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1. Accounting for global warming in the temperature data 

Our model inputs the temperature as a function of location and time, including the year and hour of the 
year. Ideally, we could directly use the results of a comprehensive climate model that evaluates such a 
dataset from first principles. However, due to the high time and geographic resolution required and the 
long timescale of the study, such a calculation would be infeasible. We thus use the following simpler 
model, which nonetheless captures the long-term trend of increasing global temperatures. To isolate the 
long-term trend, we construct a baseline year-long hourly temperature dataset 𝑇base(ℎ) by averaging 
over each hour of the year in the 21-year climate dataset1 from year 1995 to 2005: 
 

𝑇base(ℎ) =
∑ 𝑇𝑑(ℎ, 𝑦𝑑)2005

𝑦𝑑=1995

𝑛years
,                     (S1) 

 
where ℎ refers to the hour of the year, 𝑛years is 21, or the number of years in the dataset and 𝑇𝑑 and 𝑦𝑑 

refer to the temperature and years of the original climate dataset1. To then account for global warming, 
we use climate projections on the increase of the average global mean temperature 𝛥𝑇mean, and increase 
the base temperature of each location by the increase in the global mean temperature: 
 

𝑇input(ℎ, 𝑦input) = 𝑇base + 𝛥𝑇mean(𝑦input),                (S2) 

 
where 𝑇input and 𝑦input now refer to the temperature and year that are input to our model, and 𝑇mean 

is calculated: 
 

𝛥𝑇mean(𝑦input) = 𝑇mean(𝑦input) − 𝑇mean(𝑦 = 1995),    (S3) 

 
where the year 1995 is chosen because that is the average year of the 21-year climate dataset used as 
baseline1. While this approach is suitable to estimate the long-term synergy of photovoltaics and space 
cooling, note that this methodology does not capture the year-over-year variability in temperatures which 
climate change also aggravates2. 

2. Definition of world regions 

Table S1 lists the countries and territories in each world region used in Fig. 4. 
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Table S1: Countries and territories included in each region. 

Region Countries included in the region 

Centrally 
Planned Asia 

Cambodia, China (incl. Hong Kong & Macao), Lao People's Democratic Republic, 
Mongolia, Vietnam 

 
 

Europe & 
Former Soviet 

Union 

Albania, Armenia, Austria, Azerbaijan, Belgium, Bulgaria, Bosnia and Herzegovina, 
Belarus, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, 

Georgia,  Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Kosovo, 
Kyrgyzstan, Latvia, Lithuania, Luxembourg, Malta, Moldova, Montenegro, 
Netherlands, Norway, Poland, Portugal, Romania, Russia, Serbia, Slovakia, 

Slovenia, Spain, Sweden, Switzerland, Tajikistan, Turkey, Turkmenistan, The former 
Yugoslav Republic of Macedonia, Ukraine, United Kingdom of Great Britain and 

Northern Ireland, Uzbekistan 

 
Latin America 

Argentina, Bahamas, Belize, Bolivia, Brazil, Barbados, Chile, Colombia, Costa Rica, 
Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Guyana, Honduras, 
Haiti, Jamaica, Mexico, Nicaragua, Panama, Peru, Paraguay, Suriname, Trinidad 

and Tobago, Uruguay, Venezuela 

 
 

Sub-Saharan 
Africa 

Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central 
African Republic, Chad, Comoros, Congo, Côte d’Ivoire, Democratic Republic of the 
Congo, Djibouti, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, 
Equatorial Guinea, Kenia, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, 
Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, 

Somalia, South Africa, Swaziland, Togo, Uganda, United Republic of Tanzania, 
Western Sahara, Zambia, Zimbabwe 

North America Canada, Puerto Rico, United States 

 
Oceania & 
Pacific Asia 

Australia, Brunei Darussalam, Fiji, French Polynesia, Indonesia, Japan, Republic of 
Korea, Malaysia, Myanmar, New Caledonia, New Zealand, Papua New Guinea, 

