# A sustainable, high-performance process for the economic production of wastefree microbial oils that can replace plant-based equivalents

Mahmoud A. Masri<sup>a</sup>, Daniel Garbe<sup>a</sup>, Norbert Mehlmer\*<sup>a</sup>, and Thomas Brück\*<sup>a</sup>

<sup>a</sup>Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, Technical University of

Munich

\*Corresponding authors (norbert.mehlmer@tum.de; brueck@tum.de)

# Supplementary Data

# 1.1. Maximizing lipid productivity

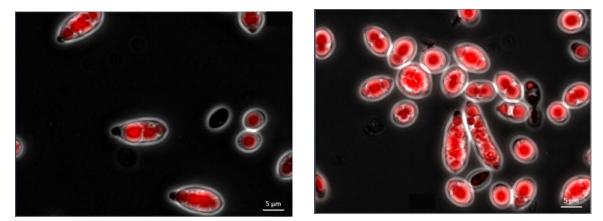



Figure S1: fluorescence microscope imaging shows a remarkable increase in the cell volume and lipid content for: Glucose-based fermentation in minimal nitrogen media (on the lift) and co-fermentation in rich nitrogen media (on the right).

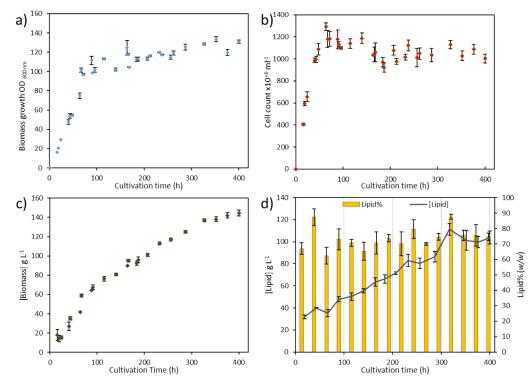



Figure S2: Growth rates and lipid accumulation during acetic acid and glucose co-fermentation in nitrogen-rich medium applying continuous fermentation mode. (a) Growth rates determined via the optical density. (b) Growth rates determined via the cell count. (c) Growth rates determined via the gravimetric method. (d) Lipid accumulation and productivity determined via the gravimetric method.

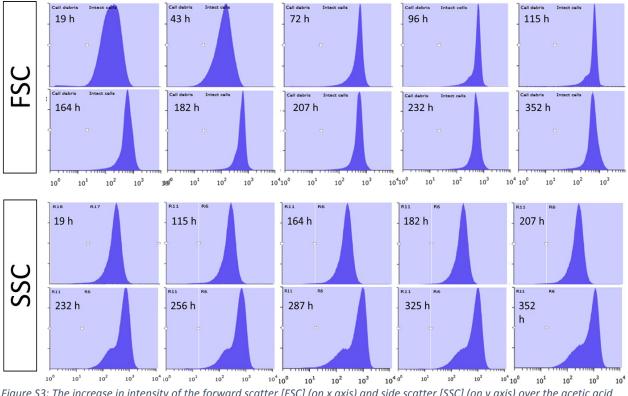



Figure S3: The increase in intensity of the forward scatter [FSC] (on x axis) and side scatter [SSC] (on y axis) over the acetic acid and glucose co-fermentation time in rich nitrogen media. The fermentation was carried out at: 25-liters, temp.: 28°C, pH 6.5 and  $pO_2 \ge 50\%$ .

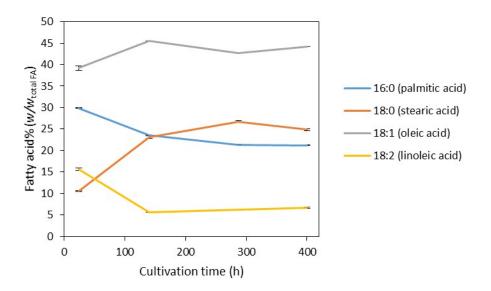



Figure S4: The changes in fatty acid profile over the acetic acid and glucose co-fermentation time in rich nitrogen media. The fermentation was carried out at: 251-liters, temp.:  $28^{\circ}$ C, pH 6.5 and pO<sub>2</sub> $\ge$  50%.

|         | %(w/w) | Method                                                               |  |
|---------|--------|----------------------------------------------------------------------|--|
| Sugar   | 8.3    | Chemical hydrolysis with H <sub>2</sub> SO <sub>4</sub> at 1% and 3% |  |
| Lipid   | 87.6   | 87.6 3 times extraction with Folch solution                          |  |
|         |        | (chloroform : methanol, in a 2:1 (vol/vol) ratio                     |  |
| protein | 3.5    | Kjeldahl method, Kjeldahl factor 6.25                                |  |
| Ash     | 0.6    | Incineration at 1200°C, 3h                                           |  |

Table S1: Yeast biomass analysis at the end of the semi-continuous run

# 1.2. Downstream processing and lipid recovery

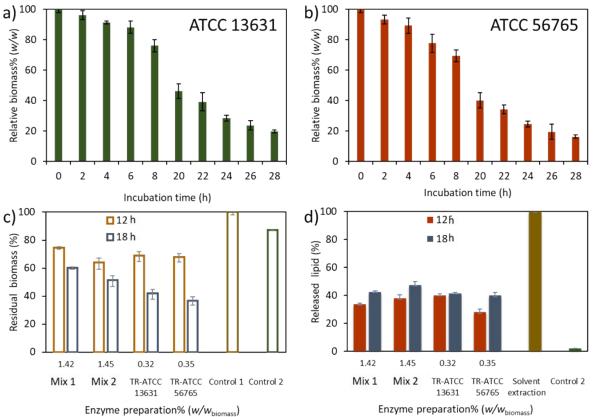



Figure S5: Evaluation of produced enzymes from T. reesei ATCC 13631 and RUT C-30 (ATCC 56765) on purified C. oleaginosusprocessed biomass (a b) and fresh culture (c d). (a) Relative decrease in the C. oleaginosus biomass weight over the enzymatic hydrolysis time using T. reesei (ATCC 13631). (b) Relative decrease in the biomass weight over the enzymatic hydrolysis time using T. reesei RUT C-30 (ATCC 56765). (c) Relative residual biomass weight after 12 and 18 h of incubation with the following enzyme systems: mixes 1 and 2 (commercial mixtures), T. reesei ATCC 13631, and T. reesei RUT C-30 (ATCC 56765). (d) Relative released lipid weight after 12 and 18 h of incubation with the following enzyme systems: mixes 1 and 2 (commercial mixtures), T. reesei ATCC 13631, and T. reesei RUT C-30 (ATCC 56765).Controls: Control1(negative control): the biomass amount before treatment. Control2(positive control): Samples are incubated at same pH, tempreture and time but without addting enzyme. Solvent extreacton: amout of lipid which abtained after 3 times extraction with Folch solution (chloroform : methanol, in a 2:1 (vol/vol) ratio.

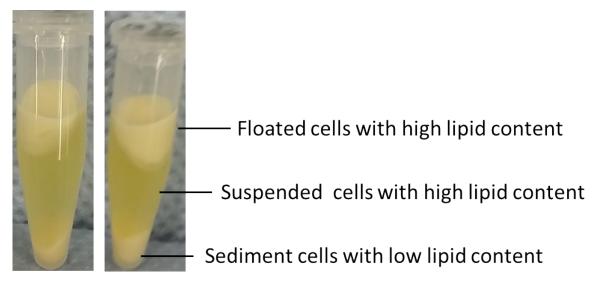



Figure S6: Yeast culture with high lipid content (75% w/w) after centrifugation at 15,000g for 30 min.

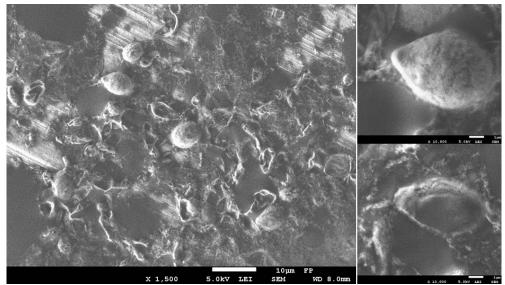



Figure S7: Electron microscope image for C. oleaginosus cells after treatment with high pressure homogenizer for 3 times at 2400 bar.

#### 1.4. TEA

The TEA was carried out to estimate the total capital investment and operating cost for process flowsheets that could be used for the production of lipids from oleaginous yeast.

Due to the lack of major databases (such as NREL) in process design related to the oil production from oleaginous yeasts, process and economic data were collected from data generated in this study. Additionally, parameters extracted from available literature sources<sup>1-3, 4</sup> and intgrated mathematical function in SuperPro Designer version 10 - Intelligen, Inc. (SPD) were applied.

The Techno-Economic Analysis (TEA) was carried out for the estimation of the total capital investment and operating cost for process flowsheets that can be used for the production of yeast lipids. The industrial plant is required to operate 24 h daily, 7 days per week, which amounts to 8300 h y<sup>-1</sup>. A standby fermenter and centrifuge are used to avoid maintenance-based operation downtime. With these prerequisites, the production capacity is of 23,000 t y<sup>-1</sup>. The mass and energy balances as well as equipment sizing were determined using Excel spreadsheets and validated by SuperPro Designer V10 (Intelligen, Inc.).Instilation factors, additional direct and indirect capital costs were estimated as presentage based on a Provoius NREL publication about bioethanol production.<sup>5</sup>

Raw materials amounts were estimated based on the final lipid yield. A built-in mathematical function in SPD adjusts the equipment purchase price based on the required size of process equipment and the analysis year (2018). All the capital and operating data extracted from SPD are used to determine the minimum selling price.

