Supporting information

Structure and Thermal Expansion Behavior of Ca4La6xNdx(SiO4)4(PO4)2O2 Apatite for Nuclear Waste Immobilization

Shan Yan, Dongyan Yang, Shuangqiang Chen, Juan Wen, Wenhao He, Shiyin Ji, Yue Xia, Yinlong Wang, Liangfu Zhou, Yuhong Li*

School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China

Figure S1. the local graph of powder XRD patterns of $Ca_4La_{6-x}Nd_x(SiO_4)_4(PO_4)_2O_2$

(x=0, 1, 2, 3, 4, 5, 6).

Figure S2. The Raman spectra of $Ca_4La_{6-x}Nd_x(SiO_4)_4(PO_4)_2O_2$ (x = 0, 1, 2, 3, 4, 5, 6)

specimens excited in 532 nm.

Figure S3. the FT-IR spectra of $Ca_4La_{6-x}Nd_x(SiO_4)_4(PO_4)_2O_2$ (x = 0, 1, 2, 3, 4, 5, 6) samples detected between 400 and 1500 cm⁻¹.

Figure S4. Rietveld fitting pattern for Ca₄La₅Nd(SiO₄)₄(PO₄)₂O₂ sample.

Figure S5. Rietveld fitting pattern for Ca₄La₄Nd₂(SiO₄)₄(PO₄)₂O₂ sample.

Figure S6. Rietveld fitting pattern for Ca₄La₃Nd₃(SiO₄)₄(PO₄)₂O₂ sample.

Figure S7. Rietveld fitting pattern for Ca₄La₂Nd₄(SiO₄)₄(PO₄)₂O₂ sample.

Figure S8. Rietveld fitting pattern for Ca₄LaNd₅(SiO₄)₄(PO₄)₂O₂ sample.

Figure S9. Rietveld fitting pattern for Ca₄Nd₆(SiO₄)₄(PO₄)₂O₂ sample.

Figure S10. The scanning electron microscope (SEM) of Ca₄Nd₆(SiO₄)₄(PO₄)₂O₂ sample prepared at 1600 °C

Figure S11. High temperature powder XRD patterns of Ca₄La₆(SiO₄)₄(PO₄)₂O₂ sample between 298 and 1173k.

Figure S12. High temperature powder XRD patterns of Ca₄La₃Nd₃(SiO₄)₄(PO₄)₂O₂ sample between 298 and 1173k.

Figure S13. High temperature powder XRD patterns of Ca₄Nd₆(SiO₄)₄(PO₄)₂O₂ sample

between 298 and 1173k.

Table S1. The refined lattice parameters atomic positions, site occupancy, and isotropic atomic displacement parameters from powder X-ray diffraction of Ca₄La₆₋

