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𝑆config =  −R[(∑ 𝑥iln𝑥i)

N

i=1 cation site

+  (∑ 𝑥j ln 𝑥j)

M

j=1 anion site

] 

Equation S1. Calculation of Sconfig for Li0.5(Co0.1Cu0.1Mg0.1Ni0.1Zn0.1)O0.5F0.5 as an example:  

Sconfig = −R(((0.5ln0.5)+(0.1ln0.1)+(0.1ln0.1)+(0.1ln0.1)+(0.1ln0.1)+(0.1ln0.1))cations + 

((0.5ln0.5)+(0.5ln0.5))anions) =−R ((−1.5)cations + (−0.69)anions)) = 2.19 R 

 

 
Figure S1. XRD patterns and the corresponding Rietveld fits for (a) HEO, (b) Li(HEO)F, (c) 

Na(HEO)Cl and (d) Li(HEO)F calcined at 750 °C for 2 h. Refined lattice parameter a, crystallite 

size d and goodness of fit GOF are given in the figures. 
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Table S1. Rietveld refinement results for Li(HEO)F. The XRD pattern was fitted using a single-

phase rock-salt structure. Note that the structural file has been modified by taking into account 

the results from XPS and ICP. 

 

Phase  rock-salt 

Space group   Fm−3m 

Cell volume (Å3) 74.13(10) 

Density (g cm−3)                   4.275(6) 

Lattice parameter a (Å)                                   4.185(2) 

Site x y z Atom Occupation 

4a (cation) 0.00000 0.00000 0.00000 Ni+2 0.039(13) 
    

Co+2 0.096(14) 

    Mg+2 0.110(0) 
 

  
 

Zn+2 0.100(0)  
  

 
Cu+1 0.090(1) 

    Ni+3 0.068(13) 

    Co+3 0.011(14)  
  

 
Li+1 0.043(2) 

4b (anion) 0.50000 0.50000 0.50000 O−2 0.55(0)  
  

 
F−1 0.45(7) 

 

 
Figure S2. Voigt fit of 7Li-MAS-NMR spectrum indicating the presence of about 8% unreacted 

LiF in Li(HEO)F. 
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Figure S3. XPS spectra of the Co 2p, Ni 2p, Mg 1s, Zn 2p, Li 1s, Cu 2p, C 1s, O 1s and F 1s 

core level regions as well as Cu LMM and Zn LMM Auger spectra for Li(HEO)F. The Zn 2p3/2 

at 1021.3 eV and Zn LMM at 988.6 eV indicate the presence of Zn2+.1 The Cu 2p spectrum can 

be assigned to Cu1+ ions (with Cu 2p3/2 at 933 eV). 

 

 
Figure S4. STEM-EDX mapping of Li(HEO)F. 
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Figure S5. Overall composition of Li(HEO)F from ICP-OES, NMR and EDX.  

 

Note S1. ICP-OES elemental analysis was accomplished using four different calibrated 

solutions and two internal standards (Na, Sc). The oxygen content was analyzed via carrier gas 

hot extraction (CGHE). To this end, a commercial oxygen/nitrogen analyzer TC600 (LECO) 

was used. The oxygen concentration was calibrated using the certified standard KED 1025. 

Both the standard and the sample were weighed with a mass ranging from 1 to 2 mg (±0.05 mg 

accuracy) in Sn crucibles (9-10 mm), followed by wrapping. The samples were then put 

together with a Sn pellet (about 200 mg) into a Ni crucible and loaded in an outgassed (5500 

W) high-temperature graphite crucible. The evolving gases CO2 and CO were swept out by He 

as an inert carrier gas and measured by infrared detectors. The fluorine content was analyzed 

using an ion-selective electrode (perfectION, Mettler Toledo). The digestions were diluted and 

adjusted to a pH between 5 and 8 using both 5 M NaOH solution and TISAB (total ionic strength 

adjustment buffer) solution. The fluorine concentration was determined via the method of 

standard addition. The amount of Li was determined from combined ICP-MS and NMR data. 

The ICP-MS results for the as-prepared Li(HEO)F are given below. Because unreacted LiF was 

observed by NMR, 8% of lithium and fluorine were subtracted from the ICP-MS data, leading 

to a composition of Li0.94(Co0.21Ni0.21Zn0.2Mg0.2Cu0.18)O1F0.87. 
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Element Mol. ratio to oxygen 

Li 1.02 

O 1 

Mg 0.2 

Co 0.21 

Ni 0.21 

Cu 0.18 

Zn 0.2 

F 0.99 

 

Note S2. For HEOs, a conversion reaction takes place, which partially reduces the transition 

metal species to their elemental state. The reaction occurs at relatively low potentials; no 

electrochemical activity at higher potentials (like for Li(HEO)F) is observed. This can be seen 

from Figure 4, comparing the redox reactions for HEO and Li(HEO)F. The Li(HEO)F 

compound reveals an insertion mechanism, where Li is inserted/extracted into/from the lattice 

without inducing significant structural changes. This reaction occurs at a much higher potential, 

following the equation V(x) = −ΔG / (xj – xi) · F, where V(x) is the average equilibrium voltage, 

ΔG the difference in Gibbs free energy, xj and xi are the borders of the miscibility gap of the 

insertion reaction and F represents the Faraday constant. The latter equation indicates that even 

if an insertion type reaction would be possible in the HEO case, the electrochemical potential 

of the oxyfluoride material would be higher (because of the higher free energy of formation of 

fluoride compounds in general [e.g., CoO ≈ 240 kJ/mol vs. CoF2 ≈ 670 kJ/mol)]. This can be 

explained as follows: According to the crystal field concept,4 the redox potential of insertion 

electrode materials is governed by the ionocovalency of the M-X bond (M: transition metal, X: 

oxygen, fluorine or sulfur). The more ionic the bonding, the higher the potential. The highly 

ionic M-F bond stabilizes the energy of the antibonding M-d orbitals of the transition metal ion, 

thus increasing the voltage at which the lithium insertion reaction occurs, while the opposite is 

observed for elements with lower electronegativity such as sulfur.5,6 Therefore, the 

incorporation of fluorine into the original rock-salt type Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O results in a 

relatively high working potential of 3.4 V vs. Li+/Li. 
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Figure S6. XPS spectra of the C 1s, O1s and Ni 2p core level regions as well as Cu LMM and 

Zn LMM Auger spectra for Li(HEO)F in (A) pristine state, (B) delithiated state and (C) lithiated 

state. 
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