. ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.86 (m, 2H), 7.48 (d, 1H, J = 7.5 Hz), 7.43 (d, 1H, J = 7.2 Hz), 7.23–7.38 (m, 7H), 7.15 (t, 1H, J = 7.5 Hz), 4.18 (s, 1H), 3.53 (q, 1H, J = 7.4 Hz), 2.13 (s, 3H), 1.32 (d, 3H, J = 7.4 Hz), 0.31 (s, 3H), -0.26 (s, 3H).

(1,3-Dimethyl-1*H*-inden-2-yl)(2-phenyl-3*H*-cyclopenta[*a*]naphthalen-3-yl)dimethylsilane (L16). According to General procedure 1, 0.70 g (39%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 1.00 g (4.10 mmol) of 16 in 40 ml of dry ether, 1.7 ml (4.10 mmol, 2.45 M) of *n*BuLi and 0.97 g (4.10 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for C₃₂H₃₁Si [M+H]⁺: 443.2190; found: 443.2198. ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, 2H, J = 8.1 Hz), 7.87 (t, 2H, J = 8.8 Hz), 7.76 (s, 1H), 7.75 (s, 1H), 7.09–7.65 (m,

26H), 4.67 (s, 1H), 4.65 (s, 1H), 3.47 (m, 1H), 3.04 (m, 1H), 2.24 (d, 3H, J = 1.7 Hz), 2.09 (d, 3H, J =

1.7 Hz), 1.37 (d, 3H, *J* = 7.5 Hz), 1.14 (d, 3H, *J* = 7.5 Hz), 0.08 (s, H), -0.01 (s, 3H), -0.25 (s, 3H), -0.40 (s, 3H).

(1,3-Dimethyl-1*H*-inden-2-yl)(1-phenyl-3*H*-cyclopenta[a]naphthalen-3-yl)dimethylsilane (L17). According to *General procedure* 1, 5.68 g (89%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 3.50 g (14.4 mmol) of **17** in 70 ml of dry ether, 5.8 ml (14.4 mmol, 2.5 M) of *n*BuLi and 3.42 g (14.4 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for C₃₂H₃₁Si [M+H]⁺: 443.2190; found: 443.2187. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (m, *2H*), 7.80 (m, 2H), 7.70 (d, 1H, *J* = 8.5 Hz), 7.60–7.64 (m, 2H), 7.20–7.50 (m,

23H), 6.67 (d, 1H, *J* = 1.8 Hz), 6.60 (d, 1H, *J* = 1.8 Hz), 4.17 (d, 1H, *J* = 1.8 Hz), 4.16 (d, 1H, *J* = 1.8 Hz), 3.65–3.69 (m, 2H), 2.32 (d, 3H, *J* = 2.0 Hz), 2.19 (d, 3H, *J* = 1.8 Hz), 1.41 (d, 3H, *J* = 7.5 Hz), 1.37 (d, 3H, *J* = 7.5 Hz), 0.40 (s, 3H), 0.36 (s, 3H), 0.04 (s, 3H), -0.02 (s, 3H).

(1,3-Dimethyl-1H-inden-2-yl)(2,4-diphenyl-1H-inden-1-yl)dimethylsilane

(L18). According to *General procedure* 1, 1.10 g (67%) of the title compound as a ca. 1:1 mixture of diastereomers was obtained from 0.95 g (3.54 mmol) of 17 in 40 ml of dry ether, 1.5 ml (3.54 mmol, 2.5 M) of *n*BuLi and 0.84 g (3.54 mmol) of **1-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{34}H_{33}Si$ [M+H]⁺: 469.2346; found: 469.2351. ¹H NMR (400 MHz, CDCl₃): δ 7.07–7.59 (m, 36H), 4.53 (s, 1H), 4.52 (s, 1H), 3.49 (m, 1H), 3.01 (m, 1H), 2.19 (d, 3H, *J* = 1.7 Hz), 2.12 (d, 3H, *J* =

1.7 Hz), 1.37 (d, 3H, J = 7.5 Hz), 1.16 (d, 3H, J = 7.5 Hz), 0.11 (s, 3H), 0.02 (s, 3H), -0.14 (s, 3H), -0.26 (s, 3H).

(3-Phenyl-1*H***-inden-2-yl)(1***H***-inden-1-yl)dimethylsilane (L19). According to** *General procedure 1***, 5.50 g (81%) of the title compound was obtained from 2.50 g (21.6 mmol) of 3** in 100 ml of ether, 8.6 ml (21.6 mmol, 2.5 M) of *n*BuLi, and 5.10 g (21.6 mmol) of **2-SiMe₂Cl**. HRMS (ESI): calcd. for C₂₆H₂₅Si [M+H]⁺: 365.1720; found: 365.1718. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (t, 2H, *J* = 6.3 Hz), 7.14–7.34 (m, 11H), 6.72 (t, 1H, *J* = 1.8 Hz), 3.62 (s, 2H), 3.39 (m, 2H), 0.29 (s, 6H).

(**3**-Phenyl-1*H*-inden-2-yl)(2-methyl-1*H*-inden-1-yl)dimethylsilane (L20). According to *General procedure* 1, 4.20 g (72%) of the title compound was obtained from 2.00 g (15.4 mmol) of **4** in 60 ml of ether, 6.1 ml (15.4 mmol, 2.5 M) of *n*BuLi, and 4.38 g (15.4 mmol) of **2-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{27}H_{27}Si$ [M+H]⁺: 379.1877; found: 379.1881. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (m, 1H), 7.34–7.45 (m, 5H), 7.24–7.30 (m, 3H), 7.15–7.18 (m, 3H), 6.99 (t, 1H, *J* = 7.5 Hz), 6.51 (br.s, 1H), 3.47 (s, 2H), 3.37 (s, 1H), 2.06 (br.s, 3H), –

0.08 (s, 3H), -0.14 (s, 3H).

(3-Phenyl-1*H*-inden-2-yl)(2-isopropyl-1*H*-inden-1-yl)dimethylsilane (L21). According to *General procedure 2*, 3.50 g (78%) of the title compound was obtained from 1.75 g (11.0 mmol) of **5** in 60 ml of dry ether, 4.5 ml (11.0 mmol, 2.5 M) of *n*BuLi, 0.03 g (0.22 mmol) of DMAP and 3.16 g (11.0 mmol) of **2-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{29}H_{30}Si$ [M+H]⁺: 407.2190; found: 407.2191. ¹H NMR (400 MHz, CDCl₃): δ 7.53 (m, 1H), 7.31–7.45 (m, 6H) 7.29 (dd, 1H, J = 7.3 Hz, J = 1.4 Hz), 7.27 (dd, 1H, J = 7.1 Hz, J = 1.6 Hz), 7.12–7.19 (m, 3H), 6.98 (td, 1H, *J* = 7.4 Hz, *J* = 1.1 Hz), 6.55 (s, 1H), 3.60 (s, 1H), 3.45 (s, 2H), 2.63 (m, 1H), 1.26 (d, 3H, *J* = 6.7 Hz), 1.00 (d, 3H, *J* = 6.9 Hz), -0.04 (s, 3H), -0.24 (s, 3H).

Me₂Si

(3-Phenyl-1*H*-inden-2-yl)(2-phenyl-1*H*-inden-1-yl)dimethylsilane (L22). According to *General procedure* 1, 5.00 g (72%) of the title compound was obtained from 3.00 g (15.6 mmol) of **7** in 100 ml of ether, 6.2 ml (15.6 mmol, 2.5 M) of *n*BuLi, and 4.44 g (15.6 mmol) of **2-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{32}H_{29}Si [M+H]^+$: 441.2033; found: 441.2038. ¹H NMR (400 MHz, CDCl₃): δ 7.14–7.47 (m, 17H), 7.07 (s, 1H), 7.02 (t, 1H, *J* = 7.3 Hz), 4.10 (s, 1H), 3.35 (d, 2H, *J* = 23.1 Hz), 3.20 (d, 2H, *J* = 23.1 Hz), -0.29 (s, 3H), -0.52 (s, 3H).

(3-Phenyl-1*H*-inden-2-yl)(3-methyl-1*H*-inden-1-yl)dimethylsilane (L23). According to *General procedure 1*, 2.70 g (47%) of the title compound was obtained from 2.00 g (15.4 mmol) of **19** in 60 ml of ether, 6.2 ml (15.4 mmol, 2.5 M) of *n*BuLi, and 4.38 g (15.4 mmol) of **2-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{27}H_{27}Si [M+H]^+$: 379.1877; found: 379.1873. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (m, 1H), 7.34–7.43 (m, 6H), 7.23–7.28 (m, 4H), 7.10–7.16 (m, 2H), 6.19 (m, 1H), 3.48 (br.s, 2H), 3.38 (m, 1H), 2.18 (m, 3H), –0.15 (s, 3H), –0.17 (s, 3H).

(3-Phenyl-1*H*-inden-1-yl)(3-phenyl-1*H*-inden-2-yl)dimethylsilane (L24). According to *General procedure 1*, 5.30 g (77%) of the title compound was obtained from 3.00 g (15.6 mmol) of **11** in 100 ml of ether, 6.2 ml (15.6 mmol, 2.5 M) of *n*BuLi, and 4.44 g (15.6 mmol) of **2-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{32}H_{29}Si [M+H]^+$: 441.2033; found: 441.2042. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, 1H, *J* = 7.4 Hz), 7.51–7.54 (m, 3H), 7.31–7.43 (m, 9H) 7.22–7.28 (m, 3H), 7.13–7.18 (m, 2H), 6.57 (d, 1H, *J* = 1.7 Hz), 3.62 (d, 1H, *J* = 1.7 Hz), 3.52 (s, 2H), –0.10 (s, 3H), –0.13 (s, 3H).

(3-Phenyl-1*H*-inden-2-yl)(1-phenyl-3*H*-cyclopenta[*a*]naphthalen-3yl)dimethylsilane (L25). According to *General procedure 1*, 5.10 g (73%) of the title compound was obtained from 3.50 g (14.4 mmol) of 17 in 100 ml of ether, 5.8 ml (14.4 mmol, 2.5 M) of *n*BuLi, and 4.10 g (14.4 mmol) of **2-SiMe₂Cl**. HRMS (ESI): calcd. for $C_{36}H_{31}Si$ [M+H]⁺: 491.2190; found: 491.2184. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, 1H, *J* = 8.2 Hz), 7.75 (d, 1H, *J* = 8.6 Hz), 7.63 (d, 1H, *J* = 8.4 Hz), 7.52–7.54 (m, 2H), 7.33–7.47 (m, 12H), 7.27–7.29 (m, 2H), 7.16–7.21 (m, 2H), 6.54 (d,

1H, J = 1.7 Hz), 3.84 (d, 1H, J = 1.7 Hz), 3.57 (s, 2H), -0.06 (s, 3H), -0.11 (s, 3H).

Complexes

C1. *n*-Butyllithium in hexanes (9.0 ml, 22.4 mmol, 2 eq) was added dropwise to a solution of **L1** (3.87 g, 11.2 mmol, 1 eq) in ether at r. t., and the formed mixture was stirred overnight. Further on, $ZrCl_4$ (2.60 g, 11.2 mmol, 1 eq) was added at $-80^{\circ}C$, and the obtained mixture was allowed to warm slowly to room temperature and then stirred overnight. The resulting mixture was evaporated to dryness, toluene was added to the residue, and the obtained suspension was evaporated to dryness again. Toluene was added to the residue followed by MeMgBr (3.7 ml, 112 mmol, 10 eq)

and the resulting suspension was stirred overnight at 90°C. The reaction mixture was evaporated to dryness, redissolved in toluene and filtered through a pad of Celite 503. The obtained filtrate was evaporated until the precipitation started. Crystals precipitated from this solution were collected, washed with toluene, and then dried in vacuum. Yield of the title compound (yellow solid) was 2.20 g (42%). The product contained 4 eq of cocrystallized toluene. Anal. calc. for $C_{26}H_{32}SiZr + 4PhMe: C$, 77.92; H, 7.75. Found: C, 77.70; H, 7.81. ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd, 4H, *J* = 6.7 Hz, *J* = 3.0 Hz), 7.07–7.10 (m, 4H), 2.20 (s, 12H), 0.72 (s, 6H), –0.73 (s, 6H). ¹³C NMR (100 MHz, C₆D₆): δ 130.4, 123.6, 122.9, 114.0, 102.5, 42.2, 14.2, 2.8.

General procedure 3 for synthesis of complexes. *n*-Butyllithium in hexanes (2 eq) was added dropwise to a solution of pro-ligand L2–L26 (1 eq) in ether at r. t., and the formed mixture was stirred overnight. Further on, $ZrCl_4$ (1 eq) was added at –80°C, and the obtained mixture was allowed to warm slowly to room temperature and then stirred overnight. The resulting mixture was evaporated to dryness, toluene was added to the residue, and the obtained suspension was evaporated to dryness again. Toluene was added to the residue, and the resulting suspension was filtered through a pad of Celite 503 (hot filtration may be necessary in case of a product with low solubility in toluene). The obtained filtrate was evaporated until the precipitation started. Crystals precipitated from this solution overnight at r. t. were collected, washed with small amount of cold toluene, and then dried in vacuum.

rac-**C2** and *meso*-**C2**. According to *General procedure 3*, 0.70 g (16%) of *meso*-**C2** and 0.3 g (7%) of *rac*-**C2** were obtained from 3.15 g (7.10 mmol) of **L2** in 150 ml of dry ether, 5.7 ml (14.2 mmol, 2.5 M) of *n*BuLi and 1.66 g (7.10 mmol) of ZrCl₄. *Meso*-**C2** was obtained as described in *General procedure 3* whereas *rac*-**C2** was isolated by evaporation of the mother liquor with subsequent washing of resulting solid with a mixture of pentane–ether. *Meso*-**C2**: anal. calc. for $C_{32}H_{26}Cl_2SiZr$: C, 63.98; H, 4.36. Found: C, 64.32; H, 4.40. ¹H NMR

(400 MHz, CDCl₃): δ 7.59 (t, 4H, *J* = 6.6 Hz), 7.40 (d, 4H, *J* = 7.1 Hz), 7.18–7.26 (m, 4H), 7.05–7.14 (m, 6H), 6.39 (s, 2H), 0.99 (s, 3H), 0.57 (s, 3H).¹³C NMR (100 MHz, C₆D₆): δ 134.3, 138.8, 133.7, 132.1, 128.3, 127.9, 127.4, 127.2, 126.7, 126.6, 123.0, 111.5, 106.5, 3.0, –2.6. *Rac*-**C2**: anal. calc. for C₃₂H₂₆Cl₂SiZr: C 63.98; H, 4.36. Found: C, 64.11; H, 4.48. ¹H NMR (400 MHz, C₆D₆): δ 7.80 (d, *J* = 7.3 Hz, 4H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.28 (t, *J* = 7.6 Hz, 4H) 7.20 (d, *J* = 7.3 Hz, 2H), 6.98–6.89 (m, 4H), 5.99 (s, 2H), 0.28 (s, 6H). ¹³C NMR (100 MHz, C₆D₆): δ 135.5, 134.3, 133.1, 132.2, 128.4, 128.3, 128.2, 127.3, 126.6, 126.2, 123.3, 113.1, 106.2, –0.7.

