Supplementary information

Stable perovskite solar cells using tin acetylacetonate based electron transporting layers

Mousa Abuhelaiqa^{a,e}, Sanghyun Paek^{a,e}, Yonghui Lee^{a,e*}, Kyung Taek Cho^a, Sung Heo^a, Emad

Oveisi^b, Aron Joel Huckaba^a, Hiroyuki Kanda^a, Hobeom Kim^a, Yi Zhang^a, Robin Humphry-

Baker^a, Sachin Kinge^c, Abdullah M. Asiri^d, and Mohammad Khaja Nazeeruddin^{a*}

Fig. S1. EDXS-STEM analysis. HAADF scanning TEM images and corresponding elemental mapping of Sn, O, Cl and Br of the tin oxide films deposited on a carbon support grid.

Fig. S2. HR-TEM images of Acac, Cl₂ and Br₂ annealed at 180 $^\circ C.$

Fig. S3. SEM cross-sectional images for the complete cells. The thickness of the ETL layer is higher for Cl₂/Perovskite and Br₂/perovskite than Acac/perovskite and c-TiO₂/perovskite.

Fig. S4. Absorbance (a) and XRD patterns (b) of the perovskite film on the FTO/ETLs.

Fig. S5. Top-view SEM images of the perovskite films formed on c-TiO₂, Acac, Cl₂ and Br₂ films, respectively.

Fig. S6. Top-view images SEM of c-TiO₂, Acac, Cl₂ and Br₂ on FTO, respectively, taken at a small area. Films are annealed at 180 °C 1 h.

Fig. S7. Top-view SEM images of Acac, Cl₂ and Br₂ films on FTO/c-TiO₂ substrates (left), and perovskite top-surface images on each ETL. An Acac solution in DMF truns into a turbid solution in a few hours while solutions show no color or transperency change.

Fig. S8. Typical *J-V* curves of perovskite solar cells with c-TiO₂/Br₂ electron transporting layers prepared at 160 $^{\circ}$ C.

Fig. S9. pH test of the colloidal SnO₂ **15% in water (AlfaAesar).** The result indicates the colloidal solution is in a highly basic condition with pH=11~12.

Fig. S10. A *J-V* curve of the planar-type perovskite mini-module.

Fig. S11. External quantum efficiency (EQE) of the champion cell.

Fig. S12. SEM top-view images of the perovskite films with one-step (a) and two-step method (b).

Fig. S13. Long-term stability of the champion cell.

Fig. S14. A certificate of the solar cell measured at the Newport.

Fig. S15. Box plot for device PCE for Cl₂, Br₂ and m-TiO₂ BETL configurations.