Philippines, Singapore, Solomon Islands, Taiwan, Thailand, Timor-Leste, Vietnam, 
Western Samoa 

Middle East & 
North Africa 

Algeria, Bahrain, Egypt, Iran, Iraq, Jordan, Israel, Kuwait, Lebanon, Libya, Morocco, 
Oman, Palestine, Qatar, Saudi Arabia, South Sudan, Sudan, Syria, Tunisia, United 

Arab Emirates, Yemen 

South Asia Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka 
  

3. Impact of varying base-temperature during the day 

The cooling demand model used in this paper makes the relatively strong assumption that the hourly 
cooling load closely follows changes in temperature above a base temperature of 18°C (see Eq. 2). While 
hotter days indeed see higher cooling demand, the specific hourly cooling load (see Eq. 7) may be affected 
by behavioural aspects as well: air-conditioners can for example be turned off or programmed to a higher 
set-point3 when people leave their homes for work, leading to relatively smaller cooling loads in the 
middle of the day than estimated purely based on hourly temperature. People may also prefer lower 
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temperature set-points during night-time to help them fall asleep or the cooling devices may demand 
more electricity in the evening to maintain a fixed set point due to heat generated from preparing dinner. 
Because these behavioural aspects vary on local culture, customs and economic structure, it is difficult to 
perfectly capture these effects in a global modelling effort such as this paper.  
To estimate the potential impact the omission of these aspects could have on the conclusions of this study, 
we use the results of Wang and Bielicki4. They used electricity demand and meteorological data collected 
from a community in the United States and fit an hourly varying base temperature for cooling demand, 
capturing the behavioural effects in hourly cooling dynamics. The specific base temperature used was that 
of the ‘Temperature only’ model in the PS Zone (black circles in upper left graph of Fig. 6 in Ref 4). The 
‘Temperature only’ model was chosen as that model was otherwise closest to the model used in this 
paper, and the PS Zone was used due to its residential nature. The hourly base temperature is reproduced 
in Fig. S1. While these results are not validated globally, for this test we assume the shape of the hourly 
base temperature is identical in each location except for the local time zone. (For resolving the time-zone 
of each location, we used the python package timezonefinder5). To isolate the impact to only the specific 
intra-daily shape of the base temperature, we also scaled the base-temperature with a constant offset 
such that the total yearly cooling demand at each location remains identical to our model. 
 

 
Fig. S1. Shape of the variable cooling demand base temperature investigated, taken from Ref. 4. Higher base 

temperature implies lower cooling demand. 

Fig. S2 shows that varying the hourly base temperature does affect the amount of cooling demand that 
can directly be met with PV, when compared to the constant base temperature model, but does not have 
an impact on the conclusions of the study. More specifically, the residential cooling demand is slightly 
lowered during midday, describing people turning off or lowering their cooling devices setpoints when 
they are at work. Given that these hours exhibit high solar insolation, the synergy of cooling and PV slightly 
weakens and the fraction of cooling that can be directly met with PV without storage drops from 49% to 
46% in 2010. The difference remains around three percentage points across the century. Similarly, with 
storage, the difference is approximately 2.5 %-points. However, the trends are similar regardless of the 
base temperature model: the synergy of cooling and PV, as well as the benefit of storage grow globally 
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throughout the century. We also note that there is likely room for optimization in the specific synergy via 
orienting the PV panels to east or west and thus moving the peak PV production away from midday6,7.  
 

 
Fig. S2. Fraction of hourly cooling demand met by PV with (orange lines) or without (blue lines) storage assuming a 

constant (solid lines) or variable (dashed lines) base temperature. 

Lastly, we note that there may be a modest lag in the cooling base temperature also between different 

days, because of exceptionally high thermal inertia of large buildings or because it may take a few days 

for people to adjust their behavior due to warming weather. While these effects could be important for 

short-term forecasts or when fine-tuning specific real-life systems or mathematical models, these 

between-days effects are smaller in magnitude4 than the intra-day and thus their impact on the 

conclusions of this study is (even) smaller than the difference described in Fig. S2. 
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