C3. According to *General procedure 3*, 5.00 g (61%) of the title compound was obtained from 5.50 g (17.4 mmol) of **L3** in 150 ml of dry ether, 13.9 ml (34.8 mmol, 2.5 M) of *n*BuLi and 4.05 g (17.4 mmol) of ZrCl₄. Anal. calc. for $C_{22}H_{22}Cl_2SiZr$: C, 55.44; H, 4.65. Found: C, 55.72; H, 4.74. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.70 (dd, *J* = 8.7 Hz, *J* = 1.0 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.47 (d, *J* = 8.5 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 1H), 7.31–7.35 (m, 1H), 7.25–7.29 (m, 1H), 7.14–7.22 (m, 2H), 7.09 (m, 1H), 6.24 (d,

 $J = 3.4 \text{ Hz}, 1\text{H}, 2.47 \text{ (s, 3H)}, 2.35 \text{ (s, 3H)}, 1.27 \text{ (s, 3H)}, 1.09 \text{ (s, 3H)}. {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, C_6\text{D}_6): \delta 134.1, 133.5, 133.2, 128.4, 127.6, 126.8, 126.5, 126.2, 125.6, 125.2, 124.1, 123.7, 121.1, 118.3, 117.9, 115.3, 105.7, 92.1, 15.0, 14.6, 0.5, 0.2.$

C4. According to *General procedure 3*, 3.60 g (48%) of the title compound was obtained from 5.10 g (15.0 mmol) of **L4** in 200 ml of dry ether, 12.4 ml (30.0 mmol, 2.5 M) of *n*BuLi and 3.50 g (15.0 mmol) of $ZrCl_4$. Anal. calc. for $C_{23}H_{24}Cl_2SiZr$: C, 56.30; H, 4.93. Found: C, 56.58; H, 4.98. ¹H NMR (400 MHz, CD_2Cl_2): δ 7.83 (d, 1H, *J* = 8.7 Hz), 7.56 (d, 1H, *J* = 8.5 Hz), 7.46 (d, 1H, *J* = 8.5 Hz), 7.09–7.31 (m, 5H), 6.74 (s, 1H), 2.59 (s, 3H), 2.42 (s, 3H), 2.36 (s, 3H), 1.30 (s, 3H), 1.20 (s, 3H). ¹³C NMR (150 MHz, CD_2Cl_2):

 δ 136.8, 135.9, 132.7, 129.5, 128.7, 127.1, 126.5, 125.90, 125.87, 125.7, 125.3, 124.30, 124.28, 122.0, 119.9, 119.2, 104.6, 88.3, 18.8, 15.9, 15.7, 3.03, 2.96.

C5. According to General Procedure 3 1.20 g (41%) of the title compound was obtained from 2.00 g (5.60 mmol) of **L5** in 50 ml of dry ether, 4.4 ml (11.2 mmol, 2.5 M) of *n*BuLi and 1.30 g (5.60 mmol) of ZrCl₄. Anal. calc. for $C_{25}H_{28}Cl_2SiZr: C, 57.89$; H, 5.44. Found: C, 58.05; H, 5.52. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, 1H, *J* = 8.9 Hz), 7.51 (dt, 1H, *J* = 8.5 Hz, *J* = 1.0 Hz), 7.47 (dt, 1H, *J* = 8.5 Hz, *J* = 1.0 Hz), 7.35 (dt, 1H, *J* = 8.4 Hz, *J* = 1.0 Hz), 7.19–7.36 (m, 3H), 7.04–7.08 (m, 1H), 6.88 (s, 1H), 3.21–3.30

(m, 1H), 2.51 (s, 3H), 2.35 (s, 3H), 1.43 (d, 3H, J = 6.7 Hz), 1.29 (s, 3H), 1.20 (s, 3H), 1.20 (d, 3H, J = 6.7 Hz). ¹³C NMR (150 MHz, CD₂Cl₂): δ 149.4, 135.0, 134.9, 133.6, 128.2, 127.0, 126.53, 126.47, 126.0, 125.59, 125.55, 124.33, 124.31, 120.0, 118.0, 116.0, 104.8, 86.6, 30.5, 29.7, 20.1, 15.8, 14.9, 3.7, 3.2.

C6. According to *General procedure 3*, 1.64 g (57%) of the title compound was obtained from 2.00 g (5.40 mmol) of **L6** in 60 ml of dry ether, 4.4 ml (10.8 mmol, 2.5 M) of *n*BuLi and 1.25 g (5.40 mmol) of $ZrCl_4$. Anal. calc. for $C_{26}H_{30}Cl_2SiZr$: C, 58.62; H, 5.68. Found: C, 58.91; H, 5.74. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, 1H, *J* = 8.8 Hz), 7.56–7.60 (m, 1H), 7.48 (d, 1H, *J* = 8.4 Hz), 7.16–7.27 (m, 4H), 7.07–7.11 (m, 1H), 6.85 (s, 1H), 2.57 (s, 3H), 2.38 (s, 3H), 1.39 (s, 9H), 1.36 (s, 3H), 1.28 (s, 3H).

 ^{13}C NMR (100 MHz, CD_2Cl_2): δ 158.5, 137.5, 136.3, 132.0, 129.4, 127.9, 126.2, 126.1, 126.0, 125.7, 124.3, 124.1, 123.7, 123.1, 119.9, 116.4, 102.7, 85.4, 37.0, 33.9, 17.09, 16.7, 6.8, 5.3.

C7. According to *General procedure 3*, 4.90 g (68%) of the title compound was obtained from 5.10 g (13.0 mmol) of **L7** in 200 ml of dry ether, 10.4 ml (26.0 mmol, 2.5 M) of *n*BuLi and 3.03 g (13.0 mmol) of ZrCl₄. The product contained 0.5 eq of cocrystallized toluene. Anal. calc. for $C_{28}H_{26}Cl_2SiZr + 0.5$ PhMe: C, 63.18; H, 5.05. Found: C, 62.84; H, 4.98. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.91 (dd, 1H, *J* = 8.8 Hz, *J* = 0.9 Hz), 7.78–7.80 (m, 2H), 7.54 (d, 1H, *J* = 8.5 Hz), 7.10–7.47 (m, 9H), 7.00 (s, 1H),

2.37 (s, 3H), 1.76 (s, 3H), 1.35 (s, 3H), 0.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 140.7, 135.1, 134.04, 133.94, 133.7, 131.2, 129.2, 128.6, 128.4, 128.3, 127.1, 126.6, 126.2, 126.00, 125.94, 125.6, 125.4, 123.9, 123.8, 120.9, 117.4, 104.3, 86.5, 15.5, 15.0, 5.9, 3.0.

C8. According to *General procedure 3,* 1.30 g (43%) of the title compound was obtained from 2.20 g (5.40 mmol) of **L8** in 50 ml of dry ether, 4.3 ml (10.8 mmol, 2.5 M) of *n*BuLi and 1.26 g (5.40 mmol) of ZrCl₄. Anal. calc. for $C_{29}H_{28}Cl_2SiZr$: C, 61.46; H, 4.98. Found: C, 61.73; H, 5.04. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, 1H, *J* = 7.1 Hz), 7.82 (d, 1H, *J* = 8.6 Hz), 7.54 (d, 1H, *J* = 8.6 Hz), 7.51 (d, 1H, *J* = 8.6 Hz), 7.41 (d, 1H, *J* = 8.6 Hz), 7.20–7.36 (m, 6H), 7.08–7.12 (m, 1H), 6.83 (s, 1H), 2.39 (s, 3H), 2.17 (s, 3H), 2.06 (s, 3H), 1.27 (s, 3H), 0.57 (s, 3H). ¹³C NMR

(150 MHz, CD_2Cl_2): δ 141.3, 139.2, 136.6, 135.1, 134.7, 133.9, 131.1, 130.5, 129.0, 127.3, 126.84, 126.76, 126.2, 125.9, 125.7, 124.5, 124.4, 121.8, 121.6, 118.8, 105.2, 89.6, 21.7, 16.03, 15.98, 2.4, 1.6.

C9. According to *General procedure 3*, 1.20 g (47%) of the title compound was obtained from 1.85 g (4.40 mmol) of **L9** in 50 ml of dry ether, 3.6 ml (8.80 mmol, 2.5 M) of *n*BuLi and 1.00 g (4.40 mmol) of ZrCl₄. Anal. calc. for $C_{30}H_{30}Cl_2SiZr$: C, 62.04; H, 5.21. Found: C, 62.21; H, 5.37. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, 1H, J = 8.8 Hz), 7.52 (d, 1H, J = 8.5 Hz), 7.39–7.44 (m, 4H), 7.17–7.34 (m, 3H), 7.07–7.12 (m, 1H), 7.02 (s, 1H), 7.00 (s, 1H), 2.36–2.37 (m, 9H), 1.78 (s, 3H), 1.33 (s, 3H), 0.88 (s, 3H). ¹³C NMR (100 MHz, C_6D_6): δ 140.9, 137.5,

135.4, 134.31, 134.29, 134.0, 130.1, 129.6, 129.3, 128.9, 127.3, 127.1, 126.9, 126.3, 125.9, 125.83, 125.75, 124.2, 123.9, 120.6, 104.4, 86.6, 21.2, 15.4, 14.9, 5.5, 2.6.

C10. According to *General procedure 3*, 0.55 g (33%) of the title compound was obtained from 1.50 g (2.97 mmol) of **L10** in 50 ml of dry ether, 2.4 ml (5.90 mmol, 2.5 M) of *n*BuLi and 0.69 g (2.97 mmol) of ZrCl₄. Anal. calc. for $C_{36}H_{42}Cl_2SiZr$: C, 65.03; H, 6.37. Found: C, 65.20; H, 6.52. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, 1H, *J* = 8.8 Hz), 7.52 (d, 1H, *J* = 8.5 Hz), 7.42–7.45 (m, 3H), 7.14–7.34 (m, 4H), 7.11 (m, 1H), 7.01 (s, 1H), 2.37 (s, 3H), 1.80 (s, 3H), 1.37 (s, 18H), 1.33 (s, 3H), 0.83 (s, 3H). ¹³C NMR (150 MHz, CD₂Cl₂): δ 143.0, 138.4,

134.8, 134.4, 134.0, 129.4, 129.1, 128.6, 127.3, 126.6, 126.5, 126.1, 125.7, 125.5, 124.4, 124.2, 123.0, 121.5, 121.3, 117.9, 105.1, 87.2, 35.4, 31.7, 15.6, 15.2, 5.8, 2.9.

C11. According to *General procedure 3*, 3.65 g (56%) of the title compound was obtained from 4.65 g (11.8 mmol) of **L11** in 200 ml of dry ether, 9.5 ml (23.6 mmol, 2.5 M) of *n*BuLi and 2.76 g (11.8 mmol) of ZrCl₄. Anal. calc. for C₂₈H₂₆Cl₂SiZr: C, 60.84; H, 4.74. Found: C, 61.03; H, 4.97. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.80 (m, 2H), 7.40–7.49 (m, 7H), 7.33 (m, 1H), 7.18–7.25 (m, 3H), 6.20 (s, 1H), 2.45 (s, 3H), 2.39 (s, 3H), 1.33 (s, 3H), 1.10 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 134.9, 133.5, 133.2, 133.0, 129.8, 129.4, 128.7, 128.3, 128.2, 128.1, 126.7, 125.9, 125.6, 125.5, 124.7, 124.4, E 146.6, 104.0, 01.5, 15.4, 14.0, 14.1, 10

 $123.9,\,119.1,\,117.5,\,116.6,\,104.9,\,91.5,\,15.4,\,14.9,\,1.1,\,1.0.$

C12. According to *General procedure 3*, 1.20 g (39%) of the title compound was obtained from 2.10 g (6.00 mmol) of **L12** in 50 ml of dry ether, 5.0 ml (12.0 mmol, 2.5 M) of *n*BuLi and 1.42 g (6.00 mmol) of ZrCl₄. Anal. calc. for $C_{24}H_{26}Cl_2SiZr$: C, 57.12; H, 5.19. Found: C, 57.14; H, 5.36. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, 1H, *J* = 8.7 Hz), 7.58 (d, 1H, *J* = 8.1 Hz), 7.39 (d, 1H, *J* = 8.7 Hz), 7.20–7.33 (m, 4H), 7.06 (m, 1H), 2.50 (s, 3H), 2.39 (s, 3H), 2.27 (s, 3H), 2.22 (s, 3H), 1.30 (s, 3H), 1.18 (s, 3H). ¹³C NMR (100 MHz, *o*-Cl₂C₆D₄): δ 135.2, 134.8, 132.9, 131.9, 127.6, 126.2, 126.1, 126.0, 125.2,

125.0, 124.5, 123.8, 123.7, 123.5, 117.69, 117.66, 102.8, 84.5, 15.4, 15.3, 14.9, 11.2, 2.7, 2.5.

C13. According to *General procedure 3*, 1.23 g (49%) of the title compound was obtained from 2.10 g (5.85 mmol) of **L13** in 50 ml of dry ether, 4.7 ml (11.7 mmol, 2.5 M) of *n*BuLi and 1.36 g (5.85 mmol) of $ZrCl_4$. Anal. calc. for $C_{25}H_{28}Cl_2SiZr$: C, 57.89; H, 5.44. Found: C, 57.61; H, 5.40. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, 1H, *J* = 8.8 Hz), 7.61 (m, 1H), 7.43 (d, 1H, *J* = 8.6 Hz), 7.21–7.37 (m, 4H), 7.11 (m, 1H), 2.55–2.73 (m, 2H), 2.52 (s, 3H), 2.42 (s, 3H), 2.31 (s, 3H), 1.34 (s, 3H), 1.19 (s, 3H), 1.10 (t, 3H, *J* = 7.5 Hz). ¹³C NMR (100 MHz, CD₂Cl₂): δ 136.3, 132.3, 129.4, 128.6, 127.4, 126.7,

126.6, 125.7, 125.6, 125.5, 125.2, 124.3, 124.2, 124.1, 119.1, 118.5, 110.4, 83.7, 23.4, 16.8, 15.7, 15.4, 11.3, 3.3, 3.0.