A simplified process flow diagram (fig. S8) was generated based on the data presented in the paragraphs (2.1, 2.2 and 2.3). Thus, the co-fermentation in rich nitrogen media was carried out in consuming base feeding mode. The applied lipid productivity was of 1.4 g L<sup>-1</sup> h<sup>-1</sup> [biomass: 200 g L<sup>-1</sup> with lipid content of 83% (w/w), after 120 h]. The applied lipid productivity considers a basline productivity value that was determined in the current study current for generation of a conservative TEA scenario.

As co-fermentation enables concurrent biomass growth and the lipid accumulation the mass balances were calculated by a single stoichiometric equation during the fermentation. The stoichiometric coefficients were appropriately calculated based on applied media and feed composition as well as the recoded biomass and lipid yields respectively. Lipid-biomass (biomass including the lipid,  $C_{61}H_{110.5}O_{9.8}N_{1.55}$ ) was formulated based on the element analysis of C, H, N, and O. Amino acids formula  $C_{5.35}H_{9.8}O_{2.45}N_{1.5}$  is the average molecular of amino acid and it taken form Koutinas *et al*<sup>1</sup>:

By enzymatic hydrolysis, lipid-biomass is converted to glucose, amino acid, released lipid ( $C_{57}$  H<sub>104</sub> O<sub>6</sub>), and non-lipid biomass ( $C_4$  H<sub>6.5</sub> O<sub>1.9</sub> N<sub>0.7</sub>). Glyceryl trioleate ( $C_{57}$  H<sub>104</sub> O<sub>6</sub>) has been used representatively for the lipid formula since the  $C_{18:1}$  fatty acid comprises 53% (w/w) of total fatty acid profile (Based on FAMEs analysis). The non lipid-biomass formula ( $C_4$ H<sub>6.5</sub>O<sub>1.9</sub>N<sub>0.7</sub>) was extracted from Babel and Muller.<sup>6</sup>

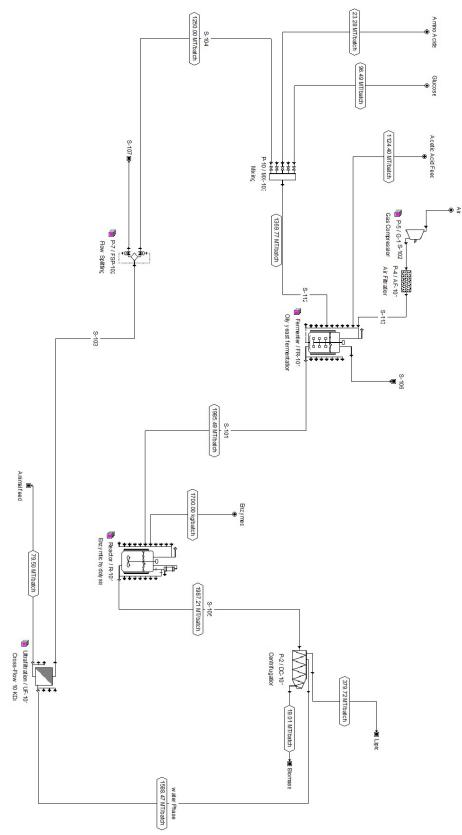

(2) 
$$0.18633 C_{61}H_{110.5}O_{9.8}N_{1.55} + 6.25 CO_2 + 0.23340 H_2O \rightarrow$$
  
→  $0.08066 C_6H_{12}O_6 + 0.14998 C_{5.35}H_{9.8}O_{2.45}N_{1.5} + 0.17200 C_{57} H_{104}O_6 + 0.0804 C_4H_{6.5}O_{1.9}N_{0.7}$ 

Figure S8 shows the process flow diagram for the yeast lipid production. Water, glucose and nitrogen sources (such as peptone and yeast extracts) are fed to the bioreactor (FR-101) (estimated process duration:6 h). Acetic acid is used as a feed during the fermentation time. In-situ sterilization is performed for 20 min at 121°C. After cooling, the fermentation starts by adding the inoculum at OD:0.1. The fermentation is controlled at 28°C, pH 6.5 (process duration:120h). The whole culture is transferred out to the enzymatic hydrolysis reactor (R-101). Transferring out, and transferring in are connected processes, running in parallel (estimated process duration: 8 h). The enzymatic hydrolysis starts by adding the enzyme (process duration:20h). The final centrifugation (CD-101) will start in parallel to transferring the culture out from R-101 (estimated process duration:8 h). After centrifugation, 3 phases are generated. The upper phase contains pure lipid. The middle phase contains residual biomass. The lower phase contains the hydrolysate which is transferred (in parallel to centrifugation) into a cross-flow filtration unit (UF-101). The filtration results in a retentate fraction estimated to be 10% (v/v), the remaining filtrate will be about 90% (v/v). The filtrate will be mixed with additional amount of sugar and nutrition (in MX-103) and used for subsequent fermentation processes. Major operating and process parameters used to develop the process model and determine the required material are listed in the **Table2**.

| Table S2: Major operating and process parameters used to develop the process model and determine | the required material |
|--------------------------------------------------------------------------------------------------|-----------------------|
|--------------------------------------------------------------------------------------------------|-----------------------|

| Process parameters                       | Unite                             | Baseline | Optimal | Process parameters                                  | Unite                          | Baseline | Optima |
|------------------------------------------|-----------------------------------|----------|---------|-----------------------------------------------------|--------------------------------|----------|--------|
| Feed stock                               |                                   |          |         | Enzymatic hydrolysis                                |                                |          |        |
| Acetic acid                              | \$ per kg                         | 0.2      | 0.1     | hydrolysis time                                     | h                              | 24       | 20     |
| Sugar                                    | \$ per kg                         | 0.3      | 0.2     | Lipid release                                       | % w/w                          | 86       | 86     |
| Peptone/ yeast extract                   | \$ per kg                         | 0.3      | 0.2     | non-lipid biomass<br>conversion to<br>nutrition*    | % w/w                          | 80       | 95     |
|                                          |                                   |          |         | Enzyme load*                                        | % (w/w <sub>biomass</sub> )    | 1.4      | -      |
| Centrifugal gas<br>compressor            |                                   |          |         | Enzyme price <sup>5</sup>                           | \$ per kg                      | 4        | 2      |
| volumetric<br>throughput <sup>7, 8</sup> | m <sup>3</sup> min <sup>-1</sup>  | 380      | -       | Power consumption                                   | kw m <sup>-3</sup>             | 0.05     | -      |
| Pressure change <sup>4</sup>             | bar                               | 5        | -       | hydrolysis<br>temperature*                          | °C                             | 45/37    | 50/37  |
|                                          |                                   |          |         | Steam flow rate                                     | kg h⁻¹                         | 1300     | -      |
| Power consumption <sup>9, 10</sup>       | kw                                | 6348     | -       | Heat transfer<br>efficiency                         | %                              | 98       | 100    |
| Efficiency                               | %                                 | 70       | 90      | Power dissipation to heat                           | %                              | 100      | -      |
| Fermentation                             |                                   |          |         | Centrifugation                                      |                                |          |        |
| RM loading time <sup>1</sup>             | h                                 | 8        | 6       | volumetric throughput                               | m <sup>3</sup> h <sup>-1</sup> | 160      | -      |
| Sterilization <sup>1</sup>               | h                                 | 1.5      | 1.5     | Lipid separation<br>efficiency <sup>7, 8</sup>      | % w/w                          | 90       | 95     |
| Lipid Productivity*                      | g L <sup>-1</sup> h <sup>-1</sup> | 1.4      | 2.4     | water contain in the non-lipid biomass <sup>7</sup> | % w/w                          | 50       | -      |
| Fermentation time*                       | h                                 | 120      | 72      | Centrifugation time                                 | h                              | conte    | ntious |
| Biomass content*                         | g L <sup>-1</sup>                 | 200      | 190     | Power consumption <sup>9</sup>                      | kw m <sup>-2</sup>             | 0.2      | -      |
| Lipid content*                           | % (w/w)                           | 83       | 85      | Sedimentation<br>efficiency <sup>7, 8</sup>         | %                              | 30       | 50     |
| transfer out to reactor <sup>1</sup>     | h                                 | 8        | 6       |                                                     |                                |          |        |
| Power consumption <sup>9, 10</sup>       | kw m <sup>-3</sup>                | 3        | -       | Filtration                                          |                                |          |        |
| Aeration rate <sup>1, 11</sup>           | vvm                               | 0.8      | 0.5     | Rejection co-efficient for protein <sup>7, 8</sup>  | % w/w                          | 95       | -      |
| Power dissipation to heat <sup>12</sup>  | %                                 | 50       | -       | Filtration time                                     | h                              | 10       | 8      |
| Pressure inside<br>fermenter**           | bar                               | 1.25     | - 1.5   | Recovery<br>(filtrate/feed)***                      | % w/w                          | 90       | 95     |
| Yeast Hydrolysate                        |                                   |          |         | Power consumption                                   | kw                             | 156      | -      |
| Sugar content*                           | g L <sup>-1</sup>                 | 18       | 24      | Power dissipation to heat <sup>12</sup>             | %                              | 10       | -      |
| Nitrogen content*                        | g L <sup>-1</sup>                 | 8        | 15      | Filtrate flux                                       | L m⁻² h                        | 32       |        |

\*Based on the current process paramneters and current results. \*\* Based on the fermentation paramenters at 25-L to red. \*\*\*Based on the recycling experiments.



