Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2019

Supporting information

Critical design factors for kinetically favorable P-based compounds toward the alloying with Na ions for high-power sodium-ion batteries

Duho Kim, a,† Kai Zhang, b,† Maenghyo Cho,*,c and Yong-Mook Kang*,b

^aDepartment of Mechanical Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.

^bDepartment of Energy and Materials Engineering, Dongguk University-Seoul, 04620 Seoul, Republic of Korea. E-mail: dake1234@dongguk.edu (Y.-M. Kang).

^cDepartment of Mechanical and Aerospace Engineering, Seoul National University, Gwanakro 1, Gwanak-gu, Seoul 08826, Republic of Korea. E-mail: mhcho@snu.ac.kr (M. Cho).

†These authors contributed equally.

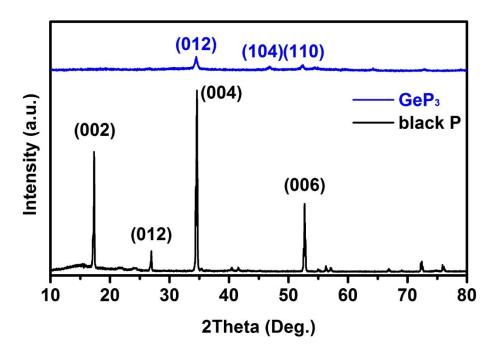


Figure S1. XRD patterns of black P and GeP₃.

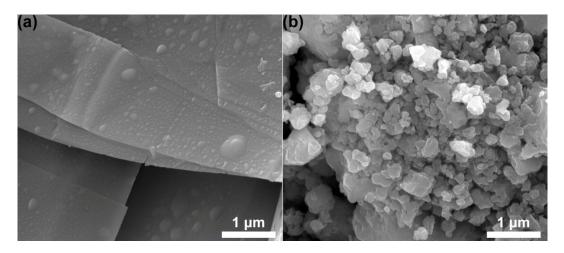
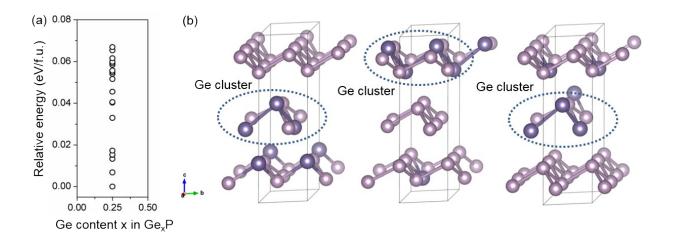
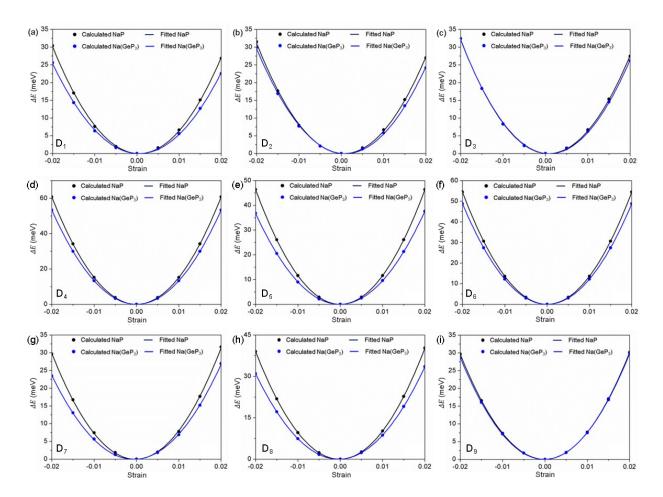




Figure S2. SEM images of pristine black P (a) and GeP₃ (b).

Figure S3. (a) Relative energies considering all possible Ge/P atomic configurations at Ge content x in Ge_xP . (b) Sampled GeP_3 atomic models at thermodynamically unstable states compared to the GeP_3 structure at the ground state (Figure 1a).

Figure S4. Strain energies as a function of small strain ($-0.02 \le \delta \le 0.02$), depending on distortion matrices (D_1 to D_9 , see Table S2) to obtain the nine independent elastic constants (C_{11} , C_{22} , C_{33} , C_{44} , C_{55} , C_{66} , C_{12} , C_{13} , C_{23} , which are summarized in Table S1) as shown in Figure 1b.¹

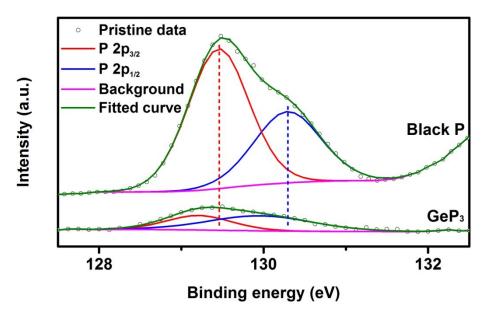
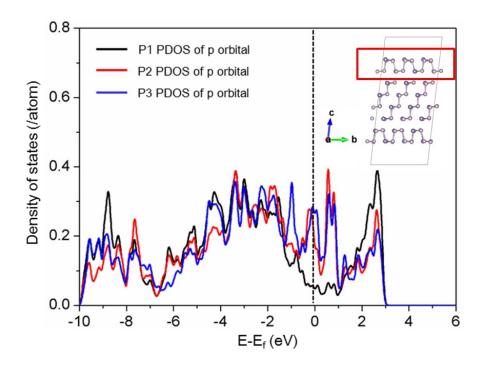
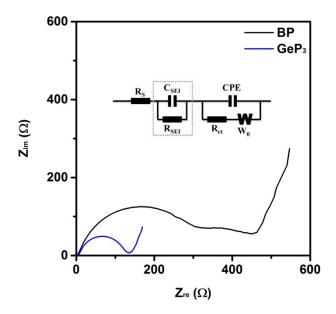




Figure S5. XPS spectra of pristine GeP₃ and black P.