C14. According to *General procedure 3*, 1.60 g (46%) of the title compound was obtained from 2.50 g (6.10 mmol) of **L14** in 40 ml of dry ether, 4.9 ml (12.2 mmol, 2.5 M) of *n*BuLi and 1.43 g (6.10 mmol) of ZrCl₄. Anal. calc. for $C_{29}H_{28}Cl_2SiZr: C$, 61.46; H, 4.98. Found: C, 61.66; H, 5.18. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, 1H, J = 8.9 Hz), 7.49 (d, 1H, J = 8.4 Hz), 7.21–7.44 (m, 10H), 7.08–7.12 (m, 1H), 2.40 (s, 3H), 2.28 (s, 3H), 1.84 (s, 3H), 1.33 (s, 3H), 0.61 (s, 3H). ¹³C NMR (150 MHz, CD₂Cl₂): δ 139.5, 134.8, 134.6, 134.3, 133.5, 129.5, 128.9, 128.7, 128.64, 128.55, 128.2, 127.0, 126.7, 126.1,

126.0, 125.7, 125.6, 125.0, 124.5, 124.3, 120.9, 118.1, 103.5, 85.5, 15.8, 15.4, 12.1, 4.9, 3.1.

C15. According to *General procedure 3*, 0.57 g (20%) of the title compound was obtained from 2.00 g (5.50 mmol) of **L15** in 50 ml of dry ether, 4.4 ml (11.0 mmol, 2.5 M) of *n*BuLi and 1.43 g (5.50 mmol) of $ZrCl_4$. The product contained 1eq of cocrystallized toluene. Anal. calc. for $C_{26}H_{24}Cl_2SiZr + PhMe: C, 64.05; H, 5.21.$ Found: C, 63.72; H, 5.25. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, 2H, *J* = 8.1 Hz), 7.86 (d, 2H, *J* = 8.0 Hz), 7.53 (t, 2H, *J* = 7.6 Hz), 7.16–7.34 (m, 6H), 2.44 (s, 6H), 1.40 (s, 6H). ¹³C NMR (100 MHz, o-Cl₂C₆D₄): δ 129.6, 129.0, 128.2, 128.1, 126.3, 126.1, 125.3, 124.5,

123.8, 119.0, 101.8, 70.4, 15.2, 2.5.

C16. According to *General procedure 3*, 2.49 g (57%) of the title compound was obtained from 3.20 g (7.22 mmol) of **L16** in 60 ml of dry ether, 5.8 ml (14.4 mmol, 2.5 M) of *n*BuLi and 1.68 g (7.22 mmol) of ZrCl₄. Anal. calc. for $C_{32}H_{28}Cl_2SiZr$: C, 63.76; H, 4.68. Found: C, 63.94; H, 4.75. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, 1H, *J* = 7.9 Hz), 7.82 (d, 2H, *J* = 7.1 Hz), 7.73–7.77 (m, 2H), 7.38–7.53 (m, 9H), 7.25 (m, 1H), 7.15 (m, 1H), 2.42 (s, 3H), 1.81 (s, 3H), 1.37 (s, 3H), 0.91 (s, 3H). ¹³C NMR (100 MHz, *o*-Cl₂C₆D₄): δ 137.2, 134.4, 133.0, 132.8, 130.3, 129.4, 127.6, 127.4,

127.2, 126.8, 126.6, 126.4, 126.1, 124.7, 124.2, 122.9, 122.8, 122.6, 122.0, 119.11, 119.09, 116.0, 104.5, 90.2, 14.4, 13.9, 4.7, 1.6.

C17. According to *General procedure 3*, 4.30 g (60%) of the title compound was obtained from 5.30 g (12.0 mmol) of **L17** in 200 ml of dry ether, 9.60 ml (24.0 mmol, 2.5 M) of *n*BuLi and 2.80 g (12.0 mmol) of zirconium tetrachloride. The product contained 0.5 eq of cocrystallized toluene. Anal. calc. for $C_{32}H_{28}Cl_2SiZr + 0.5$ PhMe: C, 65.71; H, 4.97. Found: C, 66.03; H, 4.92. ¹H NMR (400 MHz, *o*-Cl₂C₆D₄): δ 8.21 (d, 1H, *J* = 8.3 Hz), 7.69 (d, 2H, *J* = 7.5 Hz), 7.62 (d, 1H, *J* = 7.8 Hz), 7.47 (d, 1H, *J* = 9.2 Hz), 6.96–7.38 (m, 10H + 5H in PhMe), 6.00 (s, 1H),

2.36 (s, 3H), 2.29 (s, 3H), 1.13 (s, 3H), 0.91 (s, 3H). 13 C NMR (100 MHz, o-Cl₂C₆D₄): δ 136.9, 135.8, 133.7, 132.6, 131.2, 130.6, 129.1, 129.0, 128.9, 128.2, 128.0, 127.9, 127.8, 126.4, 125.7, 125.4, 125.2, 124.8, 123.8, 123.5, 123.1, 118.4, 117.8, 116.1, 105.7, 94.9, 15.3, 14.6, 0.62, 0.57.

C18. According to *General procedure 3*, 0.75 g (50%) of the title compound was obtained from 1.10 g (2.50 mmol) of **L18** in 40 ml of dry ether, 2.0 ml (5.00 mmol, 2.5 M) of *n*BuLi and 0.58 g (2.50 mmol) of ZrCl₄. Anal. calc. for $C_{34}H_{30}Cl_2SiZr: C$, 64.94; H, 4.81. Found: C, 65.16; H, 4.87. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, 1H, *J* = 8.6 Hz), 7.75 (d, 2H, *J* = 6.4 Hz), 7.47 (t, 2H, *J* = 8.5 Hz), 7.16–7.38 (m, 10H), 7.07 (s, 1H), 2.42 (s, 3H), 1.81 (s, 3H), 1.37 (s, 3H), 0.89 (s, 3H). ¹³C NMR (150 MHz, CD₂Cl₂): δ 141.5, 139.7, 135.4, 134.3, 134.0, 133.2, 131.5, 129.7, 129.1, 128.93, 128.89, 128.5, 128.2,

128.0, 127.8, 127.6, 126.8, 126.2, 126.0, 125.6, 125.3, 124.5, 124.3, 121.8, 121.4, 120.6, 118.1, 104.8, 87.4, 15.4, 15.1, 5.9, 3.0.

C19. According to *General procedure 3*, 1.10 g (21%) of the title compound was obtained from 3.70 g (10.1 mmol) of **L19** in 100 ml of dry ether, 8.1 ml (20.2 mmol, 2.5 M) of *n*BuLi and 2.35 g (10.1 mmol) of $ZrCl_4$. The product was ca. 1:1 mixture of two isomers (A and B) according to NMR. Anal. calc. for $C_{26}H_{22}Cl_2SiZr$: C, 59.52; H, 4.23. Found: C, 59.70; H, 4.48. ¹H NMR (400 MHz, CD₂Cl₂, mixture of isomers A and B): δ 7.17–7.65 (m, 11H in A + 14H in B), 6.97 (d, 1H in A, J = 3.1 Hz), 6.74–6.78 (m,

1H in A), 6.45 (d, 1H in A, J = 8.7 Hz), 6.23 (d, 1H in A, J = 3.2 Hz), 6.18 (s, 1H in A), 6.14 (s, 1H in B), 5.96 (d, 1H in B, J = 4.0 Hz), 1.10 (s, 3H in B), 0.95 (s, 3H in A), 0.93 (s, 3H in A), 0.61 (s, 3H in B). ¹³C NMR (150 MHz, CD₂Cl₂, mixture of isomers): δ 136.4, 135.19, 135.17, 134.9, 134.2, 132.6, 132.3, 132.0, 130.3, 129.8, 129.7, 129.4, 128.9, 128.6, 128.5, 128.4, 128.19, 128.17, 128.0, 127.5, 127.03, 126.97, 126.7, 126.4, 126.3, 126.2, 125.9, 125.7, 125.0, 123.6, 123.3, 123.0, 121.0, 119.8, 119.1, 112.9, 109.0, 107.9, 107.4, 93.3, 91.8, 66.1, 1.4, 0.7, -2.5, -3.5.

Syn-**C20**. According to *General procedure 3*, 1.65 g (28%) of the title compound was obtained from 4.10 g (10.8 mmol) of **L20** in 200 ml of dry ether, 8.7 ml (21.6 mmol, 2.5 M) of *n*BuLi and 2.50 g (10.8 mmol) of ZrCl₄. Anal. calc. for $C_{27}H_{24}Cl_2SiZr$: C, 60.20; H, 4.49. Found: C, 60.48; H, 4.64. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.68 (d, 1H, *J* = 7.7 Hz), 7.50 (d, 1H, *J* = 8.5 Hz), 7.37–7.42 (m, 4H), 7.18–7.31 (m, 5H), 6.75 (s, 1H), 6.63–6.67 (m, 1H), 6.45 (d, 1H, *J* = 8.7 Hz), 6.23 (s, 1H), 2.37 (s, 3H), 1.07 (s, 3H), 0.92 (s, 3H).

 ^{13}C NMR (150 MHz, CD₂Cl₂): δ 137.4, 135.6, 135.0, 134.4, 132.6, 130.6, 129.4, 128.6, 128.3, 127.3, 127.0, 126.8, 126.6, 126.4, 126.1, 125.5, 125.2, 123.4, 121.4, 109.0, 106.8, 88.6, 19.3, 2.6, 0.1.

*Syn-***C21**. According to *General procedure 3*, 0.58 g (25%) of the title compound was obtained from 1.70 g (4.20 mmol) of **L21** in 200 ml of dry ether, 3.4 ml (8.40 mmol, 2.5 M) of *n*BuLi and 0.97 g (4.20 mmol) of ZrCl₄. Anal. calc. for $C_{29}H_{28}Cl_2SiZr$: C, 61.46; H, 4.98. Found: C, 61.63; H, 5.13. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.63 (d, 1H, *J* = 8.4 Hz), 7.51 (d, 1H, *J* = 8.5 Hz), 7.39–7.43 (m, 4H), 7.33–7.36 (m, 2H), 7.23–7.28 (m, 2H), 7.19 (m, 1H), 6.86 (s, 1H), 6.66 (m, 1H), 6.52 (m, 1H), 6.15 (s, 1H), 3.02 (m, 1H), 1.49

(d, 3H, J = 6.5 Hz), 1.22 (d, 3H, J = 6.9 Hz), 1.13 (s, 3H), 0.89 (s, 3H). ¹³C NMR (150 MHz, CD₂Cl₂): δ 150.0, 134.8, 134.67, 134.65, 132.5, 131.4, 128.34, 128.31, 127.6, 127.07, 127.06, 127.0, 126.7, 126.5, 126.2, 125.8, 125.7, 123.4, 115.3, 109.0, 106.1, 87.2, 31.0, 29.5, 20.6, 2.7, 0.8.

Syn-**C22**. According to *General procedure 3*, 2.10 g (31%) of the title compound was obtained from 5.00 g (11.3 mmol) of **L22** in 200 ml of dry ether, 9.10 ml (22.6 mmol, 2.5 M) of *n*BuLi and 2.65 g (11.3 mmol) of ZrCl₄. Anal. calc. for $C_{32}H_{26}Cl_2SiZr$: C, 63.98; H, 4.36. Found: C, 64.26; H, 4.41. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.74–7.76 (m, 2H), 7.59 (d, 2H, *J* = 8.5 Hz), 7.42–7.48 (m, 8H), 7.30 (m, 2H), 7.22 (m, 2H), 6.97 (s, 1H), 6.76 (m, 1H), 6.67 (m, 1H), 5.84 (s, 1H), 0.88 (s, 3H), 0.45 (s, 3H). ¹³C NMR (150 MHz,

CD₂Cl₂): δ 142.5, 136.0, 134.6, 134.5, 134.4, 132.5, 132.1, 131.2, 129.4, 128.8, 128.50, 128.46, 128.3, 127.5, 127.2, 126.8, 126.42, 126.39, 126.2, 126.1, 123.5, 120.3, 110.0, 105.8, 89.2, 66.1, 2.2, 1.5.

Syn-**C23**. According to *General procedure 3*, 0.70 g (17%) of the title compound was obtained from 2.60 g (6.90 mmol) of **L23** in 100 ml of dry ether, 5.5 ml (13.8 mmol, 2.5 M) of *n*BuLi and 1.60 g (6.90 mmol) of ZrCl₄. The product contained 0.5 eq of cocrystallized toluene. Anal. calc. for $C_{27}H_{24}Cl_2SiZr + 0.5$ PhMe: C, 62.65; H, 4.83. Found: C, 62.44; H, 4.90. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.68 (d, 1H, *J* = 8.1 Hz), 7.21–7.45 (m, 10H), 6.74 (m, 1H), 6.43 (d, 1H, *J* = 8.9 Hz), 6.05 (s, 1H), 5.86 (s, 1H), 2.42 (s, 3H), 0.90 (s, 6H). ¹³C NMR (100 MHz, *o*-Cl₂C₆D₄): δ 135.8, 134.5, 134.1, 129.5, 129.0,

128.4, 128.2, 128.0, 127.8, 126.7, 126.4, 125.8, 125.6, 125.5, 125.3, 123.3, 122.9, 107.3, 106.5, 88.6, 13.4, 1.2, -4.0.