*Figure S8: The simplified process flow diagram for the lipid production from yeast.* 

Table S3: Capital cost-list of equipment specification and PC cost according to market analysis in 2018-SuperPro designer V10.

|                                                    |                       | uble 53: Capital Cost-list of equi                                                    | <i>p</i>                       |            | Quantit |       |                                 |                         | ucc            | <u>g</u>                                                                  |
|----------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|--------------------------------|------------|---------|-------|---------------------------------|-------------------------|----------------|---------------------------------------------------------------------------|
|                                                    | #                     | Item                                                                                  | Unite<br>Purchased<br>Cost(PC) | In process | Standby | Total | Total<br>Purchased Cost<br>(PC) | Installation<br>factor* | Installed cost | Ref.                                                                      |
|                                                    | 1                     | Fermenter, Vessel Volume =<br>250.00 m3                                               | 2,333,000                      | 10         | 1       | 11    | 25,663,000                      | 1.60                    | 41,060,800     | SuperPro Designer<br>(V10)<br>Built-in cost model<br>(Year analysis 2018) |
| s)                                                 | 2                     | Stirred Reactor<br>Vessel Volume = 248.76 m3                                          | 1,773,000                      | 3          | 1       | 4     | 7,092,000                       | 1.60                    | 11,347,200     | SuperPro Designer<br>(V10)<br>Built-in cost model<br>(Year analysis 2018) |
| (2018 price                                        | 3                     | Bending Tank, Vessel Volume<br>= 150.00 m3                                            | 178,000                        | 2          | -       | 2     | 356,000                         | 1.60                    | 569,600        | SuperPro Designer<br>(V10)<br>Built-in cost model<br>(Year analysis 2018) |
| OB COST (2                                         | 4                     | Storage/ Receiving Tank,<br>Vessel Volume = 250.00 m3                                 | 78,000                         | 3          | -       | 3     | 234,000                         | 1.70                    | 397,800        | SuperPro Designer<br>(V10)<br>Built-in cost model<br>(Year analysis 2018) |
| TION AND                                           | 5                     | Decanter Centrifuge,<br>Throughput = 159919.85 L/h                                    | 243,000                        | 1          | 1       | 2     | 486,000                         | 1.60                    | 777,600        | SuperPro Designer<br>(V10)<br>Built-in cost model<br>(Year analysis 2018) |
| - SPECIFICA                                        | 7                     | Centrifugal Compressor<br>Compressor Power = 2115.79<br>kW                            | 2,212,000                      | 3          | -       | 3     | 6,636,000                       | 1.60                    | 10,617,600     | SuperPro Designer<br>(V10)<br>Built-in cost model<br>(Year analysis 2018) |
| EQUIPMENT SPECIFICATION AND FOB COST (2018 prices) | 8                     | Ultrafilter<br>Membrane Area = 77.69 m2,<br>shell & tube, stainless steel             | 124,000                        | 27         | -       | 27    | 3,348,000                       | 1.8                     | 6,026,400      | SuperPro Designer<br>(V10)<br>Built-in cost model<br>(Year analysis 2018) |
| ш.                                                 | 9                     | Air Filter<br>Rated Throughput =<br>12112043.16 L/h, shell & tube,<br>stainless steel | 43,000                         | 1          | 1       | 2     | 86,000                          | 1.80                    | 154,800        | SuperPro Designer<br>(V10)<br>Built-in cost model<br>(Year analysis 2018) |
|                                                    |                       | Total cost                                                                            |                                |            |         |       | 43,901,000                      |                         | 70,951,800     |                                                                           |
|                                                    |                       | Interest                                                                              |                                |            |         |       |                                 |                         |                | Estimated as: 6% of<br>the PC                                             |
|                                                    | Total Installed Costs |                                                                                       |                                |            |         |       |                                 | 75,208,908              |                |                                                                           |

\*The installation Factor is obtained from Provoius NREL publication about bioethanol production.<sup>5</sup>

#### Table S4: Capital cost-list of additional direct capital cost.

|                                 | # | ltem                        | Description                                                                                                                                                                                                                                                                                                        | Installed<br>Cost | Factor | Cost       | Ref.                               |
|---------------------------------|---|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|------------|------------------------------------|
|                                 | 1 | Warehouse ,                 | On-site storage of equipment and supplies.                                                                                                                                                                                                                                                                         | 70,951,800        | 0.04   | 2,838,072  | Estimated as: 4.0%% of the ISBL    |
| Additionall direct capital cost | 2 | Site development            | Includes fencing, curbing, parking<br>lot, roads, well drainage, rail system,<br>soil borings, and general paving. This<br>factor allows for minimum site<br>development assuming a clear site<br>with no unusual problems such as<br>right-of-way, difficult land clearing,<br>or unusual environmental problems. | 70,951,800        | 0.090  | 6,385,662  | Estimated as: 9%% of<br>the ISBL   |
| Additior                        | 3 | Additional piping           | To connect ISBL equipment to<br>storage and utilities outside the<br>battery limits                                                                                                                                                                                                                                | 70,951,800        | 0.045  | 3,192,831  | Estimated as: 4.5%%<br>of the ISBL |
|                                 |   | Total                       |                                                                                                                                                                                                                                                                                                                    |                   |        | 12,416,565 |                                    |
|                                 |   | Total Direct Costs<br>(TDC) |                                                                                                                                                                                                                                                                                                                    |                   |        | 83,368,365 |                                    |

#### Table 5: Capital cost-list of additional indirect capital cost.

|                       | #                                 | ltem                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total<br>Direct<br>Costs | Factor | Cost       | Ref.                                                  |
|-----------------------|-----------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|------------|-------------------------------------------------------|
|                       | 1                                 | Prorateable costs            | This includes fringe benefits,<br>burdens, and insurance of the<br>construction contractor.                                                                                                                                                                                                                                                                                                                                                                | 83,368,365               | 0.10   | 8,336,837  | Estimated as:<br>10% of total<br>direct cost<br>(TDC) |
|                       | 2                                 | Field expenses               | Consumables, small tool and<br>equipment rental, field services,<br>temporary construction facilities,<br>and field construction supervision.                                                                                                                                                                                                                                                                                                              | 83,368,365               | 0.10   | 8,336,837  | Estimated as:<br>10% of total<br>direct cost<br>(TDC) |
| Indirect capital cost | 3                                 | Home office and construction | Engineering plus incidentals, purchasing, and construction                                                                                                                                                                                                                                                                                                                                                                                                 | 83,368,365               | 0.20   | 16,673,673 | Estimated as:<br>20% of total<br>direct cost<br>(TDC) |
|                       | 4                                 | Project<br>contingency       | Extra cash on hand for unforeseen issues during construction.                                                                                                                                                                                                                                                                                                                                                                                              | 83,368,365               | 0.10   | 8,336,837  | Estimated as:<br>10% of total<br>direct cost<br>(TDC) |
|                       | 5                                 | Other costs                  | Start-up and commissioning costs.<br>Land, rights-of-way, permits,<br>surveys, and fees. Piling, soil<br>compaction/dewatering, unusual<br>foundations. Sales, use, and other<br>taxes. Freight, insurance in transit,<br>and import duties on equipment,<br>piping, steel, instrumentation, etc.<br>Overtime pay during construction.<br>Field insurance. Project team.<br>Transportation equipment, bulk<br>shipping containers, plant vehicles,<br>etc. | 8,336,837                | 0.10   | 8,336,837  | Estimated as:<br>10% of total<br>direct cost<br>(TDC) |
|                       |                                   | Total Indirect<br>Costs      |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |        | 50,021,019 |                                                       |
|                       | Total Capital Investment<br>(TCI) |                              | Total Direct Costs (TDC) + Indirect cost                                                                                                                                                                                                                                                                                                                                                                                                                   | 133,389,384              |        |            |                                                       |

#### Table S6: Operation cost-list of labor cost according to German TV-L tariff.

|          | # | Item                          | Annual cost<br>per person | Amount | Cost      | Ref.                                                  |
|----------|---|-------------------------------|---------------------------|--------|-----------|-------------------------------------------------------|
| COST     | 1 | Operator (Full Cost) E10      | 83,305                    | 30     | 2,499,150 | Official service, full-cost list based on<br>TV-L E10 |
| LABOR CO | 2 | QC Analyst (Full Cost)<br>E13 | 114,599                   | 9      | 1,031,391 | Official service, full-cost list based on<br>TV-L E13 |
|          | 3 | 119 415                       |                           | 3      | 358,245   | Official service, full-cost list based on<br>TV-L E14 |
|          |   | Total                         |                           |        | 3,888,786 |                                                       |

|                    | # | Item                           | Annual cost                         | Factor | Cost      | Ref.                                                    |
|--------------------|---|--------------------------------|-------------------------------------|--------|-----------|---------------------------------------------------------|
| DENT COST          | 1 | Maintenance                    | 83,368,365                          | 0.03   | 2,128,554 | Estimated as 3% of total direct fixed capital.          |
| FACILITY-DEPENDENT | 2 | Property insurance             | 133,389,384                         | 0.007  | 496,663   | Estimated as 0.7% of total capital investment<br>(TCI). |
| FACILITY           |   | Facility-dependent Total       |                                     |        | 2,625,217 |                                                         |
|                    |   | Total fixed operating<br>costs | Labor cost + facility-<br>dependent |        | 6,514,003 |                                                         |