Composition x	0	1	2	3	4	5	6
a (Å)	9.5998(1)	9.5815(1)	9.5626(1)	9.5487(1)	9.5278(1)	9.5147(1)	9.5045(2)
c (Å)	7.0886(1)	7.0694(1)	7.0506(1)	7.0373(1)	7.0184(1)	7.0062(1)	6.9983(2)
Volume (Å ³)	565.74(2)	562.06(1)	558.36(1)	555.67(1)	551.76(2)	549.30(2)	547.50(2
R_{wp}	9.04%	8.92%	9.1%	10.44%	8.76%	10.66%	12.01%
R _p	6.65%	6.54%	6.74%	7.56%	6.33%	7.64%	9.22%
χ^2	1.939	1.757	1.839	1.352	1.606	1.372	3.281
$M_{4f},4f(1/3,2/3,z)$	0.003292(1)	0.001697(1)	0.003057(1)	0.001004(1)	0.002190(1)	0.000820(1)	0.003686(1)
Z							
Uiso	0.017992(1)	0.018318(1)	0.019203(1)	0.020050(1)	0.019414(1)	0.020839(1)	0.014857(1)
Ca occupy	0.76354(3)	0.75911(3)	0.75468(3)	0.75025(3)	0.74582(3)	0.74139(3)	0.73696(3)
La occupy	0.23646(3)	0.19705(3)	0.15764(3)	0.11823(3)	0.07882(3)	0.03941(3)	0
Nd occupy	0	0.04384(3)	0.08768(3)	0.13152(3)	0.17536(3)	0.21920(3)	0.26304(3)
$M_{6h}, 6h(x, y, \frac{1}{4}) x$	0.246351(1)	0.245815(1)	0.245105(1)	0.244026(1)	0.243715(1)	0.242948(1)	0.243114(1)
$M_{6h}, 6h(x, y, \frac{1}{4}) y$	0.230990(1)	0.231276(1)	0.231132(1)	0.230595(1)	0.231058(1)	0.230562(1)	0.231605(1)
Uiso	0.011804(1)	0.012316(1)	0.011576(1)	0.012457(1)	0.010411(1)	0.012617(1)	0.014452(1)
Ca occupy	0.15764(2)	0.16059(2)	0.16355(2)	0.16650(2)	0.16945(2)	0.17241(2)	0.17536(2)
La occupy	0.84236(2)	0.70196(2)	0.56157(2)	0.42118(2)	0.28079(2)	0.14039(2)	0
Nd occupy	0	0.13744(2)	0.27488(2)	0.41232(2)	0.54976(2)	0.68720(2)	0.82464(2)
Si/P,6h(x, y, $1/4$) x	0.028670(1)	0.030225(1)	0.028133(1)	0.030759(1)	0.029600(1)	0.031077(1)	0.030626(1)
Si/P,6h(x, y, $\frac{1}{4}$) y	0.4077520(1)	0.406969(1)	0.406043(1)	0.402822(1)	0.404972(1)	0.402400(1)	0.403019(1)
Uiso	0.015018(1)	0.015346(1)	0.015936(1)	0.018515(1)	0.015704(1)	0.016746(1)	0.018997(1)
O1, $6h(x, y, \frac{1}{4}) x$	0.492079(1)	0.494547(1)	0.489717(1)	0.494914(1)	0.492930(1)	0.491165(1)	0.492332(1)
O1, $6h(x, y, \frac{1}{4}) y$	0.156819(1)	0.154608(1)	0.157917(1)	0.152915(1)	0.154915(1)	0.152905(1)	0.153181(1)
Uiso	0.000280(1)	0.008125(1)	0.007301(1)	0.013631(1)	0.006791(1)	0.010966(1)	0.015623(1)
O2, 6h(x, y, $\frac{1}{4}$) x	0.139030(1)	0.135223(1)	0.133189(1)	0.128848(1)	0.131162(1)	0.124961(1)	0.126440(1)
O2, 6h(x, y, $\frac{1}{4}$) y	0.598758(1)	0.598713(1)	0.598190(1)	0.595574(1)	0.598032(1)	0.595869(1)	0.596669(1)
Uiso	0.015816(1)	0.013862(1)	0.012678(1)	0.022898(1)	0.015693(1)	0.016448(1)	0.017732(1)
O3, 12i(x, y, z) x	0.085774(1)	0.085489(1)	0.085412(1)	0.086625(1)	0.086359(1)	0.086085(1)	0.089737(1)
O3, 12i(x, y, z) y	0.345350(1)	0.342600(1)	0.341289(1)	0.337316(1)	0.341053(1)	0.336099(1)	0.342431(1)
O3, 12i(x, y, z) z	0.070677(1)	0.070502(1)	0.071902(1)	0.070801(1)	0.069409(1)	0.069565(1)	0.067906(1)
Uiso	0.014541(1)	0.006960(1)	0.018439(1)	0.018331(1)	0.008517(1)	0.018893(1)	0.016092(1)
O4, 2a(0, 0, $\frac{1}{4}$)							
Uiso	0.023588(1)	0.020444(1)	0.015745(1)	0.015242(1)	0.017955(1)	0.016307(1)	0.017937(1)

 $_xNd_x(SiO_4)_4(PO_4)_2O_2$ (x = 0, 1, 2, 3, 4, 5, 6) samples in P6₃/m (176) space group.