Syn-and anti-**C24**. According to General procedure 3, 1.30 g (16%) of syn-**C24** and 1.50 g (17%) of the isomeric anti-**C24** were obtained from 6.10 g (13.8 mmol) of **L24** in 200 ml of dry ether, 11.1 ml (27.7 mmol, 2.5 M) of *n*BuLi and 3.20 g (13.8 mmol) of ZrCl₄. Syn-**C24** was isolated as described in General procedure 3, whereas the isomeric compound anti-**C24** precipitated from the mother liquor. Syn-**C24**. Anal. calc. for $C_{32}H_{26}Cl_2SiZr: C, 63.98; H,$

4.36. Found: C 64.14; H 4.42. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.78 (d, 1H, *J* = 8.9 Hz), 7.66–7.68 (m, 1H), 7.34–7.51 (m, 11H), 7.21–7.25 (m, 3H), 6.75–6.79 (m, 1H), 6.45–6.47 (d, 1H, *J* = 8.5 Hz), 6.24 (s, 1H), 6.15 (s, 1H), 1.02 (s, 3H), 0.97 (s, 3H). ¹³C NMR (100 MHz, *o*-Cl₂C₆D₄): δ 134.8, 134.74, 134.68, 134.2, 131.4, 129.5, 129.4, 128.4, 128.10, 128.05, 128.0, 127.7, 127.3, 126.7, 125.7, 125.6, 125.5, 125.1, 123.5, 122.9, 118.9, 108.1, 107.2, 91.05, 1.5, –4.2. *Anti*-**C24**. Anal. calc. for C₃₂H₂₆Cl₂SiZr: C, 63.98; H, 4.36. Found: C, 64.33; H, 4.52. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.87 (d, 1H, *J* = 8.7 Hz), 7.63 (d, 1H, *J* = 8.7 Hz), 7.63 (d, 1H, *J* = 8.7 Hz), 7.33–7.55 (m, 13H), 7.20–7.24 (m, 3H), 6.25 (s, 1H), 5.97 (s, 1H), 1.17 (s, 3H), 0.62 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 135.12, 135.07, 134.48, 134.46, 134.4, 132.6, 131.9, 130.6, 130.1, 129.8, 128.8, 128.7, 128.5, 128.4, 128.3, 127.7, 127.4, 126.5, 126.4, 126.1, 125.1, 123.6, 116.7, 111.1, 106.8, 91.2, 0.5, –2.1.

Syn-**C25**. According to *General procedure 3*, 2.20 g (28%) of the title compound was obtained from 5.15 g (10.5 mmol) of **L25** in 200 ml of dry ether, 8.4 ml (21.0 mmol, 2.5 M) of *n*BuLi and 2.45 g (10.5 mmol) of ZrCl₄. The product contained 1 eq of cocrystallized toluene. Anal. calc. for $C_{36}H_{28}Cl_2SiZr + PhMe: C$, 69.51; H, 4.88. Found: C, 69.39; H, 4.75. ¹H NMR (400 MHz, CD_2Cl_2): δ 8.16 (d, 1H, *J* = 8.3 Hz), 7.71–7.76 (m, 2H), 7.42–7.57 (m, 13H), 7.14–7.33 (m, 2H), 6.96 (d, 1H, *J* = 8.9 Hz), 6.33 (d, 1H, *J* = 9.0 Hz), 6.20 (s, 1H), 6.12 (s, 1H), 1.08 (s, 3H), 0.94 (s,

3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 136.2, 135.0, 134.8, 134.6, 133.8, 133.6, 132.7, 132.5, 130.5, 129.9, 129.3, 128.6, 128.5, 128.4, 128.3, 128.1, 127.8, 127.3, 126.9, 126.8, 126.1, 125.1, 125.0, 124.9, 124.0, 123.2, 121.4, 109.5, 108.1, 95.1, 2.0, -3.7.

2D 1H-1H NOESY spectra Complex C21

References

1. Alcalde, E.; Mesquida, N.; Frigola, *J.*; López-Pérez, S.; Mercè, R., Indene-based scaffolds. Design and synthesis of novel serotonin 5-HT6receptor ligands. *Organic & Biomolecular Chemistry* **2008**,*6* (20), 3795-3810.

2. Waugh, T.; Morrison, H., Upper Excited State Photochemistry: Solution and Gas Phase Photochemistry and Photophysics of 2- and 3-Cyclopropylindene1. *J. Am. Chem. Soc.* **1999**,*121* (13), 3083-3092.

3. Resconi, L.; Piemontesi, F.; Balboni, D. Preparation of amorphous polymers of propylene in the presence of metallocene catalysts and preparation of the catalysts. EP 693506, 1996.

4. Handler, N.; Brunhofer, G.; Studenik, C.; Leisser, K.; Jaeger, W.; Parth, S.; Erker, T., 'Bridged' stilbene derivatives as selective cyclooxygenase-1 inhibitors. *Biorg. Med. Chem.* **2007**,*15* (18), 6109-6118.

5. Alcock, N. J.; Mann, I.; Peach, P.; Wills, M., Dynamic kinetic resolution–asymmetric transfer hydrogenation of 1-aryl-substituted cyclic ketones. *Tetrahedron: Asymmetry* **2002**,*13* (22), 2485-2490.

6. Sullivan, J. M.; Barnes, H. H. Coupling reactions of 2-substituted, 7-haloindenes with aryl substituents to produce metallocene catalyst ligands. WO 2000007968, 2000.

7. Becke, S.; Weiss, T.; Lang, H. Olefin polymerization catalysts based on 1,3-disubstituted 2position bridged indenyl transition metal complexes. US 20030027954, 2002.

 Ivchenko, N. B.; Ivchenko, P. V.; Nifant'ev, I. E.; Kotov, V. V., Synthesis of [μ-methyllenebis(η5-3-tert-butyl-2-methylinden-1-yl)dichlorozirconium(IV)]. *Russ. Chem. Bull.* **2000**,*49* (5), 942-945.

9. Finze, M.; Reybuck, S. E.; Waymouth, R. M., Propylene Polymerization with 1,2'-Bridged Bis(indenyl)zirconium Dichlorides. *Macromolecules* **2003**,*36* (25), 9325-9334.

Polymerization

Detailed polymerization procedure

The polymerizations were carried out in a Parallel Pressure Reactor (PPR48). This equipment, containing 48 reactors mounted in a triple glove-box, was sold commercially by the company Symyx, thereafter by the company Freeslate. The applied polymerization protocols were as follows:

Prior to the execution of a library, the 48 PPR cells (reactors) undergo 'bake-and-purge' cycles overnight (8 h at 90-140°C with intermittent dry N₂ flow), to remove any contaminants and left-overs from previous experiments. After cooling to glove-box temperature, the stir tops are taken off, and the cells are fitted with disposable 10 mL glass inserts and PEEK stirring paddles (previously hot-dried under vacuum); the stir tops are then set back in place, the cells are loaded with the proper amounts of toluene (in the range 3.5-4.0 mL), 1-hexene (in the range 0.05 - 0.5 mL) and MAO solution (100 μ L of 0.1 mol L⁻¹ in toluene), thermostated at 80°C, and brought to the operating pressure of 65 psi_g with ethylene. At this point, the catalyst injection sequence is started; proper volumes of a toluene 'chaser', a solution of the precatalyst in toluene (typically in the range 0.05 - 0.02 mmol L⁻¹), and a toluene 'buffer' are uptaken into the slurry needle, and then injected into the cell of destination. The reaction is left to proceed under stirring (800 rpm) at constant temperature and pressure with continuous feed of ethylene for 5-60 min, and quenched by over-pressurizing the cell with dry air (preferred to other possible catalyst poisons because in case of cell or quench line leaks oxygen is promptly detected by the dedicated glove-box sensor).

After quenching, the cells are cooled down and vented, the stir-tops are removed, and the glass inserts containing the reaction phase are taken out and transferred to a Genevac EZ2-Plus centrifugal evaporator, where all volatiles are distilled out and the polymers are thoroughly dried overnight. Reaction yields are double-checked against on-line monomer conversion measurements by robotically weighing the dry polymers in a Bohdan Balance Automator while still in the reaction vials (subtracting the pre-recorded tare). Polymer aliquots are then sampled out for the characterizations.

Catalyst	R _n *	M _n (kDa)	M _w (kDa)	PDI	[H] _{con} (mol%)
	2640	9	16	1.9	0.8
C1	3670	8	15	1.9	0.8
	973	38	88	2.3	1.0
meso-C2	842	42	92	2.2	1.0
****	78	26	53	2.0	1.6
1ac-02	64	20	49	2.5	1.6
C3	1830	8	15	1.9	5.0
0.5	2230	7	15	2.0	5.2
C4	4840	13	30	2.3	3.3
	4690	13	27	2.1	3.2
C5	1426	50	106	2.1	7.4
	1348	54	115	2.1	7.7
C6	147	34	70	2.1	2.4
	158	34	72	2.1	2.1
C7	629	34	104	3.0	8.8
	655	36	105	2.9	8.8
C8	46	33	70	2.1	7.5
	54	33	68	2.0	7.4
C9	196	45	92	2.0	9.6
	284	51	100	2.0	9.3
C10	216	35	82	2.3	10.0
	202	38	87	2.3	9.8
C11	15816	7	14	2.1	4.5
	14170	10	14	2.0	4.4
C12	5308	16	33	2.1	1.3
	5020	10	33	2.1	1.3
C13	0/08	13	30	2.3	1.5
	0209	115	32	2.1	1.0
C14	737	88	243	2.1	3.6
	416	30	86	2.7	2.5
C15	516	42	89	2.2	2.0
	815	105	284	2.1	77
C16	638	87	213	2.1	7.8
	9025	9	23	2.5	4.3
C17	4210	12	25	2.1	4.3
	949	70	197	2.8	10.7
C18	867	88	207	2.4	10.0
040	4769	51	110	2.2	2.5
C19	3469	45	94	2.1	2.8
	1647	58	159	2.7	4.2
syn-C20	1449	58	157	2.7	4.1
our C04	116	55	124	2.3	4.6
sy//-621	111	58	132	2.3	4.5
SVD C22	38	42	105	2.5	4.8
Sy11-022	28	38	105	2.8	5.2
svn-C23	3412	37	91	2.5	1.0
- Syll-025	2810	33	78	2.4	1.0
anti-C24	2715	43	84	2.0	2.2
	2361	33	74	2.2	2.2
svn-C24	5206	38	76	2.0	0.8
	4613	37	78	2.1	0.8
svn-C25	2259	59	125	2.1	0.7
	2449	61	135	2.2	0.7
C26	197	40	99	2.5	6.4
	243	34	93	2.7	6.3

Table S1. Polymerization Results (1-hexene feeding ratio 5 v/v%)

Catalyst	1-hexene (%v/v)	R _p *	M _n (kDa)	M _w (kDa)	PDI	[H] _{cop} (mol%)
C1		3619	9	16	1.9	3.3
C1	21	2620	8	16	2.0	3.4
moso C2	20	206	18	41	2.4	3.4
meso-cz	20	191	19	39	2.1	3.2
rac-C2	12.5	31	22	40	1.9	4.5
780-02	12.0	37	14	28	1.9	4.5
C 3	Δ	2750	9	17	2.0	4.2
	т	5040	8	17	2.1	4.1
C4	6	4050	16	31	1.9	4.0
	0	3980	17	32	1.9	4.1
C5	2	2986	64	143	2.2	3.5
	۷	1622	61	141	2.3	3.6
6	10	99	27	55	2.1	4.1
	10	93	21	48	2.3	5.0
67	2	756	61	179	2.9	3.9
	۷	958	66	182	2.8	4.0
C8	2.5	53	48	116	2.4	3.9
	2.0	70	52	115	2.2	4.0
60	2	531	69	158	2.3	4.7
	۲	597	88	204	2.3	4.3
C10	16	132	104	252	2.4	3.8
010	1.0	773	69	159	2.3	3.9
C12	15	6745	11	31	2.8	3.7
012	10	6234	13	31	2.4	3.7
C13	15	3239	15	30	2.0	3.4
010	10	3523	14	29	2.1	3.5
C15	8	448	40	78	2.0	3.6
		317	38	94	2.4	3.4
C16	16	1400	104	278	2.7	3.2
	1.0	1000	144	394	2.7	3.2
C18	16	455	59	307	5.2	3.3
		447	91	329	3.6	3.5
C19	8	6570	49	98	2.0	3.8
		8398	51	101	2.0	3.6
svn-C21	4	124	59	132	2.2	3.8
	•	118	51	124	2.4	3.8
syn-C23	20	3853	40	79	1.9	3.0
		3295	41	82	2.0	3.0
anti-C24	10	1075	40	/8	1.9	1.9
		2091	37	/4	2.0	1.8
syn-C24	30	6257	35	/3	2.1	3.7
-		5497	32	/3	2.3	3.8
syn-C25	40	1194	61	140	2.3	2.6
-		2043	60	132	2.2	2.7
C26	2.7	1192	69	154	2.2	3.8
	1	/36	68	1/4	2.6	3./

Table S2. Polymerization Results (varying 1-hexene feeding ratio)

*Activity, in kg h⁻¹ mmol_{Zr}⁻¹ [C₂H₄]⁻¹

Examples of ¹³C NMR spectra of ethene/1-hexene copolymers

Figure S1. ¹³C NMR spectrum of a representative sample of ethene/1-hexene copolymer (**C18**, 1.6% v/v 1-hexene feeding ratio). For resonance assignment and notation see *J. Macromol. Sci., Rev. Macromol. Chem. Phys.* **1989**, *C29*, 201-317 and *Rubber Chem. Technol.* **1975**, *48*, 705.

Figure S2. ¹³C NMR spectrum of a representative sample of ethene/1-hexene copolymer (**C18**, 5 v/v% 1-hexene feeding ratio. For resonance assignment and notation see *J. Macromol. Sci., Rev. Macromol. Chem. Phys.* **1989**, *C29*, 201-317 and *Rubber Chem. Technol.* **1975**, *48*, 705. Peaks marked with astericks are due to the stabilizier.

QSAR Models – Single Descriptor Correlations

Procedures to determine specialized descriptors

Ring aperture. The ring aperture was determined as the sum of the distances between the two front facing carbon atoms of each C5-ring of the indenyl fragments in a cross pattern.

 C_{Si-Zr} . Sum of the distances of the Si-bound carbon atoms of the C5 rings.

Zr-Cl. Sum of Zr-Cl bond lengths.

Si-C. Sum of the bond lengths to the C5 rings

Si-C_{sp3}. Sum of the two Si-methyl bonds.

%V_{Bur}. The coordinate system in SambVca was determined with Zr at the center of the sphere, Si for z-axis definition and Cl on the 2-indenyl side for xz-plane definition. This way, the 2-indenyl ligand occupies the SW quadrant. H atoms were included in the procedure, the ZrCl₂fragment was deleted. The sphere size used is specifically mentioned in the tables.