#### Table S7: Operation cost-list of Facility-dependent cost.

# Table S8: Operation cost-list of Utility cost, Ref.: SuperPro designer V10

|                                            | # | ltem                                                        | Unite cost | Quantity   | Ref. Units | Total      | Cost         | Ref.                                                                                                                              |
|--------------------------------------------|---|-------------------------------------------------------------|------------|------------|------------|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                            | 1 | Std Power                                                   | 0.1        | 81,588,099 | kW-h/year  | 81,588,099 | 8,158,809.90 | The consumption<br>amount based on<br>SuperPro Designer<br>(V10).<br>The cost of kW-h is<br>based on German<br>price of Std power |
| ices in \$)                                | 2 | Steam                                                       | 5.0        | 101,320    | MT/year    | 101,320    | 506,600      |                                                                                                                                   |
| ny 2018 pri                                | 3 | Cooling water                                               | 0.05       | 11,356,146 | MT/year    | 11,356,146 | 567,807      | SuperPro Designer<br>(V10)                                                                                                        |
| T (Germa                                   | 4 | Chilled water                                               | 0.40       | 5,693,853  | MT/year    | 5,693,853  | 2,277,541    |                                                                                                                                   |
| UTILITIES COST (Germany 2018 prices in \$) | 5 | Saving (Exist in<br>the process due<br>to heat<br>recovery) | 1.00       | 1,573,600  | -          | 1,573,600  | 1,573,600    | uperPro Designer<br>(V10)                                                                                                         |
|                                            | 6 | Saving (Steam<br>Recycling)                                 | 5.00       | 99,588     | MT/year    | 99,588     | 497,940      | uperPro Designer<br>(V10)                                                                                                         |
|                                            | 7 | Saving (Cooling<br>water<br>Recycling)                      | 0.05       | 8,327,840  | MT/year    | 8,327,840  | 416,392      | SuperPro Designer<br>(V10)                                                                                                        |
|                                            |   | Total                                                       |            |            |            |            | 9,022,826    |                                                                                                                                   |

Table S9: RM cost according to market analysis in 2018.

|              | # | Item        | Unite cost | Quantity   | Cost       | Ref.                                                                            |
|--------------|---|-------------|------------|------------|------------|---------------------------------------------------------------------------------|
|              | 1 | Acetic acid | 0.2        | 68,588,400 | 13,031,796 | Whole sell market<br>"Alibaba website"                                          |
| TRIALS       | 2 | Glucose     | 0.3        | 5,517,770  | 1,655,331  | Whole sell market<br>"Alibaba website"                                          |
| RAW MATRIALS | 3 | Enzyme      | 4          | 103,700    | 414,800    | Novozymes company.                                                              |
|              | 4 | Amino acid  | 0.2        | 915,398    | 183,080    | Source like yeast extract or<br>peptone. Whole sell market<br>"Alibaba website" |
|              |   | Total       |            |            | 15,285,007 |                                                                                 |

Table S10: Revenues- the annual productivity of lipid, biomass and animal feed based on designee process.

|          | # | Item                                                | Unit cost | Quantity   | Total Cost |             |
|----------|---|-----------------------------------------------------|-----------|------------|------------|-------------|
| S        | 1 | Lipid                                               | 1.60      | 23,163,170 | 37,061,072 | Estimated   |
| REVENUES | 2 | Biomass                                             | 0.35      | 1,159,905  | 405,967    | Market cost |
|          | 3 | Animal Feed (concentrated protein after cross-flow) | 0.35      | 439,787    | 153,925    | Market cost |
|          |   | Total                                               |           |            | 37,620,964 |             |

Table S11: The cost summary of Capital cost (CAPX), Operation cost (OPEX) and Raw Martials cost (RM) against the revenues.

|         | # | Items      | Description                             | Cost          |
|---------|---|------------|-----------------------------------------|---------------|
|         | 1 | CAPEX      | Total / 20 years depreciation           | 6,669,469.20  |
| ARY     | 2 | OPEX       | Including: Lab, maintenance and utility | 15,536,828.78 |
| SUMMARY | 3 | RM         | All chemicals are included              | 15,285,006.60 |
|         |   | Total cost |                                         | 37,491,305    |
|         |   | Revenues   |                                         | 37,620,964    |

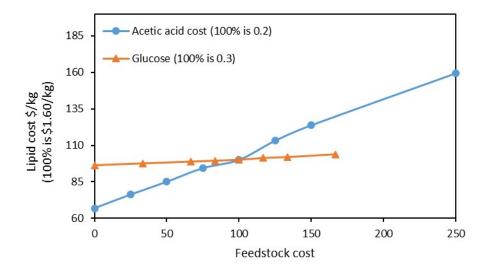
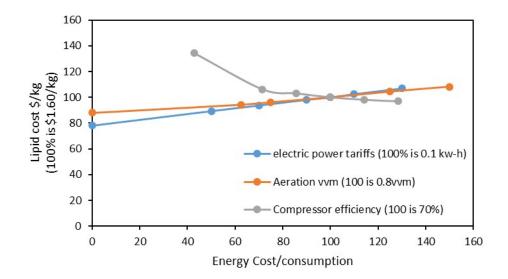
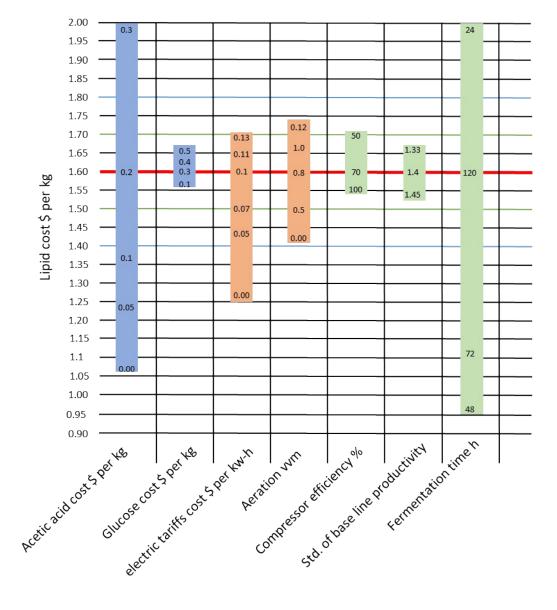
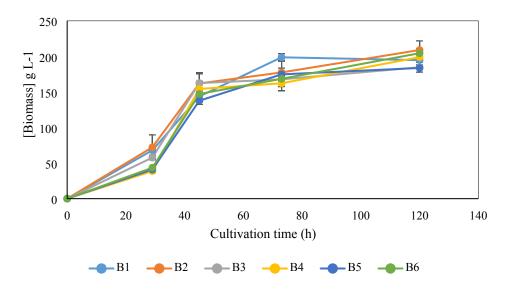





Figure S9: Lipid cost sensitivity to acetic acid and glucose cost.




*Figure 10:Lipid cost sensitivity to aerations need, electric power tariffs and compressor efficiency.* 





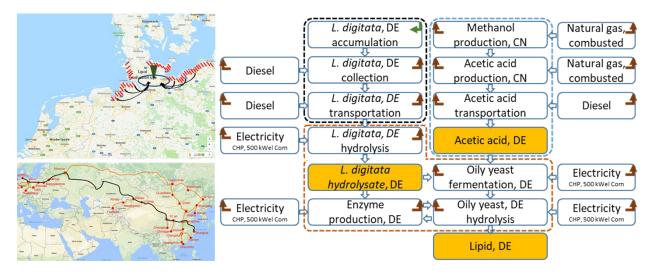

|                     |              |            |                             |               |                     | <b>T</b>     | Name                                                 |
|---------------------|--------------|------------|-----------------------------|---------------|---------------------|--------------|------------------------------------------------------|
| -   2 + A +         |              | 10000      |                             |               |                     |              | Std Power                                            |
| Power Type          | Start<br>(h) | End<br>(h) | Cons. Time<br>per Batch (h) | Power<br>(kW) | Demand<br>(kW-h/yr) | Usage<br>(%) | Description                                          |
| ⊡ 🗲 Std Power       | 5.92         | 162.17     | 156.25                      | (6931.98)     | 66070479.21         |              |                                                      |
| Main Section        | 5.92         | 162.17     | 156.25                      | (6931.98)     | 66070479.21         | 100.0        | Std Power                                            |
| 🖃 🕎 Fermenter       | 5.92         | 125.92     | 120.00                      | (2623.56)     | 19204454.32         | 29.1         |                                                      |
| FERMENT-Yeast       | 5.92         | 125.92     | 120.00                      | 2623.56       | 19204454.32         | 29.1         |                                                      |
| 🖨 🚽 🔗 🕒             | 5.92         | 125.92     | 120.00                      | (6347.39)     | 46462916.76         | 70.3         | Comments                                             |
| COMPRESS-1          | 5.92         | 125.92     | 120.00                      | 6347.39       | 46462916.76         | 70.3         | Comments                                             |
| 🖨 🔣 P-1             | 125.92       | 128.92     | 3.00                        | (265.54)      | 48594.43            | 0.1          |                                                      |
| CENTRIFUGE-1        | 125.92       | 128.92     | 3.00                        | 265.54        | 48594.43            | 0.1          |                                                      |
| Reactor             | 132.17       | 152.17     | 20.00                       | (26.20)       | 31962.17            | 0.0          |                                                      |
| Enzymatic hydroysis | 132.17       | 152.17     | 20.00                       | 26.20         | 31962.17            | 0.0          |                                                      |
| □ ★ P-2             | 152.17       | 159.17     | 7.00                        | (156.09)      | 66649.82            | 0.1          |                                                      |
| CENTRIFUGE-1        | 152.17       | 159.17     | 7.00                        | 156.09        | 66649.82            | 0.1          |                                                      |
| 🖃 🛷 Ultrafiltration | 152.17       | 162.17     | 10.00                       | (419.51)      | 255901.71           | 0.4          |                                                      |
| CONCENTRATE-1       | 152.17       | 162.17     | 10.00                       | 419.51        | 255901.71           | 0.4          |                                                      |
|                     |              |            |                             |               |                     |              | Options                                              |
|                     |              |            |                             |               |                     |              | Show Averaged Rates                                  |
|                     |              |            |                             |               |                     |              | Rates shown as () indicate                           |
|                     |              |            |                             |               |                     |              | values averaged over the<br>corresponding time span. |

