Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Selective Th(IV) capture from a new metal-organic framework with O-groups

Supporting information

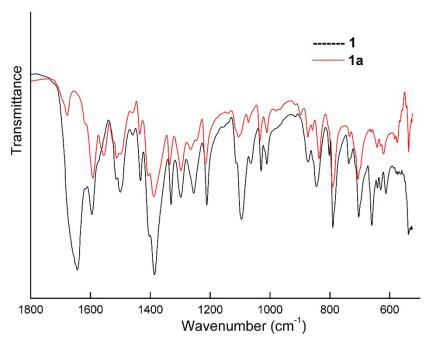


Figure S1. IR spectrum of compound 1 and 1a.

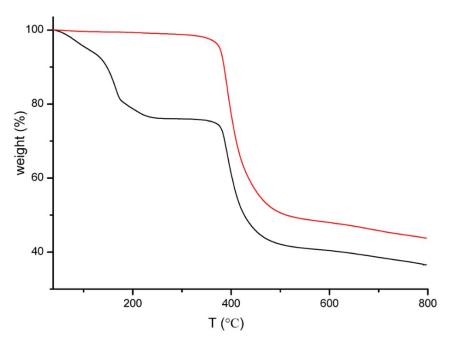


Figure S2. TGA curves for compound 1 (black line) and corresponding activated samples (red line).

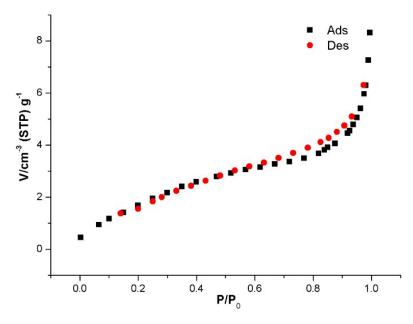


Figure S3. The N₂ adsorption isotherms of **1a** at 77K.

The pseudo-first-order and pseudo-second-order fits were conducted according to the following equation:

$$\log(q_e - q_t) = \log q_{e-(\frac{k_1}{2.303})t}$$

$$\frac{t}{q} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$

where q_e and q_t stands for the adsorption capacities at equilibrium and at time t, k_1 and k_2 represents the rate constant of pseudo-first-order and pseudo-second-order model.

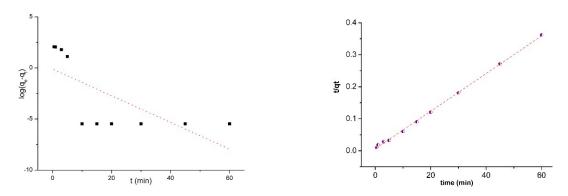


Figure S4. Linear fitting for a pseudo-first-order model (left) and a pseudo-second-order model (right)

Table S1 Pseudo-first-order and pseudo-second-order fits parameter.

Experiment	Pseudo-first-order model				Pseudo-second-order model			
$qe\ (mg\ ^{g-l})$	q_e	k_{I}	R^2		q_e	k_2	R^2	
	(mg g ⁻¹)	(min^{-l})			$(mg g^{-l})$	$(g mg^{-1} h^{-1})$		
165.60	0.77	0.30	0.44		170.06	0.34	0.99	

The linear equation of the Langmuir isotherm model is expressed as followed:

$$\frac{c_e}{q_e} = \frac{1}{q_m k_L} + \frac{c_e}{q_m}$$

where q_m is the maximum adsorption of the absorbent and k_L is the Langmuir constant (L mg⁻¹). The values of q_m and k_L can be calculated from c_e/q_e versus c_e plot.

The linear equation of Freundlich model can be express by:

$$\log qe = \log k_F + \frac{1}{n}\log c_e$$

where k_F and n are the Freundlich constants related to the adsorption capacity and intensity.

Table S2 Isotherm parameters of Langmuir and Freundlich models for the adsorption of Th(IV) by 1a.

Experiment	Langmuir			Freundlich			
$q_m (mg g^{-l})$	q_m	k_{I}	R^2	k_F	n	R^2	
	(mg g-1)	$(L mg^{-l})$		$(mg g^{-1})$			
165.60	167.5	10.0	0.98	158.48	8.43	0.59	

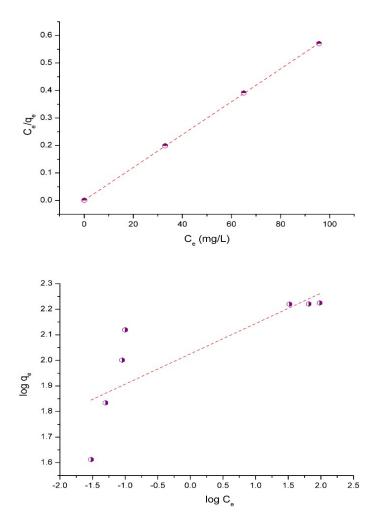


Figure S5. Linear fitting for the Langmuir model (top) and Freundlich model (down).

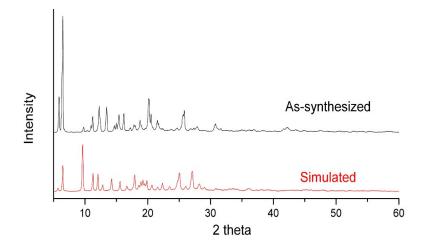


Figure S6. PXRD for synthesized 1 and its simulated pattern.

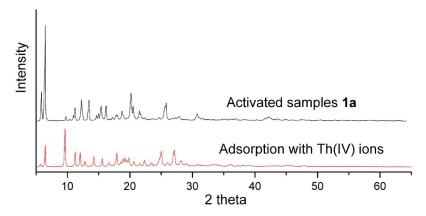


Figure S7. PXRD for the activated sample **1a** and after Th(IV) adsorptions with initial concentration of 100 ppm.

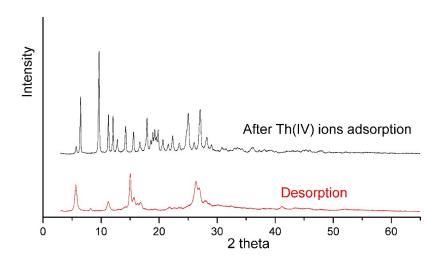


Figure S8. PXRD for samples with adsorption of Th(IV) ions and desorption.