Catalyst	х _н	$\Delta \Delta G^{\dagger}_{Incorporation}$	M _w	$\Delta \Delta G^{\dagger}_{\text{Termination}}$	activity
	Тур	e I			
С3	5.1	2.10	15	3.89	2030
C4	3.3	2.41	32	4.43	4753
C5	7.6	1.82	142	5.48	1387
C6	2.3	2.66	52	4.77	153
С7	8.8	1.72	181	5.65	642
C8	7.5	1.83	116	5.34	50
С9	9.4	1.67	181	5.65	240
C10	9.9	1.63	205	5.74	209
C11	4.5	2.19	14	3.84	14993
C12	1.3	3.07	31	4.40	5164
C13	1.5	2.96	30	4.38	6014
C14	3.7	2.33	226	5.81	858
C15	2.6	2.58	86	5.12	466
C16	7.7	1.81	336	6.09	815
C17	4.3	2.22	24	4.22	6617
C18	10.4	1.60	329	6.07	908
C26	6.4	1.94	164	5.58	220
	Тур	e II			
C20	4.2	2.24	158	5.55	1548
C21	4.6	2.17	128	5.41	114
C22	5	2.11	104	5.26	33
C23	1	3.25	80	5.07	3111
C24_syn	0.8	3.41	73	5.01	4910
C24_anti	2.2	2.69	76	5.04	2538
C25	0.7	3.50	136	5.45	2354

Table S3. Experimental Performance Indicators. $\Delta\Delta G^{\ddagger}$ at 80°C.

	Descriptor No.	1	2	3	4	5	7	6
	Descriptor	Si-Zr	C _{si} -Zr	Zr-Cl	Si-C	Si-C _{sp} ³	CI-CI	ring aperture
Catalyst								
			Cata	alysts Type	e I			
C3		3.3825	5.021	4.8613	3.808	3.7974	3.783	10.6164
C4		3.3629	5.011	4.8631	3.8211	3.8034	3.779	10.6253
C5		3.3654	5.014	4.8615	3.8222	3.8061	3.726	10.638
C6		3.3499	5.01	4.8616	3.8423	3.8119	3.715	10.5807
C7		3.3782	5.03	4.8637	3.825	3.8013	3.704	10.6088
C8		3.3731	5.025	4.8625	3.8219	3.8016	3.686	10.6278
C9		3.3787	5.03	4.8643	3.8245	3.802	3.699	10.608
C10		3.376	5.003	4.8639	3.8228	3.8007	3.699	10.611
C11		3.3613	4.999	4.8517	3.8068	3.7989	3.764	10.7359
C12		3.3563	4.999	4.8658	3.8198	3.8056	3.766	10.676
C13		3.3505	4.995	4.8662	3.8211	3.8064	3.771	10.6783
C14		3.3594	5.004	4.8653	3.8225	3.8015	3.696	10.6922
C15		3.3348	4.974	4.8579	3.8109	3.8012	3.711	10.6472
C16		3.3818	5.034	4.8643	3.8275	3.8013	3.708	10.5861
C17		3.3769	5.012	4.8504	3.8077	3.7694	3.696	10.641
C18		3.3778	5.029	4.8636	3.825	3.8015	3.706	10.6184
C26		3.3712	5.03	4.8611	3.80796	3.7891	3.689	10.5148
INCORP.		0.60	0.48	0	0	0.03	0.31	0.17
MW		0.08	0.19	0.24	0.20	0.03	0.57	0.20
ACTIVITY		0.02	0.12	0.12	0.19	0.05	0.51	0.39
			Cata	alysts Type	П			
C20		3.3683	5.013	4.8618	3.8007	3.7927	3.729	10.6292
C21		3.3685	5.012	4.8596	3.8134	3.7946	3.684	10.6468
C22		3.387	5.037	4.8628	3.8166	3.7895	3.622	10.5961
C23		3.3405	4.995	4.8625	3.8016	3.7878	3.737	10.7037
C24_syn		3.3346	4.992	4.8537	3.8033	3.7878	3.747	10.7316
C24_anti		3.3598	5.008	4.8484	3.8025	3.7868	3.676	10.6457
C25		3.3587	5.007	4.8483	3.8005	3.7871	3.676	10.793
INCORP.		0.68	0.58	0.30	0.44	0.54	0.22	0.86
MW		0.33	0.18	0.05	0.01	0.41	0.04	0.01
ACTIVITY		0.70	0.75	0.26	0.91	0.30	0.57	0.42

Table S4. 1D Geometric Descriptors – Single correlations. Distances.

	Descriptor No.	8	9	10	11	13	14	12	15	18	20	19
	Descriptor	Cl-Zr-Cl	C-Si-C	C-Si-C _{sp} ³	Si-Zr-Cl	smallest Si-Zr-Cl	largest Si-Zr-Cl	Plane angle	CIZrSiC _{Ind}	shortest Cl-H	2 nd Shortest Cl-H	Σ two shortest Cl-H
Catalyst												
							Catalysts Type	1				
С3		102.19	94.27	105.44	257.8	126.57	131.23	63.7	-1.16	3.113	3.156	6.269
C4		101.97	94.89	102.66	258.01	123.64	134.37	62.4	1.85	2.953	3.252	6.205
C5		100.06	94.93	101.9	259.85	128.59	131.26	62.4	3.24	2.689	3.137	5.826
C6		99.65	95.58	99.52	260.29	122.13	138.16	61.5	4.95	2.716	3.438	6.154
C7		99.21	94.79	102.42	260.69	128.57	132.12	62	4.58	2.663	3.045	5.708
C8		98.58	94.89	103.74	261.31	129.6	131.71	62.2	3.49	2.586	3.064	5.65
C9		99.02	94.8	102.32	260.86	128.29	132.57	62	4.58	2.761	3.027	5.788
C10		99.02	94.89	102.76	260.86	128.87	131.99	62	4.56	3.044	3.075	6.119
C11		101.75	94.63	105.1	258.24	127.66	130.58	64.7	-0.77	3.067	3.141	6.208
C12		101.42	94.91	101.71	258.56	124.77	133.79	63.1	3.56	2.872	3.267	6.139
C13		101.6	95.07	101.75	258.39	124.1	134.29	63	2.44	2.902	3.254	6.156
C14		98.89	94.96	102.47	261.05	130.06	130.99	63.1	4.43	2.67	3.094	5.764
C15		99.63	95.2	103.6	260.36	127.96	132.4	61.7	-1.29	3.432	3.432	6.864
C16		99.34	94.78	102.32	260.59	127.97	132.62	61.8	3.96	2.666	3.025	5.691
C17		99.3	94.09	105.82	260.68	119.34	141.34	65	-1.38	2.77	3.154	5.924
C18		99.29	94.8	102.34	260.58	128.91	131.67	62.2	4.68	2.662	3.051	5.713
C26		98.72	94.61	108.07	261.19	118.32	142.87	62.5	0.1	2.754	3.229	5.983
INCORP.		0.30	0.12	0.05	0.29	0.16	0.04	0.05	0.06	0.12	0.59	0.33
MW		0.64	0.07	0.05	0.62	0.18	0.02	0.46	0.41	0.23	0.22	0.29
ACTIVITY		0.57	0.15	0.02	0.56	0.05	0	0.53	0.20	0.08	0.01	0.06
							Catalysts Type	II				
C20		100.17	94.51	106.2	259.82	122.57	137.25	63	8.71	2.744	3.233	5.977
C21		98.58	94.53	105.75	261.35	125.51	135.84	63.2	9.98	2.653	2.653	5.371
C22		96.29	94.47	106.81	263.62	130.9	132.72	62.4	9.48	2.588	2.588	5.227
C23		100.45	95.08	108.75	259.54	121.33	138.21	63.8	5.99	2.76	2.98	5.74
C24_syn		101.05	95.17	108.73	258.95	119.57	139.38	64.1	5.45	2.796	3.562	6.358
C24_anti		98.61	94.47	109.06	261.37	118.68	142.69	64.8	-6.04	2.776	3.562	6.338
C25		98.63	94.71	108.74	261.34	126.05	135.29	65.6	6.12	2.687	2.681	5.368
INCORP.		0.29	0.61	0.71	0.29	0.19	0.10	0.60	0.08	0.31	0.08	0.09
MW		0.05	0.30	0.48	0.05	0.27	0.35	0.04	0.34	0.23	0.30	0.30
ACTIVITY		0.66	0.36	0.52	0.66	0.70	0.52	0.48	0.25	0.85	0.50	0.52

Table S5. 1D Geometric Descriptors – Single correlations. Angles and Dihedrals.

	Descriptor No.	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
Catalyst	Descriptor	4	d _{xy}	4	d _{xz}	4	d _{yz}	4d	x ² -y ²	4	d _z ²	5	is	5	p _x	5	p _y	5	pz
		Occ	E	Occ	E	Occ	E	Occ	E	Occ	E	Occ	E	Occ	E	Occ	E	Occ	E
									Cataly	sts Type I									
С3		0.44522	-0.0524	0.41	-0.05456	0.43601	-0.0602	0.39092	-0.05126	0.44685	-0.03269	0.17825	0.9368	0.16079	0.32541	0.19316	0.3738	0.19703	0.19884
C4		0.45057	-0.03601	0.41964	-0.04935	0.36614	-0.03934	0.39453	-0.0643	0.48861	-0.048	0.17501	1.05362	0.15859	0.35337	0.19293	0.29003	0.18726	0.26116
C5		0.40822	-0.04035	0.44682	-0.03846	0.41256	-0.0512	0.40456	-0.04867	0.43437	-0.05152	0.17498	1.0473	0.1599	0.36623	0.18997	0.18386	0.18615	0.34591
C6		0.37824	-0.0512	0.46545	-0.04501	0.45887	-0.06246	0.41796	-0.03532	0.40011	-0.04356	0.17605	1.06724	0.16474	0.33796	0.18861	0.17874	0.18782	0.37191
C7		0.36912	-0.0575	0.47232	-0.03602	0.43921	-0.06276	0.428	-0.03147	0.39714	-0.04911	0.17633	1.05045	0.18192	0.25536	0.17158	0.25211	0.18396	0.37907
C8		0.36522	-0.06042	0.46587	-0.03574	0.44355	-0.06272	0.42982	-0.02813	0.39966	-0.04965	0.17639	1.04481	0.17664	0.28296	0.17708	0.22767	0.18326	0.37962
С9		0.37274	-0.05073	0.48194	-0.03858	0.44566	-0.05306	0.42028	-0.0391	0.38412	-0.05049	0.17641	1.04977	0.18529	0.23205	0.17368	0.26862	0.1779	0.38867
C10		0.3858	-0.04776	0.47644	-0.04271	0.42425	-0.03606	0.4228	-0.04871	0.396	-0.05628	0.17634	1.06162	0.18675	0.21957	0.18356	0.29001	0.16664	0.38047
C11		0.40126	-0.057	0.42259	-0.03531	0.40807	-0.03508	0.4387	-0.04862	0.43697	-0.06799	0.17345	1.03447	0.15792	0.34314	0.1805	0.31038	0.19807	0.23089
C12		0.44636	-0.03929	0.42939	-0.03357	0.38873	-0.04342	0.38403	-0.05377	0.44559	-0.04641	0.17149	1.08993	0.15057	0.35321	0.18715	0.33727	0.18834	0.20341
C13		0.42522	-0.03282	0.43989	-0.03284	0.36556	-0.03616	0.39738	-0.05523	0.46097	-0.05455	0.17096	1.09787	0.15085	0.36991	0.18791	0.24263	0.18607	0.28659
C14		0.3615	-0.05617	0.46628	-0.03664	0.42578	-0.06134	0.43209	-0.022	0.40044	-0.04357	0.17187	1.1006	0.17556	0.25479	0.16703	0.24937	0.18272	0.37987
C15		0.47362	-0.04862	0.42905	-0.04756	0.40923	-0.0414	0.35673	-0.05509	0.46609	-0.05788	0.17783	0.97746	0.17277	0.40636	0.19612	0.13093	0.17453	0.33942
C16		0.42235	-0.03874	0.37577	-0.03754	0.44261	-0.04268	0.41635	-0.05198	0.4458	-0.06321	0.17577	1.07425	0.18876	0.22602	0.15372	0.35293	0.19557	0.30766
C17		0.48276	-0.02631	0.38663	-0.0526	0.45793	-0.06428	0.36561	-0.05975	0.41664	-0.03816	0.17451	1.07889	0.15182	0.3765	0.20215	0.13496	0.18741	0.38792
C18		0.43137	-0.05553	0.4211	-0.02839	0.3975	-0.04614	0.41892	-0.0381	0.42719	-0.06362	0.17531	1.08682	0.16818	0.35889	0.17471	0.26909	0.18981	0.26136
C26		0.40755	-0.0657	0.45661	-0.02928	0.41365	-0.0742	0.42529	-0.03853	0.44839	-0.06047	0.18378	0.92268	0.1951	0.30488	0.17998	0.25151	0.19488	0.33692
INCORP.		0.15	0.17	0.03	0.02	0.19	0.05	0.25	0.13	0.22	0.07	0.22	0.03	0.42	0.33	0.21	0.02	0.01	0.13
MW		0.22	0.12	0.13	0.23	0.05	0.03	0.18	0.3	0.17	0.14	0.07	0.02	0.60	0.34	0.47	0	0.14	0.29
ACTIVITY		0.33	0.32	0.37	0.02	0.26	0.2	0.13	0.4	0.29	0	0.31	0.05	0.55	0.25	0.10	0.05	0.19	0.40
									Cataly	sts Type II									
C20		0.43713	-0.03631	0.3797	-0.04262	0.45048	-0.04859	0.40364	-0.06661	0.46244	-0.06141	0.17823	0.97404	0.19863	0.19911	0.15896	0.37587	0.19469	0.31646
C21		0.41121	-0.06446	0.40113	-0.06069	0.42639	-0.03447	0.42971	-0.03773	0.45872	-0.05576	0.17798	0.96414	0.18872	0.20837	0.17592	0.35774	0.18581	0.32098
C22		0.41258	-0.06617	0.4513	-0.0574	0.40803	-0.03831	0.4223	-0.04234	0.43167	-0.05785	0.1804	0.97062	0.19604	0.1906	0.18221	0.33878	0.17589	0.34115
C23		0.43049	-0.05176	0.36939	-0.04014	0.45955	-0.04136	0.41444	-0.05543	0.45912	-0.07049	0.1777	0.94853	0.19134	0.24238	0.1574	0.35395	0.20521	0.2862
C24_syn		0.40854	-0.06436	0.39128	-0.04441	0.44531	-0.03792	0.43518	-0.04471	0.4502	-0.07299	0.17738	0.96828	0.17662	0.28623	0.1683	0.31914	0.20687	0.25995
C24_anti		0.48638	-0.04036	0.3889	-0.04948	0.43874	-0.06238	0.36663	-0.05924	0.45068	-0.05457	0.17874	0.98928	0.16016	0.3642	0.20827	0.14695	0.1878	0.36643
C25		0.41931	-0.06207	0.40165	-0.05076	0.44418	-0.07159	0.43071	-0.04182	0.44176	-0.05175	0.17658	0.98124	0.16651	0.32597	0.1964	0.18484	0.19042	0.37434
INCORP.		0	0.03	0.19	0.29	0.4	0.16	0.05	0.01	0	0.13	0.56	0.01	0,31	0.40	0	0.16	0.48	0.04
MW		0.08	0.01	0.02	0.08	0.02	0.03	0.06	0	0.01	0.29	0.01	0.02	0.14	0.20	0.01	0.05	0.15	0.14
ACTIVITY		0.13	0.20	0.66	0.68	0.81	0.20	0.05	0.23	0.18	0.17	0.50	0.01	0.25	0.41	0	0.13	0.68	0.06

Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Occ).