Composition x	0	1	2	3	4	5	6
Si/P — O(1)	1.5543(1)	1.5529(1)	1.5512(1)	1.5475(1)	1.5415(1)	1.5390(1)	1.5362(1)
Si/P — O(2)	1.5944(1)	1.5935(1)	1.5936(1)	1.5940(1)	1.5937(1)	1.5944(1)	1.5940(1
Si/P—O(3)*2	1.6136(1)	1.6117(1)	1.6123(1)	1.6124(1)	1.6122(1)	1.6125(1)	1.6108(1)
<si o="" p=""></si>	1.593975	1.59245	1.59235	1.591575	1.5899	1.5896	1.58795
M _{4f} -O(1) *3	2.4625(3)	2.4483(3)	2.4540(4)	2.4397(3)	2.4389(4)	2.4407(4)	2.4478(4)
M_{4f} — O(2)*3	2.3972(3)	2.4233(3)	2.4228(3)	2.4532(3)	2.4297(3)	2.4692(3)	2.4439(3)
M _{4f} — O(3)*3	2.8390(4)	2.8539(2)	2.8567(5)	2.8759(3)	2.8430(4)	2.8739(4)	2.8149(5)
< M _{4f} — O >	2.566233	2.575167	2.577833	2.5896	2.570533	2.5946	2.568867
M _{6h} — O(1)	2.7841(1)	2.8231(1)	2.7567(1)	2.8401(1)	2.8084(1)	2.8051(1)	2.8164(1)
M _{6h} -O(2)	2.5713(1)	2.5329(1)	2.5168(1)	2.5045(1)	2.4934(1)	2.4625(1)	2.4565(1)
M _{6h} -O(3)*2	2.6248(1)	2.5974(1)	2.5743(1)	2.5336(1)	2.5542(1)	2.5165(1)	2.5287(1)
M _{6h} -O(3)*2	2.4259(1)	2.4136(1)	2.4157(1)	2.3992(1)	2.3932(1)	2.3890(1)	2.3858(1)
M _{6h} -O(4)	2.2948(1)	2.2888(1)	2.2800(1)	2.2687(1)	2.2642(1)	2.2550(1)	2.2580(1)
$< M_{6h}$ — O >	2.535942	2.523829	2.504786	2.496986	2.4944	2.476229	2.479986
Ca4f BVS	2.00812	1.96402	1.95068	1.89934	1.97778	1.86464	1.94776
La4f BVS	3.36448	3.3035	3.28484	3.21181	3.32448	3.16517	
Nd_{4f} bvs		2.94585	2.92585	2.84884	2.96649	2.79679	2.92146
Ca _{6h BVS}	1.63415	1.69683	1.75604	1.8252	1.83308	1.93144	1.90576
La _{6h BVS}	2.72459	2.80975	2.89601	2.98483	2.99552	3.12917	
Nd _{6h} BVS		2.5451	2.6369	2.73764	2.74946	2.89699	2.85848

Table S2. The selected bond lengths and Bond-Valence Sums (BVS) of Ca₄La₆₋

 $_xNd_x(SiO_4)_4(PO_4)_2O_2$ (x = 0, 1, 2, 3, 4, 5, 6) samples after refinement analyses.