Figure S6. Partial density of states of P 3*p*-electron in the GeP₃ surface, described within the highlighted red box in the inset, depending on the three types of P as shown in Figure 2a.

Figure S7. Impedance spectra of GeP₃ and black P electrodes at fully discharged state.

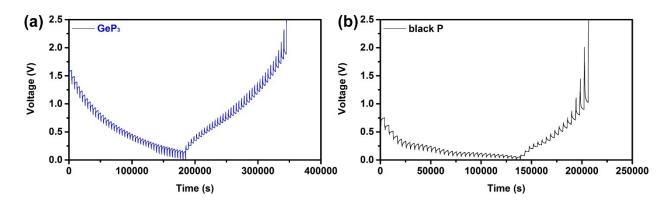


Figure S8. GITT profiles of the $GeP_3(a)$ and BP (b) electrodes.

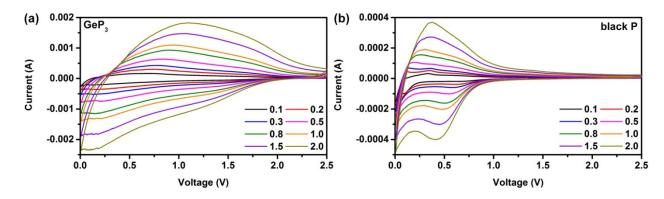


Figure S9. CV curves at different scan rates of GeP₃(a) and black P (b).

Table S1. Calculated nine independent elastic constants (C_{11} , C_{22} , C_{33} , C_{12} , C_{13} , C_{23} , C_{44} , C_{55} , and C_{66}) for NaP and Na(GeP₃).

Compound	Elastic constants (GPa)								
	C ₁₁	C ₂₂	C ₃₃	C ₁₂	C ₁₃	C ₂₃	C ₄₄	C ₅₅	C ₆₆
Na(GeP ₃)	52.891	59.329	64.308	28.429	23.175	29.716	29.285	20.425	26.793
NaP	65.689	67.085	68.710	31.230	21.711	33.607	34.878	26.617	31.252

Table S2. Distortion matrices for an orthorhombic system.

Distortion matrices

$$D_{1} = \begin{pmatrix} 1 + \delta & 0 & 0 \\ 0 & 1 + \delta & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + \delta & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 + \delta \end{pmatrix}$$

$$D_{4} = \begin{pmatrix} \frac{1}{(1 - \delta^{2})^{1/3}} & 0 & 0 \\ 0 & \frac{1}{(1 - \delta^{2})^{1/3}} & \frac{\delta}{(1 - \delta^{2})^{1/3}} & 0 \\ 0 & \frac{\delta}{(1 - \delta^{2})^{1/3}} & \frac{1}{(1 - \delta^{2})^{1/3}} & 0 \\ 0 & \frac{\delta}{(1 - \delta^{2})^{1/3}} & \frac{1}{(1 - \delta^{2})^{1/3}} & 0 \end{pmatrix} \qquad D_{5} = \begin{pmatrix} \frac{1}{(1 - \delta^{2})^{1/3}} & 0 & \frac{\delta}{(1 - \delta^{2})^{1/3}} & 0 \\ \frac{\delta}{(1 - \delta^{2})^{1/3}} & 0 & \frac{1}{(1 - \delta^{2})^{1/3}} & 0 \\ 0 & 0 & \frac{1}{(1 - \delta^{2})^{1/3}} & 0 \end{pmatrix} \qquad D_{6} = \begin{pmatrix} \frac{1}{(1 - \delta^{2})^{1/3}} & \frac{\delta}{(1 - \delta^{2})^{1/3}} & 0 \\ \frac{\delta}{(1 - \delta^{2})^{1/3}} & \frac{1}{(1 - \delta^{2})^{1/3}} & 0 \\ 0 & 0 & \frac{1}{(1 - \delta^{2})^{1/3}} & 0 \end{pmatrix} \qquad D_{6} = \begin{pmatrix} \frac{1}{(1 - \delta^{2})^{1/3}} & \frac{\delta}{(1 - \delta^{2})^{1/3}} & 0 \\ 0 & 0 & \frac{1}{(1 - \delta^{2})^{1/3}} & 0 \end{pmatrix} \qquad D_{7} = \begin{pmatrix} \frac{1}{(1 - \delta^{2})^{1/3}} & 0 & 0 \\ 0 & \frac{1 + \delta}{(1 + \delta^{2})^{1/3}} & 0 \\ 0 & 0 & \frac{1 - \delta}{(1 - \delta^{2})^{1/3}} & 0 \end{pmatrix} \qquad D_{7} = \begin{pmatrix} \frac{1}{(1 - \delta^{2})^{1/3}} & 0 & 0 \\ 0 & \frac{1 + \delta}{(1 + \delta^{2})^{1/3}} & 0 \\ 0 & 0 & \frac{1 - \delta}{(1 - \delta^{2})^{1/3}} \end{pmatrix}$$

Reference

1. P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills and O. Eriksson, *J. Appl. Phys.*, 1998, **84**, 4891-4904.