Figure S12: Eclectic power usage in the plant



*Figure S13: Six biological replication to validate the reproducibility of achieved lipid productivity.* 





*Figure S14: (a) Map showing the proposed location for the production plant. The brown algae collection area is shadowed in red. (b) Map showing the train route for acetic acid transportation from China. (c) The production system used in this study.* 

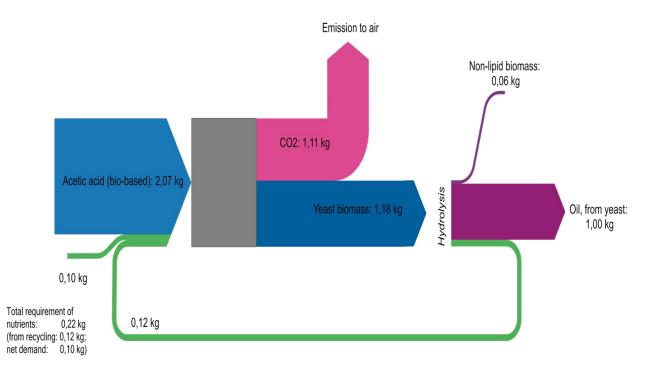



Figure S15: The Sankey diagram of the mass balance for the functional unit 1 kg Oil.

Table S12: Inventory of yeast fermentation according to the chosen productivity and current process design (This work).

| Input                                                            |          |      |                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow                                                             | Amount   | Unit | Description                                                                                                                                                                                                                                                                            |
| Acetic acid, at fermentation plant,                              | 2.96     | kg   | According to the SuperPro Designer, based<br>on amount of acetic acid consumed during<br>the fermentation                                                                                                                                                                              |
| Calcium chloride, CaCl2, at<br>regional storage                  | 5.48E-06 | kg   | Medium formula                                                                                                                                                                                                                                                                         |
| Yeast hydrolysate                                                | 4.16     | kg   | According the current process design                                                                                                                                                                                                                                                   |
| Digitata hydrolysate                                             |          |      | According to the SuperPro Designer, based<br>on amount of sugar consumed during the<br>fermentation                                                                                                                                                                                    |
| Magnesium sulphate, at plant                                     | 1.64E-05 | kg   | Medium formula                                                                                                                                                                                                                                                                         |
| Electricity, biogas CHP, at plant<br>Water, process and cooling, | 1.547    | kWh  | According to the SuperPro Designer, the<br>total Electricity consuming by Air<br>compressor, Air filtration, fermenter 250m3,<br>and centrifuge is813496 m3, the no. of<br>batches per year 63, mass of biomass per<br>batch 50000 kg<br>According to the SuperPro Designer, the total |
| surface 0.258 m3                                                 |          | m3   | cooling water consuming by Air compressor,<br>Air filtration, fermenter 250m3, and<br>centrifuge is813496 m3, the no. of batches<br>per year 63, mass of biomass per batch<br>50000 kg                                                                                                 |
| Output                                                           |          |      |                                                                                                                                                                                                                                                                                        |
| Flow                                                             | Amount   | Unit | Description                                                                                                                                                                                                                                                                            |
| Acetic acid/ emission to air                                     | 1.14E-10 | kg   | According to the SuperPro Designer,                                                                                                                                                                                                                                                    |
| Carbon dioxide/emission to air                                   | 1.11     | kg   | According to the SuperPro Designer,                                                                                                                                                                                                                                                    |
| Oily-yeast biomass (200 g/L)<br>culture                          | 5        | kg   | Based on the biomass productivity 1.7 g L-1<br>h-1 [biomass: 200 g L-1 with lipid content of<br>85% (w <sub>lipid</sub> / <sup>d</sup> w <sub>biomass</sub> ), after 120 h]                                                                                                            |

19 | Page

Table S13: Inventory of the enzymatic hydrolysis of the yeast culture after the fermentation (This work).

| Input                                       |        |      |                                                                                                                                                                                                                                                       |
|---------------------------------------------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow                                        | Amount | Unit | Description                                                                                                                                                                                                                                           |
| Cell hydrolase                              | 0.027  | kg   | Based on the enzyme dose hydrolase: 0.8%<br>(w/ <sup>d</sup> w <sub>biomass</sub> ) & Protease: 0.5% (w/dw)<br>Enzyme/ biomass                                                                                                                        |
| <i>Oily-yeast biomass (200 g/L) culture</i> | 5      | kg   | Resulted from fermentation                                                                                                                                                                                                                            |
| Electricity, biogas CHP, at plant           | 1.13   | kWh  | According to the SuperPro Designer, the total Electricity consuming by 5 times reacted 250m3, and steam generator for (20 h at 50°C & (8 h at 37°C), then centrifuge is 813496 m3, the no. of batches per year 63, mass of biomass per batch 50000 kg |
| Output                                      |        |      |                                                                                                                                                                                                                                                       |
| Flow                                        | Amount | Unit | Description                                                                                                                                                                                                                                           |
| C. oleaginosus hydrolysate                  | 4.16   | kg   | According the current process design                                                                                                                                                                                                                  |
| Non-lipid biomass                           | 0.04   | kg   | Based on the enzyme hydrolysis yield: 80% (w/w)                                                                                                                                                                                                       |
| Oil, from oily yeast, TAG                   | 1      | kg   | Based on the lipid productivity 1.4 g L <sup>-1</sup> h <sup>-1</sup><br>[biomass: 200 g L-1 with lipid content of 85<br>(w <sub>lipid</sub> / <sup>d</sup> w <sub>biomass</sub> ), after 120 h]                                                      |

20 | Page

Table S14: Inventory of the enzymatic hydrolysis of L.Digitata (This work).

| Input                                            |        |      |                                                                                                                                        |
|--------------------------------------------------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------|
| Flow                                             | Amount | Unit | Description                                                                                                                            |
| Acetic acid, at Fermentation plant,              | 4      | kg   | Used As buffer solution (50mM)                                                                                                         |
| Cell hydrolase                                   | 1.05   | kg   | Based on the enzyme dose hydrolase: 1.3 %<br>(w/dw). (Masri et al, 2018)                                                               |
| L.digitata, at plant, truck                      | 70     | kg   | form The previous inventory (Table xx)                                                                                                 |
| Sodium hydroxide                                 | 2      | kg   | Used As buffer solution (50mM)                                                                                                         |
| Electricity, biogas CHP, at plant                | 1.325  | kWh  | According to the SuperPro Designer, the total<br>Electricity consuming by 5 times reactor 250m3,<br>and steam generator for 72h, 50°C. |
| Water, unspecified natural origin/m <sup>3</sup> | 0.9    | m³   | According to the SuperPro Designer, the total water consuming steam generator for 72h, 50°C.                                           |
| Output                                           |        |      |                                                                                                                                        |
| Flow                                             | Amount | Unit | Description                                                                                                                            |
| L.digitata Hydrolysate                           | 1      | m³   | Based on results presented in (Masri et al, 2018)                                                                                      |
| Residual L.digitata biomass                      | 21.05  | kg   | Based on results presented in (Masri et al, 2018)                                                                                      |

Input

Table S15: Inventory of hydrolase production from T. reesei (This work).

| Input                               |        |      |                                                                                                                                   |
|-------------------------------------|--------|------|-----------------------------------------------------------------------------------------------------------------------------------|
| Flow                                | Amount | Unit | Description                                                                                                                       |
| L.digitata Hydrolysate              | 0.02   | m3   | Based on the media composition according to(Aftab et al 2008)                                                                     |
| Non-Lipid Biomass                   | 10     | kg   | Based on the media composition 10g L-1                                                                                            |
| Strom, Biogas BHKW, ab Anlage       | 1.12   | kWh  | According to the SuperPro Designer, the total<br>Electricity consuming by fermenter 250m3,<br>and steam generator for 120h, 28°C. |
| Output                              |        |      |                                                                                                                                   |
| Flow                                | Amount | Unit |                                                                                                                                   |
| Carbon dioxide                      | 1.40   | kg   | According to the SuperPro Designer, estimated CO2 released.                                                                       |
| Enzyme, Mixed activities, T. reesei | 1      | kg   | Based on the results presented in the work                                                                                        |

Table S16: Inventory of L. digitata growth (This work).

| Flow                                   | Amount | Unit | Description                                                              |
|----------------------------------------|--------|------|--------------------------------------------------------------------------|
| Carbon dioxide/ absorption<br>from air | 1.47   | kg   | A theoretical calculation based on the C content in the produced biomass |
| Nitrate/ absorption from soil          | 0.031  | kg   | A theoretical calculation based on the N content in the produced biomass |
| Output                                 |        |      |                                                                          |
| Flow                                   | Amount | Unit |                                                                          |