	No.	38	39	40	41	42	43	44
	Descriptor							
Catalyst	5s	-4d _{xy} E	5s-4dz ² E	5s-5p _x E	5s-5p _z E	Σ 5p Occ	Σ 4d Occ.	Σ 5 Occ.
			Catalyst	s Type I				
C3	0	.9892	0.96949	0.61139	0.73796	0.55098	2.129	0.72923
C4	1.	08963	1.10162	0.70025	0.79246	0.53878	2.11949	0.71379
C5	1.	08765	1.09882	0.68107	0.70139	0.53602	2.10653	0.711
C6	1.	11844	1.1108	0.72928	0.69533	0.54117	2.12063	0.71722
C7	1.	10795	1.09956	0.79509	0.67138	0.53746	2.10579	0.71379
C8	1.	10523	1.09446	0.76185	0.66519	0.53698	2.10412	0.71337
С9	1	.1005	1.10026	0.81772	0.6611	0.53687	2.10474	0.71328
C10	1.	10938	1.1179	0.84205	0.68115	0.53695	2.10529	0.71329
C11	1.	09147	1.10246	0.69133	0.80358	0.53649	2.10759	0.70994
C12	1.	12922	1.13634	0.73672	0.88652	0.52606	2.0941	0.69755
C13	1.	13069	1.15242	0.72796	0.81128	0.52483	2.08902	0.69579
C14	1.	15677	1.14417	0.84581	0.72073	0.52531	2.08609	0.69718
C15	1.	02608	1.03534	0.5711	0.63804	0.54342	2.13472	0.72125
C16	1.	11299	1.13746	0.84823	0.76659	0.53805	2.10288	0.71382
C17	1	.1052	1.11705	0.70239	0.69097	0.54138	2.10957	0.71589
C18	1.	14235	1.15044	0.72793	0.82546	0.5327	2.09608	0.70801
C26	0.	98838	0.98315	0.6178	0.58576	0.56996	2.15149	0.75374
INCORP.		0.01	0.01	0.09	0.18	0.08	0	0.11
MW		0.06	0.05	0.26	0.13	0	0.02	0
ΑCTIVITY		0.01	0.04	0.05	0.47	0.09	0.06	0.13
			Catalyst	s Type II				
C20	1.	01035	1.03545	0.77493	0.65758	0.55228	2.13339	0.73051
C21	1	.0286	1.0199	0.75577	0.64316	0.55045	2.12716	0.72843
C22	1.	03679	1.02847	0.78002	0.62947	0.55414	2.12588	0.73454
C23	1.	00029	1.01902	0.70615	0.66233	0.55395	2.13299	0.73165
C24_syn	1.	03264	1.04127	0.68205	0.70833	0.55179	2.13051	0.72917
C24_anti	1.	02964	1.04385	0.62508	0.62285	0.55623	2.13133	0.73497
C25	1.	04331	1.03299	0.65527	0.6069	0.55333	2.13761	0.72991
INCORP.		0.01	0.04	0.52	0.05	0.01	0.46	0.07
MW		0	0.06	0.27	0.17	0.20	0.04	0.14
ACTIVITY		0.08	0.21	0.48	0.12	0.03	0.58	0.04

Table S6. Energetic Descriptors – Single correlations. Orbital Energies (E) and Occupations (Occ). (Ctd.)

Table S7. Energetic Descriptors – HOMO and LUMO energies.

	45	46	47
	номо	LUMO	LUMO-HOMO
Catalyst			
	Catal	ysts Type I	
C3	-0.2584	-0.04965	0.20875
C4	-0.25806	-0.04861	0.20945
C5	-0.25733	-0.05042	0.20691
C6	-0.25746	-0.0516	0.20586
C7	-0.25759	-0.055	0.20259
C8	-0.25775	-0.05431	0.20344
C9	-0.25675	-0.05395	0.2028
C10	-0.25659	-0.05354	0.20305
C11	-0.25371	-0.05205	0.20166
C12	-0.25531	-0.04864	0.20667
C13	-0.25536	-0.04868	0.20668
C14	-0.25537	-0.0536	0.20177
C15	-0.24929	-0.04992	0.19937
C16	-0.25718	-0.05656	0.20062
C17	-0.25469	-0.05076	0.20393
C18	-0.2549	-0.0558	0.1991
C26	-0.26045	-0.05268	0.20777
INCORP.	0.12	0.58	0.12
MW	0.03	0.60	0.26
ACTIVITY	0.08	0.28	0.04
	Cataly	sts Type II	
C20	-0.2615	-0.05413	0.20737
C21	-0.26106	-0.05478	0.20628
C22	-0.26108	-0.05945	0.20163
C23	-0.25925	-0.05438	0.20487
C24_syn	-0.25612	-0.05685	0.19927
C24_anti	-0.25389	-0.05275	0.20114
C25	-0.25542	-0.05824	0.19718
INCORP.	0.47	0.02	0.42
MW	0.27	0.02	0.11
ACTIVITY	0.41	0.17	0.07

Table S8. 3D Geometric Descriptors – Single correlations.

	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
				5.0 Å	4					3	.5 Å					
Catalyst	$%V_{Bur}$	SW	NW	NE	SE	SW-NW	SE-NE	V_{Bur}	SW	NW	NE	SE	SW-NW	SE-NE	Max	Min
							Cataly	sts Type	I							
С3	56.5	40.1	62.4	60.8	62.6	22.3	1.8	68.2	65.1	70.6	68.4	68.7	5.5	0.3	5.5	0.3
C4	59.4	49.8	60.7	63	64	10.9	1	69.1	66.2	68.5	70.5	71.1	2.3	0.6	2.3	0.6
C5	61.4	58.5	60.6	62.7	63.9	2.1	1.2	69.5	68.4	68.6	70.1	71	0.2	0.9	0.9	0.9
C6	62.5	60.5	60.8	64.4	64.5	0.3	0.1	69.4	66.4	67.1	71.7	72.5	0.7	0.8	0.8	0.8
C7	61.4	58.9	61	62.3	63.6	2.1	1.3	69.9	70.7	69.1	69.6	70.4	1.6	0.8	1.6	0.8
C8	61.8	59	61.4	62.8	64.1	2.4	1.3	70.1	70.1	69	70.1	71.1	1.1	1	1.1	1
C9	61.5	59.1	61	62.3	63.5	1.9	1.2	69.9	70.8	69.1	69.6	70.3	1.7	0.7	1.7	0.7
C10	62	60.2	61.5	62.4	63.7	1.3	1.3	69.9	70.6	68.8	69.7	70.6	1.8	0.9	1.8	0.9
C11	61.4	57.4	62.1	61.6	64.5	4.7	2.9	69.7	68.6	70.5	69.2	70.4	1.9	1.2	1.9	1.2
C12	62.3	61.4	60.7	62.9	64.2	0.7	1.3	70.1	69.7	69.1	70.1	71.3	0.6	1.2	1.2	0.6
C13	62.6	62.5	61	62.8	64.3	1.5	1.5	70	69.5	69	70.4	71.3	0.5	0.9	0.9	0.5
C14	64	68.2	61.3	62.5	63.9	6.9	1.4	70.7	72.6	69.4	69.9	71	3.2	1.1	3.2	1.1
C15	56.8	49.9	62.4	63.5	51.4	12.5	12.1	68.5	69.1	69.9	66.7	68.4	0.8	1.7	1.7	0.8
C16	62.8	60.9	61.3	62	66.7	0.4	4.7	70.2	70.9	69.3	69.4	71.1	1.6	1.7	1.7	1.6
C17	62.4	61.5	64	59.3	64.9	2.5	5.6	70	72	72.1	67.2	68.6	0.1	1.4	1.4	0.1
C18	63.9	62.3	60.8	62.4	69.5	1.5	7.1	70.2	70.8	68.9	69.6	71.4	1.9	1.8	1.9	1.8
C26	56.1	59.5	56.5	47.8	60.7	3	12.9	68.8	74.2	71.4	62.9	66.6	2.8	3.7	3.7	2.8
INCORP.	0	0	0.01	0.04	0.07	0.02	0.01	0.01	0.09	0.01	0.02	0.02	0.06	0.01	0.02	0.14
MW	0.07	0.22	0.14	0.01	0.01	0.18	0.04	0.15	0.33	0.08	0	0.01	0	0.11	0.02	0.31
ACTIVITY	0.01	0.01	0.11	0.01	0.03	0.04	0.01	0	0.05	0.11	0.01	0	0	0.03	0	0.12
							Cataly	sts Type	11							
C20	58.5	50	49.7	69.2	65	0.3	4.2	69.1	66.6	65.8	72.3	71.9	0.8	0.4	0.8	0.4
C21	60.3	58.2	49	69	65.1	9.2	3.9	69.2	68.1	64.7	71.9	72.1	3.4	0.2	3.4	0.2
C22	60.5	58.1	50.5	68.4	64.9	7.6	3.5	69.9	70.7	66.1	71.2	71.8	4.6	0.6	4.6	0.6
C23	58.3	49	49.7	69.3	65.2	0.7	4.1	68.7	64.6	65.6	72.5	72.2	1	0.3	1	0.3
C24_syn	60.3	54.8	49.8	69.4	67.1	5	2.3	69.4	65.8	65.8	72.7	73.2	0	0.5	0.5	0
C24_anti	60.5	63.5	70.6	47.1	60.7	7.1	13.6	69.5	73.7	75.7	62.4	66.3	2	3.9	3.9	2
C25	60.8	55.2	49.9	68.8	69.2	5.3	0.4	68.8	64.8	65.6	71.9	73	0.8	1.1	1.1	0.8
INCORP.	0.05	0.11	0.09	0.08	0.11	0.07	0.08	0.30	0.31	0	0.02	0.06	0.56	0	0.43	0
MW	0.01	0.06	0.20	0.18	0.13	0.01	0.18	0.05	0.06	0.21	0.15	0.12	0.02	0.15	0.01	0.04
ACTIVITY	0.08	0.1	0.05	0.04	0.01	0.34	0.01	0.33	0.15	0.06	0.01	0.07	0.09	0.07	0.57	0.02

	64	65	66	67	68	69	70	71	72
		NPA			Hirshfeld			CM5	
Catalyst	q _{Zr}	$q_{\rm Cl}$	$q_{\rm ZrCl_2}$	$q_{\rm Zr}$	$q_{ m Cl}$	$q_{\rm ZrCl_2}$	q _{Zr}	$q_{ m Cl}$	$q_{\rm ZrCl_2}$
					Catalysts Type I				
С3	0.95932	-0.60001	0.35931	0.516171	-0.56162	-0.04545	0.978083	-0.71357	0.264512
C4	0.97619	-0.60339	0.3728	0.514464	-0.55516	-0.0407	0.976825	-0.70723	0.269591
C5	0.99265	-0.60496	0.38769	0.515032	-0.54222	-0.02719	0.975636	-0.69563	0.280006
C6	0.97655	-0.60003	0.37652	0.510882	-0.54155	-0.03066	0.969231	-0.69488	0.274352
C7	0.99045	-0.60452	0.38593	0.515267	-0.54326	-0.02799	0.976443	-0.69614	0.2803
C8	0.9923	-0.60385	0.38845	0.515925	-0.54178	-0.02585	0.975337	-0.69516	0.280179
C9	0.99158	-0.60572	0.38586	0.514848	-0.54458	-0.02973	0.975717	-0.69736	0.278358
C10	0.98995	-0.60533	0.38462	0.515264	-0.53774	-0.02247	0.976015	-0.6909	0.285119
C11	0.99016	-0.59314	0.39702	0.514791	-0.5439	-0.02911	0.976487	-0.69743	0.27906
C12	1.01364	-0.61542	0.39822	0.511273	-0.54421	-0.03294	0.974463	-0.69668	0.277786
C13	1.01976	-0.61475	0.40501	0.51217	-0.54389	-0.03172	0.975489	-0.69627	0.279216
C14	1.02285	-0.61579	0.40706	0.513021	-0.53073	-0.0177	0.97448	-0.6844	0.290081
C15	0.95975	-0.59645	0.3633	0.517991	-0.56499	-0.047	0.982896	-0.71746	0.26544
C16	0.99382	-0.60175	0.39207	0.511361	-0.53667	-0.02531	0.974141	-0.68934	0.284803
C17	0.98508	-0.58682	0.39826	0.511289	-0.53017	-0.01888	0.974096	-0.68448	0.289612
C18	1.00471	-0.60446	0.40025	0.515076	-0.5312	-0.01613	0.976342	-0.68426	0.292087
C26	0.9167	-0.58701	0.32969	0.519016	-0.55611	-0.03709	0.983222	-0.7085	0.274722
INCORP	. 0.03	0.07	0.01	0.18	0.06	0.15	0.02	0.06	0.13
MW	0.01	0.04	0	0.04	0.13	0.21	0.04	0.13	0.22
ACTIVITY	0.08	0	0.13	0.13	0	0	0	0	0
				Catalysts Type II					
C20	0.9557	-0.59658	0.35912	0.519735	-0.5473	-0.02756	0.982361	-0.70011	0.282256
C21	0.96681	-0.59603	0.37078	0.519546	-0.53063	-0.01108	0.980162	-0.6851	0.295058
C22	0.96172	-0.5971	0.36462	0.520467	-0.52868	-0.00821	0.981375	-0.68302	0.298358
C23	0.95604	-0.60024	0.3558	0.519393	-0.54381	-0.02442	0.981511	-0.6967	0.284812
C24_syn	0.9609	-0.58686	0.37404	0.520209	-0.53757	-0.01736	0.982248	-0.69129	0.29096
C24_ant	i 0.95519	-0.57946	0.37573	0.517534	-0.53499	-0.01746	0.979954	-0.6896	0.290351
C25	0.95674	-0.58135	0.37539	0.521349	-0.51206	0.00929	0.97783	-0.66838	0.309452
INCORP	0.16	0.22	0.07	0.07	0.06	0.07	0.08	0.06	0.06
MW	0.01	0.05	0.03	0.21	0.06	0.07	0.06	0.06	0.06
ACTIVITY	0.46	0.21	0.01	0.03	0.05	0.05	0	0.06	0.01

Table S8. 3D Geometric Descriptors – Single correlations (ctd.).