T(K)	a (Å)	$\alpha_{a} \cdot 1 x 10^{6} (K^{-1})$	c (Å)	αc·1x10 ⁶ (K ⁻¹)	α_a/α_c	$V(\text{\AA}^3)$	α _v ·1x10 ⁶ (K ⁻¹)		
Ca4La6(PO4)4(SiO4)2O2									
298	9.595942	9.017287	7.086222	6.990531	1.289929	565.094	25.05781		
373	9.60277	8.778117	7.090028	6.8225961	1.286624	566.202	24.42984		
473	9.610834	8.459224	7.094772	6.598684	1.281956	567.533	23.59255		
573	9.618629	8.140331	7.099213	6.374771	1.27696	568.81	22.75526		
673	9.626481	7.821438	7.104156	6.150859	1.271601	570.136	21.91797		
773	9.634238	7.502544	7.108468	5.926946	1.265836	571.402	21.08068		
873	9.640447	7.183651	7.111515	5.703033	1.259619	572.383	20.24339		
973	9.647381	6.864758	7.11611	5.479121	1.252894	573.578	19.4061		
1073	9.654068	6.545865	7.119841	5.255208	1.245596	574.674	18.56881		
1173	9.660237	6.226972	7.123816	5.031296	1.237648	575.73	17.73152		

Table S3. The crystal data, thermal expansion coefficients and anisotropic parameters (α_a/α_c) of Ca₄La₆(SiO₄)₄(PO₄)₂O₂ material in the temperature range of 298-1173 K.

T(K)	a (Å)	$\alpha_a \cdot 1x10^6 (K^{-1})$	c (Å)	αc·1x10 ⁶ (K ⁻¹)	α_a/α_c	V(Å ³) ($\alpha_{v} \cdot 1x10^{6}(K^{-1})$	
Ca4La3Nd3(PO4)4(SiO4)2O2								
298	9.539958	8.414846	7.030376	6.901902	1.219207	554.118	23.756346	
373	9.546563	8.240396	7.034348	6.766088	1.217897	555.199	23.290260	
473	9.553801	8.007795	7.038675	6.585003	1.216066	556.383	22.668811	
573	9.561501	7.775195	7.043566	6.403918	1.214131	557.668	22.047362	
673	9.569093	7.542594	7.048214	6.222832	1.212084	558.922	21.4259132	
773	9.5753	7.309993	7.051809	6.041747	1.209914	559.933	20.8044642	
873	9.583012	7.077393	7.056283	5.860662	1.20761	561.191	20.1830152	
973	9.589323	6.844792	7.060413	5.679576	1.205159	562.259	19.561567	
1073	9.5956	6.612192	7.064185	5.498491	1.202547	563.296	18.940118	
1173	9.60211	6.379591	7.068286	5.317406	1.199756	564.388	18.318669	

Table S4. The crystal data, thermal expansion coefficients and anisotropic parameters (α_a/α_c) of Ca₄La₃Nd₃(SiO₄)₄(PO₄)₂O₂ material in the temperature range of 298-1173 K.

T(K)	a (Å)	α_{a} ·1x10 ⁶ (K ⁻¹)	c (Å)	α_{c} ·1x10 ⁶ (K ⁻¹)	α_a/α_c	V(Å ³) α	w ⁻¹ x10 ⁶ (K ⁻¹)	
Ca4Nd6(PO4)4(SiO4)2O2								
298	9.50071	8.75291	6.998637	6.661747	1.313906	547.087	24.18698	
373	9.508645	8.448338	7.003143	6.438064	1.312248	548.354	23.36922	
473	9.515563	8.042243	7.007056	6.13982	1.30985	549.459	22.27887	
573	9.523204	7.636147	7.011481	5.841576	1.307207	550.689	21.18852	
673	9.530037	7.230051	7.015135	5.543332	1.304279	551.767	20.09817	
773	9.537024	6.823955	7.018915	5.245089	1.301018	552.874	19.00782	
873	9.543005	6.417859	7.022811	4.946845	1.297364	553.875	17.91747	
973	9.548056	6.011763	7.0254	4.648601	1.293241	554.666	16.82712	
1073	9.55421	5.605667	7.028605	4.350357	1.288553	555.635	15.73677	
1173	9.560196	5.199571	7.032516	4.052113	1.283175	556.641	14.64642	

Table S5. The crystal data, thermal expansion coefficients and anisotropic parameters (α_a/α_c) of Ca₄Nd₆(SiO₄)₄(PO₄)₂O₂ material in the temperature range of 298-1173 K.