FlowAmountUnitL.digitata1kg

Table S17: Inventory of truck (>32 ton) operation (BioEnergieDat Database).

| Input                                       |        |      |             |
|---------------------------------------------|--------|------|-------------|
| Flow                                        | Amount | Unit | Description |
| Diesel, low-Sulphur, at regional<br>storage | 0.042  | kg   |             |
|                                             |        |      |             |

| Output                               |          |      |  |
|--------------------------------------|----------|------|--|
| Flow                                 | Amount   | Unit |  |
| Operation Truck >32t,                | 1        | t*km |  |
| EURO3_ei/Tremod                      |          |      |  |
| Acetaldehyde /emission to air        | 1.32E-05 | kg   |  |
| Ammonia /emission to air             | 0.15     | kg   |  |
| Benzene /emission to air             | 1.28E-06 | kg   |  |
| Cadmium /emission to air             | 6.05E-06 | kg   |  |
| Cadmium /emission to soil            | 3.61E-06 | kg   |  |
| Cadmium, ion /emission to water      | 3.61E-06 | kg   |  |
| Carbon dioxide /emission to air      | 0.14     | kg   |  |
| Carbon monoxide /emission to air     | 0.0003   | kg   |  |
| Chromium /emission to air            | 0.000064 | kg   |  |
| Chromium /emission to soil           | 1.71E-05 | kg   |  |
| Chromium VI /emission to air         | 5.12E-09 | kg   |  |
| Chromium, ion /emission to water     | 1.71E-05 | kg   |  |
| Copper /emission to soil             | 0.0002   | kg   |  |
| Copper /emission to air              | 0.004    | kg   |  |
| Copper, ion /emission to water       | 0.0002   | kg   |  |
| Dinitrogen monoxide /emission to air | 0.22     | kg   |  |
| Ethane, 1,1,1,2-tetrafluoro-, HFC-   | 3.92E-07 | kg   |  |
| 134a /emission to air                |          |      |  |

| Formaldehyde /emission to air          | 2.43E-05 | kg       |    |  |
|----------------------------------------|----------|----------|----|--|
| Heat, waste /emission to air           | 2326.92  | MJ       |    |  |
| Hydrocarbons, halogenated,             | 6.75E-05 | kg       |    |  |
| unspecified /emission to air           |          |          |    |  |
| Lead /emission to soil                 | 0.0002   | kg       |    |  |
| Lead /emission to water                | 0.0002   | kg       |    |  |
| Lead /emission to air                  | 0.0002   | kg       |    |  |
| Mercury /emission to air               | 1.03E-08 | kg       |    |  |
| Methane, fossil /emission to air       | 1.62E-06 | kg       |    |  |
| Nickel/emission to air                 | 6.39E-05 | kg       |    |  |
| Nickel /emission to soil               | 4.66E-05 | kg       |    |  |
| Nickel, ion /emission to water         | 4.66E-05 | kg       |    |  |
| Nitrogen oxides /emission to air       | 0.001    | kg       |    |  |
| NMVOC, non-methane volatile            |          | 6.59E-05 | kg |  |
| organic compounds, unspecified         |          |          |    |  |
| origin /emission to air                |          |          |    |  |
| PAH, polycyclic aromatic               |          | 1.71E-10 | kg |  |
| hydrocarbons /emission to air          |          |          |    |  |
| Particulates, < 10 um /emission to air |          | 9.45E-07 | kg |  |
| Particulates, < 2.5 um /emission to    |          | 2.97E-05 | kg |  |
| air                                    |          |          |    |  |
| Particulates, > 2.5 um, and < 10um     |          | 8.58E-07 | kg |  |
| /emission to air                       |          |          |    |  |
| Selenium /emission to air              |          | 5.12E-07 | kg |  |
| Sulfur dioxide /emission to air        |          | 7.06E-07 | kg |  |
| Toluene /emission to air               |          | 5.40E-07 | kg |  |
| <i>Xylene /emission to air</i>         |          | 5.40E-07 | kg |  |
| Zinc /emission to air                  |          | 0.002    | kg |  |
| Zinc /emission to soil                 |          | 0.01     | kg |  |
| Zinc, ion /emission to water           |          | 0.01     | kg |  |
|                                        |          |          |    |  |

Table 18: Inventory of tractor operation (BioEnergieDat Database).

| Input                                    |        |      |             |  |
|------------------------------------------|--------|------|-------------|--|
| Flow                                     | Amount | Unit | Description |  |
| Diesel, low-Sulphur, at regional storage | 1      | kg   |             |  |
|                                          |        |      |             |  |
|                                          |        |      |             |  |

Output

| Flow                                 | Amount   | Unit |  |
|--------------------------------------|----------|------|--|
| Operation Tractor                    | 1        | kg   |  |
| Carbon dioxide /emission to air      | 3.12     | kg   |  |
| Carbon monoxide /emission to air     | 0.003    | kg   |  |
| Dinitrogen monoxide /emission to air | 0.22     | kg   |  |
| Methane, fossil /emission to air     | 0.000128 | kg   |  |
| Sulfur dioxide /emission to air      | 0.001    | kg   |  |
| Nitrogen dioxide                     | 0.0001   | kg   |  |
| Nitrogen oxides                      | 0.04     | kg   |  |

Table S19: Inventory of acetic acid production and transportation from China (US LCI database).

| Input                                                              |          |      |                                                                                 |
|--------------------------------------------------------------------|----------|------|---------------------------------------------------------------------------------|
| Flow                                                               | Amount   | Unit | Description                                                                     |
| CUTOFF Disposal, solid waste,<br>unspecified, to sanitary landfill | 0.001    | kg   |                                                                                 |
| Electricity, at cogent, for natural gas<br>turbine                 | 0.002    | kWh  |                                                                                 |
| Electricity, at grid, US, 2000                                     | 0.02     | kWh  |                                                                                 |
| Methanol, at plant                                                 | 0.54     | kg   |                                                                                 |
| Natural gas, combusted in industrial<br>boiler                     | 0.22     | m3   |                                                                                 |
| Natural gas, processed, at plant                                   | 0.44     | m3   |                                                                                 |
| Transport, barge, diesel powered                                   | 0.01     | t*km |                                                                                 |
| Transport, barge, residual fuel oil<br>powered                     | 0.03     | t*km |                                                                                 |
| Transport, combination truck, diesel<br>powered                    | 0.005    | t*km |                                                                                 |
| Transport, pipeline, natural gas                                   | 0.49246  | t*km |                                                                                 |
| Transport, pipeline, unspecified<br>petroleum products             | 0.000867 | t*km |                                                                                 |
| Transport, train, diesel powered                                   | 0.004925 | t*km |                                                                                 |
| Transport, train, diesel powered                                   | 12.5     | t*km | Based on the suggested train way<br>from China to Hamburg (about 12,<br>000 km) |
|                                                                    |          |      |                                                                                 |
| Output                                                             |          |      |                                                                                 |
| Flow                                                               | Amount   | Unit |                                                                                 |
| Acetic acid, at plant in Hamburg                                   | 1        | kg   |                                                                                 |
| Acids, unspecified /emission to water                              | 0.00096  | kg   |                                                                                 |

| Ammonia/emission to air                       | 0.00057  | kg |  |
|-----------------------------------------------|----------|----|--|
| Ammonia /emission to water                    | 0.000052 | kg |  |
| Carbon dioxide /emission to air               | 0.00176  | kg |  |
| Carbon monoxide /emission to air              | 0.00397  | kg |  |
| Methanol /emission to air                     | 0.00004  | kg |  |
| Recovered energy, at acetic acid production   | 0.18841  | MJ |  |
| TOC, Total Organic Carbon /emission<br>to air | 0.00217  | kg |  |

Table 20: Inventory of methanol production in China (US LCI database).

| Input                                                              |         |      |             |
|--------------------------------------------------------------------|---------|------|-------------|
| Flow                                                               | Amount  | Unit | Description |
| CUTOFF Disposal, solid waste,<br>unspecified, to sanitary landfill | 0.0005  | kg   |             |
| Electricity, at grid, US, 2008                                     | 0.0081  | kWh  |             |
| Natural gas, combusted in industrial boiler                        | 0.13    | m3   |             |
| Natural gas, processed, for olefins<br>production, at plant        | 0.62    | kg   |             |
| Oxygen, in air                                                     | 0.38    | kg   |             |
| Transport, combination truck, diesel powered                       | 0.01    | t*km |             |
| Transport, pipeline, natural gas                                   | 0.998   | t*km |             |
| Transport, train, diesel powered                                   | 0.00997 | t*km |             |
| Water, process, unspecified natural<br>origin/m3                   | 0.00054 | m3   |             |
|                                                                    |         |      |             |

# Output

| Flow                                                                              | Amount   | Unit |  |
|-----------------------------------------------------------------------------------|----------|------|--|
| BOD5, Biological Oxygen Demand<br>/emission to water                              | 0.000058 | kg   |  |
| Carbon dioxide /emission to air                                                   | 0.53     | kg   |  |
| Methanol, at plant                                                                | 1        | kg   |  |
| NMVOC, non-methane volatile<br>organic compounds, unspecified<br>/emission to air | 0.005    | kg   |  |
| Suspended solids, unspecified<br>/emission to water                               | 0.000088 | kg   |  |

Table 21: Inventory of natural gas combusted in industrial equipment (US LCI database).