QSAR Models for Catalysts of Type I and II.

Models. Regression Analysis. Catalysts Type I.

*M*_w Model

Regression S	Statistics							
Multiple R	0.9291327							
R Square	0.8632876							
Adjusted R Squa	0.8317385							
Standard Error	0.3115237							
Observations	17							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	7.966599681	2.655533	27.36336653	6.88815E-06			
Residual	13	1.261611283	0.097047					
Total	16	9.228210964						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-215.53176	95.9237222	-2.24691	0.042650198	-422.7623648	-8.3011591	-422.762365	-8.301159071
X Variable 1	-16.172315	8.143786814	-1.98585	0.068554199	-33.76589655	1.42126701	-33.7658965	1.421267008
X Variable 2	-0.4005411	0.069163303	-5.79124	6.26557E-05	-0.549959341	-0.2511229	-0.54995934	-0.251122877
X Variable 3	54.222654	19.75361851	2.744948	0.016698242	11.54755611	96.8977527	11.54755611	96.89775266

Incorporation Model

Regression	Statistics							
Multiple R	0.961598007							
R Square	0.924670727							
Adjusted R Squ	0.899560969							
Standard Error	0.146517335							
Observations	17							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	4	3.16215094	0.790538	36.82516	1.19645E-06			
Residual	12	0.257607952	0.021467					
Total	16	3.419758892						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	39.347394	10.73664027	3.664777	0.003238	15.95426444	62.74052356	15.95426444	62.74052356
X Variable 1	2.094797089	0.421203935	4.973356	0.000323	1.177072552	3.012521625	1.177072552	3.012521625
X Variable 2	-22.5319909	6.957714912	-3.23842	0.007107	-37.6915494	-7.37243241	-37.69154944	-7.372432408
X Variable 3	-217.364762	43.40808653	-5.00747	0.000305	-311.942857	-122.786666	-311.9428573	-122.7866657
X Variable 4	0.04284154	0.018531746	2.311792	0.039348	0.002464334	0.083218746	0.002464334	0.083218746

Models. Regression Analysis. Catalysts Type II.

Incor	poration	Model
	po: a	

Regression Statistics								
Multiple R	0.982739746							
R Square	0.965777408							
Adjusted R Squ	0.948666111							
Standard Error	0.138747763							
Observations	7							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	2.173081977	1.086541	56.44093	0.001171186			
Residual	4	0.077003767	0.019251					
Total	6	2.250085745						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-79.9829907	9.030126433	-8.85735	0.000897	-105.054641	-54.9113403	-105.054641	-54.91134033
X Variable 1	0.186458436	0.05185039	3.596086	0.022838	0.042498676	0.330418196	0.042498676	0.330418196
X Variable 2	5.868780297	1.073161771	5.468682	0.005439	2.88920555	8.848355044	2.88920555	8.848355044

Models. Regression Analysis. Combined Catalyst Set.

*M*_w Model

Regression Statistics								
Multiple R	0.8643704							
R Square	0.7471362							
Adjusted R Squa	0.6939017							
Standard Error	0.35856							
Observations	24							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	4	7.217557758	1.804389	14.03481381	1.72104E-05			
Residual	19	2.442739876	0.128565					
Total	23	9.660297634						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-280.18573	83.33336871	-3.36223	0.003272242	-454.6044794	-105.76699	-454.604479	-105.7669889
X Variable 1	57.049162	17.08758607	3.338632	0.00345127	21.28443369	92.8138911	21.28443369	92.81389106
X Variable 2	-4.2689719	1.161003808	-3.67697	0.001601656	-6.698980841	-1.838963	-6.69898084	-1.838963046
X Variable 3	-118.67555	36.87400645	-3.21841	0.004523536	-195.8537324	-41.497367	-195.853732	-41.49736742
X Variable 4	16.599467	7.566425904	2.193832	0.040886131	0.762756077	32.4361789	0.762756077	32.43617892

Incorporation Model

Regression Statistics								
Multiple R	0.9300815							
R Square	0.865051596							
Adjusted R Sq	0.827565928							
Standard Erro	0.238341122							
Observations	24							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	5	6.554578	1.310916	23.07686236	3.01519E-07			
Residual	18	1.022517	0.056806					
Total	23	7.577095						
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	'pper 95.0%
Intercept	-161.8932265	49.74789	-3.25427	0.004403754	-266.409669	-57.37678438	-266.4096686	-57.3768
X Variable 1	9.346129973	1.511519	6.183269	7.76003E-06	6.170545964	12.52171398	6.170545964	12.52171
X Variable 2	-26.37952473	6.179482	-4.26889	0.000461891	-39.3621343	-13.39691513	-39.36213433	-13.3969
X Variable 3	-113.3556124	44.23907	-2.56234	0.019587396	-206.298447	-20.41277769	-206.298447	-20.4128
X Variable 4	0.079652595	0.015665	5.084627	7.73309E-05	0.046740859	0.112564331	0.046740859	0.112564
X Variable 5	22.01577073	8.418365	2.615207	0.017529412	4.329441442	39.70210003	4.329441442	39.7021

Models. Leave-one-out Cross Validation (LOOCV) Analysis.

Models. LOOCV Analysis. Abbreviations.

MEAN = mean experimental value; MAD = mean average deviation; MSE = mean squared error; RMSE = root mean squared error; q^2 (manuscript) or Q2 (here) = cross-validated R²

Models. LOOCV Analysis. Catalysts Type I.

*M*_w Model

Catalyst	Yintercept	slopeA	slopeB	slopeC	predictedEXP	actualEXP	R2	adjR2	[Δ]	Δ2	(actualEXP-MEAN)^2
C3	-218.592	-15.9565	-0.38801	54.58814	4.04	3.89	0.84	0.80	0.153	0.023	1.426
C4	-198.611	-17.1556	-0.42125	51.20108	4.12	4.43	0.86	0.83	0.305	0.093	0.435
C5	-200.606	-19.172	-0.39111	51.0636	4.86	5.48	0.90	0.87	0.615	0.378	0.154
C6	-224.547	-14.2279	-0.41287	56.26231	5.15	4.77	0.88	0.85	0.382	0.146	0.100
C7	-215.685	-16.2948	-0.40101	54.26873	5.68	5.65	0.86	0.82	0.032	0.001	0.318
C8	-218.092	-15.8313	-0.42975	55.34335	5.85	5.34	0.89	0.86	0.511	0.261	0.062
C9	-218.472	-16.3345	-0.4041	54.90818	5.77	5.65	0.86	0.82	0.117	0.014	0.318
C10	-205.155	-17.1524	-0.38986	51.90302	5.54	5.74	0.86	0.82	0.194	0.038	0.425
C11	-197.023	-17.3654	-0.39064	50.25772	3.93	3.84	0.83	0.79	0.088	0.008	1.545
C12	-244.41	-15.2754	-0.3845	59.80294	4.72	4.40	0.86	0.83	0.321	0.103	0.465
C13	-243.829	-15.2735	-0.3846	59.68501	4.66	4.38	0.86	0.83	0.284	0.081	0.497
C14	-219.624	-17.1088	-0.40477	55.18879	6.00	5.81	0.86	0.82	0.194	0.038	0.519
C15	-223,942	-19,1391	-0.3825	55.68807	4.72	5.12	0.88	0.85	0.402	0.161	0.001
C16	-228.328	-12.0868	-0.41004	56.89371	5.83	6.09	0.85	0.81	0.258	0.066	1.001
C17	-150.912	-13.2333	-0.42813	41.39349	4.67	4.22	0.86	0.83	0.452	0.204	0.744
C18	-208 243	-15 1506	-0 39084	52 47897	5 54	6.07	0.88	0.85	0.530	0.281	0.972
C26	-215 279	-16 1479	-0.40166	54 19291	5.60	5 58	0.86	0.82	0.020	0.000	0 244
020	210127.0	1011175	0110100	0 11 20 20 2	5.00	MEAN	0.00	0.02	MAD	MSF	01211
						5.09			0.29	0 11	
						5.05			0.25	0.11	
		0^2=(actua	alEXP-MEA	N)-SUM(Δ′	2)/(actualEXP-I	MEAN)					
		a = (actai		02	0.79						
				RMSE	0.33						
				aliante al EV		VD	ام ما مسلم				
			pre	aicteary	P vs. actuale	XP uncon	strained				
		7.00			v = 0.9905x	+ 0.0337					
		C 00			R ² = 0.1	7949					
		6.00					900.9				
		5.00				•					
						• • • •					
		4.00				•					
		3.00									
		2.00									
		1.00									
		0.00									
		0.0	0 1.00	2.00	3.00	4.00 5.	00 6.0	0 7.0	0		
				a ali at a al E	VD		hundin a d				
			pr	eaictedE	AP vs. actua	IEXP CONS	trained				
		7.00			v	= 0.997x					
					R ²	= 0.7949					
		6.00					900	l			
		5.00				•	•				
						• • •	-				
		4.00				•					
		3.00									
		2.00									
		1.00									
		1.00									
		0.00									
		0.0	0 1.00	2.00	3.00	4.00 5.	00 6.0	0 7.0	0		

Incorporation Model

Cataluct	Vintorcont	V Variable 1	V Variable 2	V Variable 2	V Variable 4	prodictedEVD	actualEVD	D 2	adi D2		42	(actualEVD MEANIA2
Catalyst	21 26866	2 544502	-17 64941	-200 5662	0.06870004	1.68	2 10	0.05	0.02	0.421	0.179	
C3	31.20800	2.344392	-17.04041	-200.3002	0.00870004	1.00	2.10	0.93	0.95	0.421	0.178	0.002
C4	40.10025	1.933894	-20.04/18	-241.7444	0.03755998	2.03	2.41	0.93	0.91	0.220	0.051	0.067
	40.14823	2.01/5//	-22.58189	-217.955	0.03686907	2.11	1.82	0.94	0.92	0.287	0.083	0.109
C6	40.83896	2.01755	-23.46975	-223.1303	0.04460551	2.62	2.66	0.92	0.89	0.045	0.002	0.264
C/	39.33339	2.08/13/	-22.51754	-217.1624	0.04281589	1.73	1.72	0.92	0.89	0.017	0.000	0.188
68	42.03507	2.100175	-24.40204	-229.9469	0.04588441	1.65	1.83	0.93	0.91	0.182	0.033	0.103
C9	39.35829	2.086683	-22.53369	-217.2647	0.04282357	1.68	1.67	0.92	0.89	0.015	0.000	0.230
C10	39.05127	2.032106	-22.33416	-214.9184	0.04285804	1.84	1.63	0.93	0.90	0.204	0.042	0.267
C11	39.46485	2.089002	-22.52466	-217.7411	0.042355	2.22	2.19	0.92	0.90	0.033	0.001	0.002
C12	34.39205	2.101537	-19.61085	-193.2055	0.0365005	2.86	3.07	0.91	0.88	0.206	0.043	0.841
C13	37.21328	2.063897	-21.49687	-205.7015	0.03965125	2.81	2.96	0.91	0.88	0.153	0.023	0.666
C14	41.68439	2.046406	-23.87894	-229.251	0.04897696	2.45	2.33	0.93	0.90	0.123	0.015	0.032
C15	36.72844	2.286697	-21.35184	-208.7529	0.04360971	2.71	2.58	0.92	0.90	0.133	0.018	0.183
C16	40.26973	2.144468	-23.26903	-222.1512	0.04334404	1.66	1.81	0.93	0.90	0.151	0.023	0.115
C17	41.32494	2.021158	-23.79881	-223.5974	0.04040729	2.11	2.22	0.93	0.90	0.111	0.012	0.005
C18	37.41174	2.121834	-21.17754	-209.3668	0.0418294	1.67	1.60	0.92	0.89	0.069	0.005	0.304
C26	37.53878	2.11465	-19.56128	-209.0056	0.0303069	1.76	1.94	0.93	0.90	0.185	0.034	0.043
							MEAN			MAD	MSE	
							2.15			0.15	0.03	
			Q^2	2=(actualEXP-M	EAN)-SUM(Δ^2)/(actualEXP-M	EAN)					
					Q2	0.84						
					RMSE	0.18						
					-							
									L			
				prodicted	VDvc actur		strained					
				predicted	_AF V3. actua	ILAF UNCON	strameu					
		3.50)									
		3.00			y = 0.922	2x + 0.1861						
		5.00	, 		K- =	0.8437						
		2.50)						_ -			
							•					
		2.00)									
		1.50	,		>	•						
		1.00										
		0.50										
		0.50	, 									
		0.00	,									
			0.00 0.5	0 1.00	1.50	2.00	2.50	3.00	3.50			
				prodicto			trained			-	-	
				predicted	UEAP VS. acti		udineŭ					
		3.50)									
						y = 1.0059x R ² = 0.8364						
		3.00	,			0.0504						
		2.50	o							-	1	
					_	• •	•			-	1	
		2.00)			• • •				-	1	
		1 5/			`	• -					1	
		1.50										
		1.00) (
		0.50)									
		0.0	, 💷									
			0.00 0.5	50 1.00	1.50	2.00	2.50	3.00	3.50			
		L	1	1	1			1		-	-	

Models. LOOCV Analysis. Catalysts Type II.

Catalyst	Yintercept	slopeA	slopeB	predictedEXP	actualEXP	R2	adjR2	Δ	Δ2	(actualEXP-MEAN)^2
C20	-80.8426	0.193692	5.875532	2.18	2.24	0.96	0.94	0.058	0.003	0.282
C21	-79.5002	0.166297	6.028201	2.27	2.17	0.96	0.93	0.093	0.009	0.354
C22	-79.7672	0.18667	5.84653	2.12	2.12	0.96	0.93	0.006	0.000	0.428
C23	-78.7793	0.168964	5.930116	3.07	3.25	0.97	0.96	0.181	0.033	0.232
C24-syn	-76.4607	0.178563	5.6161	3.22	3.41	0.97	0.95	0.185	0.034	0.409
C24-anti	-72.843	0.272496	4.336846	3.04	2.70	0.99	0.98	0.349	0.122	0.006
C25	-97.2662	0.161097	7.748231	3.88	3.50	0.98	0.97	0.375	0.141	0.538
					MEAN			MAD	MSE	
					2.77			0.18	0.05	
				Q^2=(actualEX	P-MEAN)-SUN	M(∆^2)/	actualEXI	P-MEAN)		
				Q2	0.85					
				RMSE	0.22					
			predict	edEXP vs. ac	tualEXP ur	nconstr	ained			
		4.00	1							
		4.00		y = 0.						
		3.50			1 - 0.0775	•	•••			
		3.00								
		2.50			·	· ·				
		2.00			•••	_				
		1.50								
		1.00								
		0.50								
		0.00								
		0.00	0.50 1.	.00 1.50 2.0	0 2.50 3	3.00 3	50 4.00	4.50		
			predic	tedEXP vs. a	ctualEXP c	onstra	ined			
		4.00			y = 0.975x			İİ		
		3.50			$R^2 = 0.8644$					
		3.00				••••				
		2.50				•				
		2.00			AV 📜 🔜					
		1.50								
		1.50								
		1.00								
		0.50								
		0.00	0.50 1	00 150 2.0	0 250 2	00 0	EQ 4.00			
		0.00	0.50 1.	00 1.50 2.0	U 2.50 3	3.00	50 4.00	4.50		

Incorporation Model

Models. LOOCV Analysis. Combined Catalysts Set.

