Supporting information for:

UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides

Marcin Runowski,* Natalia Stopikowska, Stefan Lis

Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Uniwersytetu

Poznańskiego 8, 61-614 Poznań, Poland

Experimental procedure

Deionized water (Milli-Q[®] purity) was used for all experiments. The lanthanide fluorides were obtained according to our previously reported synthesis protocols.[1-5] In order to prepare lanthanide fluorides (LaF₃, PrF₃, NdF₃, SmF₃, EuF₃, GdF₃, TbF₃, DyF₃, HoF₃, ErF₃, TmF_3 , YbF₃), the corresponding commercially available lanthanide oxides (La₂O₃, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃) were separately dissolved in concentrated HCl (37%, Sigma-Aldrich) to obtain water-soluble lanthanide chlorides, LnCl₃ (Ln = La³⁺, Pr³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺), and then evaporated to remove the excess of acid. CeF₃ was synthesized using commercially available CeCl₃ (99.99%; Sigma Aldrich). Synthesis of all LnF₃ was performed for 0.5 g of final products. The appropriate amount of the LnCl₃ was mixed with water/ethanol 25/25 mL solvent system. The as-prepared solution was added dropwise to the solution of NH₄F (50% molar excess) previously dissolved in the analogues solvent system (second vessel). When the process was completed, the obtained white precipitate was purified by centrifugation with water 4-times. Afterwards, the precipitate was dispersed in water and transferred to a Teflon-lined vessel, placed in an autoclave and hydrothermally treated at 180°C, for 20 h. The final products were dried overnight in an oven at 80°C, and then ground in an agate mortar for further measurements.

Using the above mentioned method, all lanthanide fluorides (except of YbF₃) were successfully obtained (see Table S1 and Fig. S1). In order to obtain YbF₃ (0.5 g), the appropriate amount of the YbCl₃ was mixed with the previously prepared aqueous solution of NaBF₄ (50% molar excess). The mixture was stirred for a few minutes. Subsequently, the solution was diluted with water up to 75 mL. Then, HCl solution was added dropwise to adjust the pH of the system to \approx 1. The as-prepared solution was transferred to a Teflon-lined vessel, placed in an autoclave and hydrothermally treated at 180°C for 20 h. The final product was dried overnight in an oven at 80°C, and then ground in an agate mortar for further measurements.

In order to obtain CeO₂, the chloride precursor - CeCl₃ * $7H_2O$ (1 g) was placed in a crucible, then transferred into a muffle furnace, and calcined at 500°C for 5 h. After this time, the crucible was removed from the furnace and allowed to cool down. The product was ground in an agate mortar for further measurements.

compound name	crystal system	space group	pattern number - ICDD
LaF ₃	hexagonal	P-3c1	01-070-3182
CeF ₃	hexagonal	P63/mcm	01-089-1933
PrF ₃	hexagonal	P6322	01-072-1437
NdF ₃	hexagonal	P-3c1	01-078-1859
SmF ₃	hexagonal	P6322	01-072-1439
	*orthorhombic	Pnma	01-074-2176
EuF ₃	orthorhombic	Pnma	00-033-0542
GdF ₃	orthorhombic	Pnma	00-049-1804
TbF ₃	orthorhombic	Pnma	00-037-1487
DyF ₃	orthorhombic	Pnma	00-032-0352
HoF ₃	orthorhombic	Pnma	01-084-0178
ErF ₃	orthorhombic	Pnma	00-032-0361
TmF ₃	orthorhombic	Pnma	00-032-1352
YbF ₃	orthorhombic	Pnma	00-034-0102
CeO ₂	cubic	Fm-3m	00-043-1002

Table S1 Structural information for the synthesized materials

Fig. S1 Powder XRD patterns of the synthesized materials.

Fig. S2 Normalized absorption spectra of LaF₃ and La₂O₃.

Fig. S3 Normalized absorption spectrum of water.

Fig. S4 Normalized absorption spectrum of quartz.

References

- [1] M. Runowski, S. Lis, Synthesis of lanthanide doped CeF₃:Gd³⁺, Sm³⁺ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment, J. Alloy. Compd. 661 (2016) 182–189. https://doi.org/10.1016/j.jallcom.2015.11.182.
- [2] T. Grzyb, L. Mrówczyńska, A. Szczeszak, Z. Śniadecki, M. Runowski, B. Idzikowski, S. Lis, Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides, J. Nanopart. Res. 17 (2015) 399–416. https://doi.org/10.1007/s11051-015-3191-2.
- [3] M. Runowski, S. Lis, Preparation and photophysical properties of luminescent nanoparticles based on lanthanide doped fluorides (LaF₃:Ce³⁺, Gd³⁺, Eu³⁺), obtained in the presence of different surfactants, J. Alloy. Compd. 597 (2014) 63–71. https://doi.org/10.1016/j.jallcom.2014.01.209.
- [4] T. Grzyb, M. Runowski, S. Lis, Facile synthesis, structural and spectroscopic properties of GdF₃:Ce³⁺, Ln³⁺ (Ln³⁺=Sm³⁺, Eu³⁺, Tb³⁺, Dy³⁺) nanocrystals with bright multicolor luminescence, J. Lumin. 154 (2014) 479–486. https://doi.org/10.1016/j.jlumin.2014.05.020.
- [5] T. Grzyb, M. Runowski, A. Szczeszak, S. Lis, Structural, morphological and spectroscopic properties of Eu³⁺-doped rare earth fluorides synthesized by the hydrothermalmethod, J. Solid State Chem. 200 (2013) 76–83. https://doi.org/10.1016/j.jssc.2013.01.012.