| Natural gas, processed, at plantTransport, combination truck,<br>average fuel mixTransport, pipeline, natural gasTransport, train, diesel poweredOutputAcetaldehyde /emission to airAcrolein /emission to airBenzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>0.20<br>1.19<br>0.01<br>1<br>54E-07      | m3<br>t*km<br>t*km<br>t*km | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|-------------|
| Transport, combination truck,<br>average fuel mixTransport, pipeline, natural gasTransport, train, diesel poweredOutputEnd of the second | 0.20 1<br>1.19 1<br>0.01 1<br>mount<br>54E-07 | t*km<br>t*km<br>t*km       |             |
| average fuel mixTransport, pipeline, natural gasTransport, train, diesel poweredOutputAcetaldehyde /emission to airAcrolein /emission to airBenzene /emission to airSenzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.19 1<br>0.01 1<br><b>mount</b><br>54E-07    | t*km<br>t*km               |             |
| Transport, train, diesel poweredOutputAcetaldehyde /emission to airAcetaldehyde /emission to airAcrolein /emission to airBenzene /emission to airBenzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 1<br>nount<br>54E-07                     | t*km                       |             |
| OutputFlowArAcetaldehyde /emission to air6.5Acrolein /emission to air1.0Benzene /emission to air1.5Benzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>nount</b><br>54E-07                        |                            |             |
| FlowArAcetaldehyde /emission to air6.5Acrolein /emission to air1.0Benzene /emission to air1.9Benzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54E-07                                        | Unit                       |             |
| FlowArAcetaldehyde /emission to air6.5Acrolein /emission to air1.0Benzene /emission to air1.9Benzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54E-07                                        | Unit                       |             |
| Acetaldehyde /emission to air6.5Acrolein /emission to air1.0Benzene /emission to air1.9Benzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54E-07                                        | Unit                       |             |
| Acrolein /emission to air1.0Benzene /emission to air1.9Benzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                            | Description |
| Benzene /emission to air1.9Benzene, ethyl- /emission to air5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | kg                         |             |
| Benzene, ethyl- /emission to air 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )5E-07                                        | kg                         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96E-07                                        | kg                         |             |
| Butadiene /emission to air 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23E-07                                        | kg                         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )3E-09                                        | kg                         |             |
| Carbon dioxide, fossil /emission to<br>air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.96                                          | kg                         |             |
| Carbon monoxide, fossil /emission to<br>air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00024                                         | kg                         |             |
| Formaldehyde /emission to air 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00012                                         | kg                         |             |
| Methane, fossil /emission to air 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00014                                         | kg                         |             |
| Naphthalene /emission to air 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24E-08                                        | kg                         |             |
| Natural gas, combusted in industrial<br>equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                             | m3                         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0017                                         | kg                         |             |
| PAH, polycyclic aromatic<br>hydrocarbons /emission to air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 945E-08                                       | kg                         |             |
| Particulates, > 2.5 um, and < 10um<br>/emission to air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00011                                         | kg                         |             |
| Propylene oxide /emission to air 4.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 383E-07                                       | kg                         |             |
| Sulfur oxides /emission to air 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00001                                         | kg                         |             |
| Toluene /emission to air 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00002                                         | kg                         |             |
| VOC, volatile organic compounds<br>/emission to air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00003                                         | kg                         |             |
| Xylene /emission to air 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                            |             |

|   |       | Name                                                              | Inventory<br>result | Unit | Impact factor | Impact<br>result | Impact co-factor             |
|---|-------|-------------------------------------------------------------------|---------------------|------|---------------|------------------|------------------------------|
| 1 | E     | utrophication - generic                                           |                     |      |               | 0.00339          | kg PO4 eq.                   |
|   | 1.1   | Transport, train, diesel<br>powered - DE                          |                     |      |               | 0.00241          | kg PO4 eq.                   |
|   |       | Nitrogen oxides                                                   | 0.018               | kg   | 0.13          | 0.0024           | kg PO4 eq.                   |
|   | 1.2   | Acetic acid, at plant - CN                                        |                     |      |               | 0.00065          | kg PO4 eq.                   |
|   |       | Ammonia                                                           | 0.002               | kg   | 0.35          | 0.00059          | kg PO4 eq.                   |
|   |       | Ammonia                                                           | 0.0001              | kg   | 0.35          | 5.39E-05         | kg PO4 eq.                   |
|   | 1.3   | Natural gas, combusted in<br>industrial boiler - RNA              |                     |      |               | 0.00019          | kg PO4 eq.                   |
|   |       | Nitrogen oxides                                                   | 0.001               | kg   | 0.13          | 0.00018          | kg PO4 eq.                   |
|   |       | Dinitrogen monoxide                                               | 3.13E-05            | kg   | 0.27          | 8.46E-06         | kg PO4 eq.                   |
|   | 1.4   | L.digitata Growth                                                 |                     |      |               | 0.00013          | kg PO4 eq.                   |
|   |       | Nitrate                                                           | 0.001               | kg   | 0.1           | 0.00013          | kg PO4 eq.                   |
|   | _     |                                                                   |                     |      |               |                  |                              |
| ? | Phot  | cochemical oxidation - high<br>Nox                                |                     |      |               | 0.00043          | kg ethylene eq.              |
|   | 2.1   | Acetic acid, at plant - CN                                        |                     |      |               | 0.00033          | kg ethylene eq.              |
|   |       | Carbon monoxide                                                   | 0.01                | kg   | 0.027         | 0.00032          | kg ethylene eq.              |
|   |       | Methanol                                                          | 0.00012             | kg   | 0.14          | 1.66E-05         | kg ethylene eq.              |
|   | 2.2   | Transport, train, diesel<br>powered - DE                          |                     |      |               | 4.93E-05         | kg ethylene eq.              |
|   |       | Carbon monoxide                                                   | 0.002               | kg   | 0.027         | 4.91E-05         | kg ethylene eq.              |
|   | 2.3   | CHP (gas engine) 500 kWel<br>Mais (90), cattle manure<br>(10), DE |                     |      |               | 4.52E-05         | kg ethylene eq.              |
|   |       | Methane, biogenic                                                 | 0.007               | kg   | 0.006         | 4.52E-05         | kg ethylene eq.              |
| 2 | Terre | estrial ecotoxicity - TETP inf                                    |                     |      |               | 0.00026          | kg 1,4-<br>dichlorobenzene e |
|   | 3.1   | Natural gas, combusted in<br>industrial boiler - RNA              |                     |      |               | 0.00017          | kg 1,4-<br>dichlorobenzene e |
|   |       | Mercury                                                           | 3.62E-09            | kg   | 2.83E+04      | 0.0001           | kg 1,4-<br>dichlorobenzene e |
|   |       | Chromium                                                          | 1.95E-08            | kg   | 3031.11       | 5.91E-05         | kg 1,4-<br>dichlorobenzene e |
|   |       | Nickel                                                            | 2.93E-08            | kg   | 116.04        | 3.40E-06         | kg 1,4-<br>dichlorobenzene e |
|   | 3.2   | Operation truck >32t,<br>EURO3                                    |                     |      |               | 9.42E-05         | kg 1,4-<br>dichlorobenzene e |
|   |       | Zinc                                                              | 1.52E-06            | kg   | 24.59         | 3.74E-05         | kg 1,4-<br>dichlorobenzene e |
|   |       | Chromium                                                          | 9.70E-09            | kg   | 3031.12       | 2.94E-05         | kg 1,4-<br>dichlorobenzene e |
|   |       | Chromium                                                          | 2.56E-09            | kg   | 6302.86       | 1.61E-05         | kg 1,4-<br>dichlorobenzene e |
|   |       | Copper                                                            | 5.50E-07            | kg   | 6.99          | 3.85E-06         | kg 1,4-<br>dichlorobenzene e |
|   |       | Zinc                                                              | 2.32E-07            | kg   | 11.96         | 2.78E-06         | kg 1,4-<br>dichlorobenzene e |

Table 22: Life cycle assessment and impact analysis for 1 kg yeast lipid production.