*M*_w Model

Catalyst	Yintercept	slopeA	slopeB	slope	eC	slopeD	slopeE	predictedEXP	actualEXP	R2	adjR2	4	Δ2	(actualEXP-MEAN)^2
C3	-177.788	9.718554	-24.9914	-104.	73	0.085885	24.383	1.86	2.10	0.87	0.83	0.239	0.057	0.052
C4	-158.817	9.232259	-28.4278	-127.3	326	0.079658	22.37856	2.61	2.41	0.87	0.83	0.203	0.041	0.006
C5	-161.21	9.302418	-26.5978	-115.3	26	0.076978	22.16588	2.10	1.82	0.87	0.83	0.276	0.076	0.261
C6	-177.045	9.617425	-27.2257	-113.7	26	0.083402	25.20004	2.79	2.66	0.86	0.82	0.128	0.016	0.111
C7	-163.543	9.342347	-26.0668	-110.6	62	0.078885	22.33145	1.84	1.72	0.86	0.82	0.120	0.014	0.377
C8	-161.861	9.345928	-26.3906	-113.4	139	0.079672	22.01202	1.83	1.83	0.86	0.82	0.002	0.000	0.251
C9	-164.248	9.333302	-25.8346	-109.0	20	0.078756	22.45022	1.85	1.67	0.86	0.82	0.182	0.033	0.436
C10	-161.969	9.280692	-25.9506	-110.	28	0.077000	12.09802	1.84	1.63	0.86	0.82	0.204	0.042	0.486
C11	-150.065	9.442159	-23.4710	-114.1	00	0.072999	10.99705	2.62	2.19	0.00	0.65	0.452	0.187	0.020
C12 C13	-173 303	9.750005	-25.3973	-87.86	56	0.076346	23.30734	2.57	2.07	0.87	0.83	0.494	0.244	0.342
C13	-162 177	9 371327	-26 3015	-114 6	36	0.070340	22.304	2.50	2.37	0.87	0.84	0.403	0.105	0.405
C15	-165.61	9 33963	-24 8703	-109 3	215	0.075505	22.00440	2.42	2.55	0.87	0.84	0.000	0.090	0.061
C16	-162.753	9.538002	-27.4353	-117.4	197	0.08043	21.97227	1.57	1.81	0.87	0.83	0.237	0.056	0.270
C17	-145.079	8.808578	-24.1948	-116.7	732	0.086166	18.8201	2.49	2.22	0.87	0.83	0.265	0.070	0.012
C18	-162.017	9.34019	-26.198	-112.4	111	0.079531	22.00756	1.62	1.60	0.85	0.81	0.021	0.000	0.536
C26	-154.487	8.94712	-27.4	-115.6	574	0.082694	21.29178	2.19	1.94	0.87	0.83	0.250	0.062	0.151
C20	-147.658	9.005388	-27.1405	-121.7	735	0.078799	19.73066	2.42	2.24	0.87	0.83	0.186	0.035	0.008
C21	-168.711	9.557835	-26.2169	-106.9	952	0.080142	22.88577	2.45	2.17	0.87	0.84	0.278	0.077	0.024
C22	-148.86	9.115081	-28.9544	-150.	38	0.088034	20.90888	1.52	2.12	0.90	0.87	0.592	0.350	0.046
C23	-162.838	9.448076	-27.1597	-116.	32	0.080166	22.17644	3.34	3.25	0.85	0.80	0.092	0.009	0.849
C24-syn	-150.304	8.874812	-26.8689	-121.	51	0.076395	20.83159	3.21	3.41	0.84	0.80	0.198	0.039	1.164
C24-anti	-163.625	9.406514	-29.0571	-126.1	81	0.072826	23.39822	2.41	2.69	0.87	0.83	0.289	0.083	0.133
C25	-162.582	9.378252	-26.3775	-112.9	936	0.079667	22.0866	3.51	3.50	0.83	0.78	0.009	0.000	1.376
								MEAN				MAD	MSE	
								2.33				0.23	0.07	
								0^2=(actualEX	P-MEAN)-SUM	A(^^2)/(ad	tualEXP-M	FAN)		
								02	0.77					
								RMSE	0.26					
						pre	edictedE	XP vs. actuall	EXP uncon	strained				
					4.00				164 1 0 16					
					2 50			y = 0.95 R ² =	0.7725					
					5.50	,				•				
					3.00)								
					2.50	o c								
					2.00			• • •	<u> </u>					
					4.54			· · · · · · ·						
					1.50									
					1.00	D								
					0.50	o c				_				
					0.00	, L								
					2.00	0.00 0.	50 1.00	1.50 2.00	2.50	3.00 3.5	0 4.00			
						n	redicted	EXP vs. actua	EXP cons	trained				
						4								
					4.00			У	= 0.9969x 1 ² = 0.7685					
					3.50	0				• •				
					3.00	o								
					2.50									
						_			🖌 🖁 👘					
					2.00	D			•					
					1.50	0		• •						
					1.00	o								
					0.54									
					0.50									
					0.00		F0 4.00	1.50 2.00	2.50	2.00 2.5				
						0.00 0.	50 1.00	1.50 2.00	2.50	5.00 3.5	iu 4.00			1

Incorporation Model

Catalyst	Yintercept	slopeA	slopeB	slope	eC	slopeD	slopeE	predictedEXP	actualEXP	R2	adjR2	[Δ]	Δ2	(actualEXP-MEAN)^2
C3	-177.788	9.718554	-24.9914	-104.	73	0.085885	24.383	1.86	2.10	0.87	0.83	0.239	0.057	0.052
C4	-158.817	9.232259	-28.4278	-127.3	326	0.079658	22.37856	2.61	2.41	0.87	0.83	0.203	0.041	0.006
C5	-161.21	9.302418	-26.5978	-115.2	26	0.076978	22.16588	2.10	1.82	0.87	0.83	0.276	0.076	0.261
C6	-177.045	9.617425	-27.2257	-113.7	26	0.083402	25.20004	2.79	2.66	0.86	0.82	0.128	0.016	0.111
C7	-163.543	9.342347	-26.0668	-110.6	62	0.078885	22.33145	1.84	1.72	0.86	0.82	0.120	0.014	0.377
68	-161.861	9.345928	-26.3906	-113.4	139	0.079672	22.01202	1.83	1.83	0.86	0.82	0.002	0.000	0.251
C10	-164.248	9.333302	25.8346	-109.0	207	0.078750	22.45022	1.85	1.67	0.86	0.82	0.182	0.033	0.436
C10	150 692	9.200092	-23.9300 25 4719	114.1	20	0.077000	10 00705	2.62	2.10	0.80	0.82	0.204	0.042	0.480
C12	-178 304	9 750005	-23 5975	-77 21	99	0.072555	23 30734	2.02	3.07	0.88	0.85	0.494	0.187	0.542
C12	-173 393	9 659875	-25 1229	-87.86	56	0.076346	22 964	2.57	2.97	0.87	0.84	0.403	0.163	0.403
C14	-162.177	9.371327	-26.3015	-114.6	536	0.079305	22.08448	2.42	2.33	0.87	0.83	0.093	0.009	0.000
C15	-165.61	9.33963	-24.8703	-109.3	315	0.08443	22.49918	2.28	2.58	0.87	0.84	0.300	0.090	0.061
C16	-162.753	9.538002	-27.4353	-117.4	197	0.08043	21.97227	1.57	1.81	0.87	0.83	0.237	0.056	0.270
C17	-145.079	8.808578	-24.1948	-116.7	732	0.086166	18.8201	2.49	2.22	0.87	0.83	0.265	0.070	0.012
C18	-162.017	9.34019	-26.198	-112.4	11	0.079531	22.00756	1.62	1.60	0.85	0.81	0.021	0.000	0.536
C26	-154.487	8.94712	-27.4	-115.6	574	0.082694	21.29178	2.19	1.94	0.87	0.83	0.250	0.062	0.151
C20	-147.658	9.005388	-27.1405	-121.7	735	0.078799	19.73066	2.42	2.24	0.87	0.83	0.186	0.035	0.008
C21	-168.711	9.557835	-26.2169	-106.9	952	0.080142	22.88577	2.45	2.17	0.87	0.84	0.278	0.077	0.024
C22	-148.86	9.115081	-28.9544	-150.3	38	0.088034	20.90888	1.52	2.12	0.90	0.87	0.592	0.350	0.046
C23	-162.838	9.448076	-27.1597	-116.3	32	0.080166	22.17644	3.34	3.25	0.85	0.80	0.092	0.009	0.849
C24-syn	-150.304	8.874812	-26.8689	-121.5	51	0.076395	20.83159	3.21	3.41	0.84	0.80	0.198	0.039	1.164
C24-anti	-163.625	9.406514	-29.0571	-126.1	81	0.072826	23.39822	2.41	2.69	0.87	0.83	0.289	0.083	0.133
C25	-162.582	9.378252	-26.3775	-112.9	936	0.079667	22.0866	3.51	3.50	0.83	0.78	0.009	0.000	1.376
								MEAN				MAD	MCE	
								2 33				0.23	0.07	
					_			2.55				0.25	0.07	
								Q^2=(actualEXF	-MEAN)-SUM	Λ(Δ^2)/(ad	tualEXP-MI	EAN)		
								Q2	0.77					
								RMSE	0.26					
						pro	edictedE	XP vs. actual	EXP uncon	strained				
					4.00)		y = 0.93	16x + 0.16					
					3.50			R ² =	0.7725					
					2 00					•				
					5.00	,				1				
					2.50)								
					2.00)								
					1.50				·					
					1.00									
					1.UL	,								
					0.50)				-				
					0.00	, L								
						0.00 0.	50 1.00	1.50 2.00	2.50	3.00 3.5	0 4.00			
						р	redicted	EXP vs. actua	IEXP cons	trained				
					4.00				= 0.9969x					
					2 51			R	2 = 0.7685					
					5.50	,			_					
					3.00									
					2.50	o								
					2.00			••.						
					1 =-				•					
					1.50									
					1.00	o								
					0.50	o								
					0.04	, L								
					5.00	0.00 0.	50 1.00	1.50 2.00	2.50	3.00 3.5	0 4.00			

X-Ray crystallography data

Crystal structure determinations. Single crystals of complexes **C12** and *syn*-**C24** for the X-ray study were obtained by slow evaporation of solutions in toluene. Crystallographic data for these complexes were deposited with the Cambridge Crystallographic Data Center, CCDC Nos. 1974079 and 1974080, respectively. The details of data collection and crystal structures refinement are summarized in Tables S9 and S10.

Table S9. Crystal data and structure refinement for C12

CCDC	1974079				
Empirical formula	C_{24} H_{26} Cl_2 Si Zr				
Formula weight	504.66				
Temperature	120 K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	P-1				
Unit cell dimensions	a = 9.3079(6) Å	α = 75.8230(10)°.			
	b = 9.6561(6) Å	$\beta = 80.9580(10)^{\circ}.$			
	c = 13.8605(8) Å	$\gamma = 61.5860(10)^{\circ}.$			
Volume	1061.11(11) Å ³				
Z	2				
Density (calculated)	1.579 Mg/m ³				
Absorption coefficient	0.835 mm ⁻¹				
F(000)	516				
Crystal size	0.18 x 0.15 x 0.09 mm ³				
Theta range for data collection	2.446 to 29.000°.				
Index ranges	-12 \leq h \leq 12, -13 \leq k \leq 13, -1	$.8 \le I \le 18$			
Reflections collected	16548				
Independent reflections	5632 [R(int) = 0.0250]				
Completeness to theta = 25.242°	99.8 %				
Absorption correction	Semi-empirical from equival	lents			
Max. and min. transmission	0.7461 and 0.7067				
Refinement method	Full-matrix least-squares on	F ²			
Data / restraints / parameters	5632 / 0 / 259				
Goodness-of-fit on F ²	1.023				
Final R indices [I>2sigma(I)]	R1 = 0.0280, wR2 = 0.0661				
R indices (all data)	R1 = 0.0339, wR2 = 0.0690				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.909 and -0.413 e.Å ⁻³				

Table S10. Crystal data and structure refinement for *syn*-C24

CCDC	1974080				
Empirical formula	C_{32} H_{26} Cl_2 Si Zr				
Formula weight	600.74				
Temperature	120 K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	P 1 21/n 1				
Unit cell dimensions	a = 10.1061(4) Å	α = 90°.			
	b = 10.6032(4) Å	$\beta = 96.9880(10)^{\circ}.$			
	c = 24.5397(10) Å	γ = 90°.			
Volume	2610.07(18) Å ³				
Z	4				
Density (calculated)	1.529 Mg/m ³				
Absorption coefficient	0.693 mm ⁻¹				
F(000)	1224				
Crystal size	0.14 x 0.08 x 0.02 mm ³				
Theta range for data collection	1.672 to 28.999°.				
Index ranges	-13 \leq h \leq 13, -14 \leq k \leq 14, -3	$3 \le I \le 33$			
Reflections collected	51545				
Independent reflections	6941 [R(int) = 0.0407]				
Completeness to theta = 25.242°	100.0 %				
Absorption correction	Semi-empirical from equival	lents			
Max. and min. transmission	0.7461 and 0.7067				
Refinement method	Full-matrix least-squares on	F ²			
Data / restraints / parameters	6941/0/327				
Goodness-of-fit on F ²	1.052				
Final R indices [I>2sigma(I)]	R1 = 0.0271, wR2 = 0.0660				
R indices (all data)	R1 = 0.0363, wR2 = 0.0713				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.561 and -0.285 e.Å ⁻³				

Full Gaussian Citation

Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.;
Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.;
Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng,
B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang,
W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.;
Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas,
O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.