|   |     | Nickel                                                            | 6.96E-09 | kg | 238.55   | 1.66E-06 | kg 1,4-<br>dichlorobenzene eq. |
|---|-----|-------------------------------------------------------------------|----------|----|----------|----------|--------------------------------|
|   |     | Nickel                                                            | 9.55E-09 | kg | 116.04   | 1.11E-06 | kg 1,4-<br>dichlorobenzene eq. |
| 4 | С   | limate change - GWP100                                            |          |    |          | 3.56179  | kg CO2 eq.                     |
|   | 4.1 | Yeast Biomass production,                                         |          |    |          | 1.10924  | kg CO2 eq.                     |
|   |     | Fermentation - DE<br>Carbon dioxide                               | 1.10     | ka | 1        | 1.10924  | kg (0) og                      |
|   | 4.2 |                                                                   | 1.10     | kg | 1        |          | kg CO2 eq.                     |
|   | 4.2 | CHP (gas engine) 500 kWel<br>Mais (90), cattle manure<br>(10), DE |          |    |          | 0.87251  | kg CO2 eq.                     |
|   |     | Carbon dioxide                                                    | 0.68     | kg | 1        | 0.68407  | kg CO2 eq.                     |
|   |     | Methane, biogenic                                                 | 0.007    | kg | 25       | 0.18843  | kg CO2 eq.                     |
|   | 4.3 | Methanol, at plant - CN                                           |          |    |          | 0.8466   | kg CO2 eq.                     |
|   |     | Carbon dioxide                                                    | 0.84     | kg | 1        | 0.8466   | kg CO2 eq.                     |
|   | 4.4 | Transport, train, diesel<br>powered - DE                          |          |    |          | 0.71149  | kg CO2 eq.                     |
|   |     | Carbon dioxide                                                    | 0.70     | kg | 1        | 0.70195  | kg CO2 eq.                     |
|   | 4.5 | Enzyme, Mixed activities,<br>T. reesei                            |          |    |          | 0.03711  | kg CO2 eq.                     |
|   |     | Carbon dioxide                                                    | 0.04     | kg | 1        | 0.03711  | kg CO2 eq.                     |
|   | 4.6 | L.digitata_Growth                                                 |          |    |          | -0.06262 | kg CO2 eq.                     |
|   |     | Carbon dioxide                                                    | -0.06    | kg | 1        | -0.06262 | kg CO2 eq.                     |
| - | A I | * <b>6</b> *                                                      |          |    |          | 0.04267  | he (02 a s                     |
| 5 |     | ification potential - average<br>Europe                           |          |    |          | 0.01267  | kg SO2 eq.                     |
|   | 5.1 | Transport, train, diesel<br>powered - DE                          |          |    |          | 0.00923  | kg SO2 eq.                     |
|   |     | Nitrogen oxides                                                   | 0.02     | kg | 0.5      | 0.00923  | kg SO2 eq.                     |
|   | 5.2 | Acetic acid, at plant - CN                                        |          |    |          | 0.0027   | kg SO2 eq.                     |
|   |     | Ammonia                                                           | 0.00169  | kg | 1.6      | 0.0027   | kg SO2 eq.                     |
|   | 5.3 | Natural gas, combusted in<br>industrial boiler - RNA              |          |    |          | 0.0007   | kg SO2 eq.                     |
|   |     | Nitrogen oxides                                                   | 0.001    | kg | 0.5      | 0.0007   | kg SO2 eq.                     |
| 6 | Dep | letion of abiotic resources -<br>fossil fuels                     |          |    |          | 0        | MJ                             |
| 7 |     | letion of abiotic resources -<br>ements, ultimate reserves        |          |    |          | 0        | kg antimony eq.                |
|   |     |                                                                   |          |    |          |          |                                |
| 8 | ł   | Human toxicity - HTP inf                                          |          |    |          | 0.03056  | kg 1,4-<br>dichlorobenzene eq. |
|   | 8.1 | Transport, train, diesel<br>powered - DE                          |          |    |          | 0.02254  | kg 1,4-<br>dichlorobenzene eq. |
|   |     | Nitrogen oxides                                                   | 0.02     | kg | 1.2      | 0.02216  | kg 1,4-<br>dichlorobenzene eq. |
|   |     | Particulates, < 10 um                                             | 0.0005   | kg | 0.82     | 0.00038  | kg 1,4-<br>dichlorobenzene eq. |
|   | 8.2 | Natural gas, combusted in<br>industrial boiler - RNA              |          |    |          | 0.00496  | kg 1,4-<br>dichlorobenzene eq. |
|   |     | Cadmium                                                           | 1.53E-08 | kg | 1.45E+05 | 0.00222  | kg 1,4-                        |
|   |     |                                                                   |          |    |          |          |                                |

|    |       |                                                      |          |    |          |          | dichlorobenzene eq.            |
|----|-------|------------------------------------------------------|----------|----|----------|----------|--------------------------------|
|    |       | Nitrogen oxides                                      | 0.00139  | kg | 1.2      | 0.00167  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Nickel                                               | 2.93E-08 | kg | 3.50E+04 | 0.00103  | kg 1,4-<br>dichlorobenzene eq. |
|    | 8.3   | Operation truck >32t,<br>EURO3                       |          |    |          | 0.00289  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Copper                                               | 5.50E-07 | kg | 4295.03  | 0.00236  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Nickel                                               | 9.55E-09 | kg | 3.50E+04 | 0.00033  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Cadmium                                              | 9.03E-10 | kg | 1.45E+05 | 0.00013  | kg 1,4-<br>dichlorobenzene eq. |
| 9  | Ozone | layer depletion - ODP steady<br>state                |          |    |          | 0        | kg CFC-11 eq.                  |
| 10 | Ma    | rine aquatic ecotoxicity -<br>MAETP inf              |          |    |          | 0.74621  | kg 1,4-<br>dichlorobenzene eq. |
|    | 10.1  | Operation truck >32t,<br>EURO3                       |          |    |          | 0.61477  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Copper                                               | 5.50E-07 | kg | 8.93E+05 | 0.49159  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Nickel                                               | 9.55E-09 | kg | 3.76E+06 | 0.03587  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Zinc, ion                                            | 1.52E-06 | kg | 1.38E+04 | 0.02108  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Nickel, ion                                          | 6.96E-09 | kg | 2.25E+06 | 0.01566  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Zinc                                                 | 2.32E-07 | kg | 6.73E+04 | 0.01561  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Zinc                                                 | 1.52E-06 | kg | 7208.56  | 0.01098  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Copper, ion                                          | 3.61E-08 | kg | 2.33E+05 | 0.0084   | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Nickel                                               | 6.96E-09 | kg | 1.17E+06 | 0.00818  | kg 1,4-<br>dichlorobenzene eq. |
|    | 10.2  | Natural gas, combusted in<br>industrial boiler - RNA |          |    |          | 0.13144  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Nickel                                               | 2.93E-08 | kg | 3.76E+06 | 0.10999  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Cadmium                                              | 1.53E-08 | kg | 1.11E+06 | 0.01695  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Mercury                                              | 3.62E-09 | kg | 1.20E+06 | 0.00435  | kg 1,4-<br>dichlorobenzene eq. |
| 11 | Fresh | water aquatic ecotoxicity -<br>FAETP inf             |          |    |          | 0.00047  | kg 1,4-<br>dichlorobenzene eq. |
|    | 11.1  | Operation truck >32t,<br>EURO3                       |          |    |          | 0.00044  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Zinc, ion                                            | 1.52E-06 | kg | 91.71    | 0.00014  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Copper                                               | 5.50E-07 | kg | 221.65   | 0.00012  | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Zinc                                                 | 1.52E-06 | kg | 47.745   | 7.27E-05 | kg 1,4-<br>dichlorobenzene eq. |
|    |       | Copper, ion                                          | 3.61E-08 | kg | 1157.30  | 4.18E-05 | kg 1,4-<br>dichlorobenzene eq. |
|    |       |                                                      |          |    |          |          | 20   D = =                     |

|      | Nickel, ion                                          | 6.96E-09             | kg       | 3237.61          | 2.25E-05                    | kg 1,4-<br>dichlorobenzene eq. |
|------|------------------------------------------------------|----------------------|----------|------------------|-----------------------------|--------------------------------|
|      | Copper                                               | 3.61E-08             | kg       | 594.65           | 2.15E-05                    | kg 1,4-<br>dichlorobenzene eq. |
|      | Nickel                                               | 6.96E-09             | kg       | 1690.25          | 1.18E-05                    | kg 1,4-<br>dichlorobenzene eq. |
|      | Nickel                                               | 9.55E-09             | kg       | 629.47           | 6.01E-06                    | kg 1,4-<br>dichlorobenzene eq. |
|      |                                                      |                      |          |                  |                             |                                |
| 11.2 | Natural gas, combusted in<br>industrial boiler - RNA |                      |          |                  | 2.41E-05                    | kg 1,4-<br>dichlorobenzene eq. |
| 11.2 | •                                                    | 2.93E-08             | kg       | 629.47           | <b>2.41E-05</b><br>1.84E-05 | •                              |
| 11.2 | industrial boiler - RNA                              | 2.93E-08<br>1.53E-08 | kg<br>kg | 629.47<br>289.43 |                             | dichlorobenzene eq.<br>kg 1,4- |

### Referances

- 1. A. A. Koutinas, A. Chatzifragkou, N. Kopsahelis, S. Papanikolaou and I. K. Kookos, *Fuel*, 2014, **116**, 566-577.
- 2. N. R. Baral, O. Kavvada, D. Mendez-Perez, A. Mukhopadhyay, T. S. Lee, B. A. Simmons and C. D. Scown, *Energy & Environmental Science*, 2019, **12**, 807-824.
- 3. F. Xu, J. Sun, N. Konda, J. Shi, T. Dutta, C. D. Scown, B. A. Simmons and S. Singh, 2015.
- 4. J. Sun, N. M. Konda, J. Shi, R. Parthasarathi, T. Dutta, F. Xu, C. D. Scown, B. A. Simmons and S. Singh, *Energy & Environmental Science*, 2016, **9**, 2822-2834.
- 5. D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, J. Lukas, B. Olthof and M. Worley, *Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover*, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2011.
- 6. W. Babel and R. H. Müller, *Applied microbiology and biotechnology*, 1985, **22**, 201-207.
- 7. D. P. Petrides, *Computers & chemical engineering*, 1994, **18**, S621-S625.
- 8. D. Petrides, *Bioseparations science and engineering*, 2000.
- 9. S. Y. Lee, J. Nielsen and G. Stephanopoulos, *Industrial Biotechnology: Products and Processes*, John Wiley & Sons, 2016.
- 10. H.-P. Meyer, W. Minas and D. Schmidhalter, *Industrial Biotechnology: Products and Processes*, 2016, 3-53.
- 11. A. Meo, X. L. Priebe and D. Weuster-Botz, *Journal of biotechnology*, 2017, **241**, 1-10.
- 12. J. Hannon, A. Bakker, L. Lynd and C. Wyman, 2007.